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Abstract

I have determined the mass density, Ωm, the energy density of
the dark energy, Ωx, and the equation of state parameters w0 and
w1 based on the measurement of 115 type Ia supernovae from the
first year of the SuperNova Legacy Survey, ranging from z = 0.015
to z = 1.01. I am also using two additional datasets; the shift pa-
rameter, i.e. the reduced distance to the surface of last scattering,
determined by the Wilkinson Microwave Anisotropy Probe and the
baryonic acoustic peak determined from the Sloan Digital Sky Survey.
The results favour a model corresponding to a flat universe with a
cosmological constant, but are consistent with a large range of other
models. For the best model I yield the results 0.25 < Ωm < 0.29 and
0.71 < Ωx < 0.75 (68 % confidence level) with the best fit Ωm = 0.27
and Ωx = 0.73.
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1 Introduction

Until the early 20th century, man believed that the whole Universe consisted
only of the Milky Way. However, soon it became clear that some objects were
in fact other galaxies. A breakthrough came in 1929 when Hubble published
his famous paper, finding a relationship between the redshift and distance of
galaxies. After that it became clear that the Universe is not static, which
was before that considered obvious, but expanding. By backtracking this
expansion, the theory of Big Bang evolved. The fate of the Universe, if it
was to expand forever or at some point collapse, was now thought to be
absolutely determined by its total density. If it contains enough matter, the
expansion is halted and then the Universe would collapse into a Big Crunch.
On the other hand, if the Universe contains too little matter, the expansion
would go on forever.

This was changed when another giant breakthrough came in 1998, when
it was discovered that the Universe was not only expanding but also accel-
erating. This means that something counter-acts the gravity and pushes the
galaxies away from each other. This sent a shockwave through the scientific
world and much effort was made to explain the results. The most prominent
explanation is that the Universe is filled with a so-called dark energy. Now
the fate of the Universe is determined both by the matter, baryonic and non-
baryonic, and by this dark energy. This dark energy has a negative pressure,
which leads to acceleration. The determination of the energy density of mat-
ter and dark energy, and also the equation of state of the dark energy, have
become the main issue in cosmology the last years. A popular candidate to
the dark matter is Einstein’s cosmological constant.

I am writing this thesis as a last part toward a master in astronomy at the
Department of Astronomy at Stockholm University. My supervisor is Edvard
Mörtsell. I will be trying to determine the cosmological parameters, which
describe the content in the universe, from Supernova Ia (SN Ia) observations
and also additional measurements from the Cosmic Microwave Background
(CMB) and from Baryonic Acoustic Oscillations (BAO) to put some more
constraints on the parameters. The use of a fast Markov Chain Monte Carlo
(MCMC) algorithm allow me to drop some assumptions usually made and
see what happens; that is allowing a non-flat model and/or parameterize the
equation of state of the dark energy and allow it to change in time.
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2 Theoretical background

2.1 The metric

Hubble showed that all galaxies (except the local ones, which are bound
by gravity) are moving away from us with a velocity proportional to the
distance. Actually, the proper way to see it is that it is the universe itself that
is expanding, described by the so-called scale factor, R(t). In an expanding
universe the metric is not what we are used to in our everyday life where the
geometry obeys Pythagoras law, i.e. an infinitesimal distance ds is described
by

ds2 = dx2 + dy2 + dz2, (1)

where x, y and z are the Euclidian coordinates. On large scales the metric of
the universe is described by the four-dimensional space-time geometry, the
so-called Friedmann, Lemaitre, Robertson-Walker (FLRW) metric (Raine &
Thomas, 2001), named after its originators:

ds2 = c2dt2 −R(t)2

(
dr2

1− kr2
+ r2dθ2 + r2sin2(θ)dφ2

)
. (2)

Here c is the light speed in vacuum, θ and φ are the spherical angles and k
is the curvature factor. Since both R(t) and k is arbitrarily chosen, one can
choose R(t), so that k takes three distinct, different cases. k = 1 means that
the geometry of the universe is spherical (closed); two parallel rays eventually
cross each other, given large enough scales. For k = −1 the geometry of the
universe is hyperbolic (open); two parallel rays will eventually diverge from
each other. The third case is k = 0. In this case the universe is perfectly
flat and our intuitive view of the geometry is correct. It may look like the
universe has a centre at r = 0, but that is not the case. As on the surface
of the Earth the curvature is the same everywhere, so the origin on Earth
(the meridian or the equator) is arbitrarily chosen. One can also note that
for small r the effect of k is negligible, hence we must look at a large volume
to see to effect of curvature. Now consider a light ray moving towards an
observer. We can without loss of generality put the observer in the origin
and letting θ = φ = 0. For a light ray ds2 = 0 and we have

cdt

R
= − dr√

1− kr2
. (3)
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The minus sign is because the ray is approaching the observer in the origin.
Integrating gives

c
∫ dt

R
= −

∫ dr√
1− kr2

. (4)

The right hand, call it χ, gives different results when evaluating, depending
on k. for a closed universe we have χ =

√
k arcsin(

√
kR). The equation yields

χ = R for a flat universe and χ =
√

karcsinh(
√

kR) for an open universe.
Thus, the metric looks a bit different for the different kinds of universes and
one can write many of the equations in the more compact form by introducing
the function S(x).

S(x) =


sin(x) if k = +1
x if k = 0
sinh(x) if k = −1

(5)

2.2 Field equation and the equation of state

In order to combine the FLRW metric with matter, the field equations of
Albert Einstein’s general relativity is needed. The solutions, which are the
ones of interest, generate two equations (Raine & Thomas, 2001). The first
is the Friedmann equation(

dR

dt

)2

=
8πG

3
R2ρ− kc2. (6)

Here G is the gravitational constant and ρ is the sum of all kinds of densities
in the universe i.e. ρ = ρr + ρm + ρx where index r, m and x represent
radiation, matter and dark energy, respectively. The dark energy is here
treated as an ordinary source of gravity; the difference from matter is that
the dark energy has negative pressure (see below). The second equation is
the equation of local energy conservation

d(ρR3)

dt
+

p

c2

dR3

dt
= 0. (7)

Of great interest is also a combination of the two, the so-called acceleration
equation

d2R

dt2
= −4πG

3
R
(
ρ +

3p

c2

)
(8)

where p is the pressure. The density and the pressure is related as what is
known as the equation of state p = p(ρ). Assuming that the dark energy
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is a cosmological constant with a constant density ρΛ, the equation of local
energy conservation gives

ρΛ
dR3

dt
= − p

c2

dR3

dt
(9)

which gives

ρΛ = − p

c2
(10)

i.e. the cosmological constant has negative pressure. If we, in the usual
astronomer way, put c = 1 we have ρΛ = w0p, where w0 now equals −1. This
is the usual way of parameterize the equation of state. One can also let it
vary in redshift by putting

w(z) = w0 +
z

1 + z
w1. (11)

2.3 Critical density

Rearranging the Friedmann equations, equation (6), and substitute H ≡ Ṙ
R

gives

−kc2 = R2H2
(
1− 8πG

3H2
ρ
)

. (12)

H is the Hubble parameter explained below. We now see that ρ = 3H2

8πG
gives

−kc2 = 0 which gives a flat universe (k = 0). We therefore call this the
critical density

ρc ≡
3H2

8πG
. (13)

ρ < ρc gives k = −1 and we have a negatively curved universe, ρ > ρc

gives a positively curved universe. Note also that the critical density is a
function of time through H = H(t). We can now introduce the energy
density parameter, Ω, which is the density in units of the critical density.
We have

Ωr =
ρr

ρc

=
8πGρr

3H2
, (14)

Ωm =
ρm

ρc

=
8πGρm

3H2
(15)

Ωx =
ρx

ρc

=
8πGρx

3H2
. (16)
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Since the universe today is not radiation dominated (Raine & Thomas, 2001),
and has not been for a long time, I do not consider the effect of the radiation
from now on. I now also define the energy density of the curvature from the
remaining two densities: Ωk = 1−Ωm−Ωx. Ωk is now a continuous variable,
Ωk = 0 represent a flat universe and Ωk < 0 and Ωk > 0 represent a closed
and an open universe, respectively.

2.4 Expansion

The expansion of the universe means that every process, even the wavelength
of light itself, is stretched out, as you look deeper into space. In this way the
redshift is defined as the fractional change of the stretched wavelength i.e.

z =
λo − λe

λe

(17)

which is equivalent with

1 + z =
λo

λe

(18)

where index e and o is the emitted and observed wavelength, respectively.
A theoretical distance of length li at time ti is in the same way stretched
according to l(t) = li

R(t)
R(ti)

where R(t) is the scale factor at time t. In order to
obtain the corresponding relation for the velocity we differentiate with respect
to time v(t) = li

R(ti)
Ṙ = Ṙ

R(t)
l(t) = H(t)l(t) where we have introduced the

Hubble parameter H(t) which is describing the expansion rate of the universe.
For small velocities v(t) = cz and we have cz = H(t)l(t) which is the famous
Hubble law. He found that the redshift of galaxies was proportional to their
distance and later on it was concluded that the redshifts actually originated
from the velocity and that the galaxies were moving away from us.

When the universe is expanding all relevant properties change in the same
way as the wavelength, hence we have

1 + z =
λ0

λe

=
νe

ν0

=
l0
le

=
R(t0)

R(te)
=

dt0
dte

. (19)

Index 0 is from now on assigned to the present day values. As seen the ex-
pansion is also affecting the time. Imagine a source sending out one photon
per second. Since the galaxy has moved away a little bit from us between
photon number one and photon two, the second one will have a longer dis-
tance to travel. It will therefore arrive at the detector on Earth more than
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one second after the first one; the process will be slowed down by a factor
1 + z.

2.5 Magnitude and luminosity distance

Astronomers measure the brightness of objects in the rather awkward unit
of apparent or absolute magnitude, due to traditional reasons. The original
definition is that the brightest star on the sky is of magnitude zero and the
faintest visible star under perfect conditions is of magnitude six. Due to the
sensitivity of the eye, this makes the scale logarithmic. The modern definition
is (in the most common Vega–magnitude system)

m1 −m2 = −2.5 log
F1

F2

(20)

and the hot A0 star Vega sets the zero point (Sparke & Gallagher, 2000).
Here m1 and m2 are the magnitude of two sources and F1 and F2 their
fluxes, respectively. The absolute magnitude, M , is the apparent magnitude
if the source would be at a standard distance of 10 parsec (32.6 light years).
Now, the flux measured from a galaxy with observed redshift z and comoving
distance re is

F =
L

4πS(R(t0)re)2(1 + z)2
≡ L

4πd2
l

. (21)

L is the luminosity of the galaxy and 4πS(R(t0)re)
2 is an expanding sphere

around the galaxy, where its light is spread. The two factors of (1 + z)
appear because the individual photons are redshifted and are also delayed
in time. The introduced dl ≡ (1 + z)S(R(t0)re) is called the luminosity
distance. Note that dl depends in the curvature trough the function S(x).
The apparent magnitude of a supernova can now be written as m = M +
5 log d′l, where M = 25 + M + 5 log c

H0
contains the unknown (and for my

analysis uninteresting) parameters M and H0 (Goliath et al, 2001; Ichikawa &
Takahashi, 2005). M is a constant factor added to all the supernovae, it will
not change the physics in a relevant way and is therefore of no importance.
d′l ≡ H0dl

c
is the Hubble-parameter independent luminosity distance which

can now also be written as (Goliath et al, 2001; Ichikawa & Takahashi, 2005)

d′l =
1 + z√
| Ωk |

S

(√
| Ωk |

∫ dz

H ′(z)

)
(22)
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Figure 1: Fitting theoretical models to observational data, implying the ex-
istence of the dark energy. Picture taken from the Supernova Cosmology
Project (Perlmutter et al, 1998).

where S(x) is given by equation (5) and the factors
√
| Ωk | are removed for

the flat universe. Finally

H ′(z) ≡ H(z)

H0

=

√
(1 + z)3Ωm + (1 + z)2Ωk + (1 + z)3(1+w0+w1)e

−3w1z

1+z Ωx

(23)
(see Appendix A). By fitting the theoretical value of the apparent magnitude
to the observations, one is able to constrain the cosmological parameters. An
example of such a fit is shown in figure (1).

2.6 Standard candles

A very powerful tool in cosmology is the magnitude versus redshift test. The
idea is to compare the magnitude of an object at different redshifts and hence
calculating the distance to the object. The problem is that the object must
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be equally luminous at all redshifts. Such a source is called a standard candle.
In order to determine the energy densities of the universe from the standard
candles, they must also be bright enough so that they can be observed at large
redshifts, say up to z = 1. Until recently, finding a good standard candle has
not been easy, at least not extra-galactic ones. For some reason the brightest
galaxy in a rich cluster always have about the same luminosity and hence
used to be a popular standard candle. The problem is that the principle of
galaxy evolution is not well understood. A galaxy at z = 1 is observed as it
looked like when the universe was very young, about one third of its current
age. Since galaxies seem to evolve or merge they are not a suitable choice.
Lately however, the improved knowledge of type Ia supernovae, SN Ia, has
replaced them as the favorite standard candle.

2.6.1 Supernova Ia as standard candle

The source of a SN Ia is a carbon-oxygen white dwarf. A white dwarf is the
end stage of a medium-mass star. When the star has burned all the helium
in the core into carbon, it will not have high enough temperature to fuse the
carbon any further. At this point the star ejects most of its material into
the interstellar medium and is left only with a degenerate carbon-oxygen
core (for details, see Christensen–Dalsgaard (2003)). In a degenerate gas
the gravitational collapse is prevented only from the electrons repelling each
other, forcing them into higher energy states. The core is now very luminous
and dense; it has a mass of about 0.7–1.4 solar masses and is approximately
the size of Earth. Therefore it is named a white dwarf. Chandrasekhar
(Chandrasekhar, 1931) showed that all white dwarfs have a maximum mass
limit, the Chandrasekhar mass, which is approximately 1.4 solar masses. If
the white dwarf is part of a binary system and the companion swells into
a red giant, it may lose mass to the nearby white dwarf. It is also possible
for two white dwarfs to collide, they will lose angular momentum through
gravitational wave radiation. In either case, the white dwarf will obtain a
higher density and temperature. If the white dwarf accretes material enough
to exceed the Chandrasekhar mass, it becomes hot enough to burn the central
part into 56Ni. However, due to the degenerate state, the extended energy
production does not change the pressure and causing the star to expand,
as in the usual case. Instead, the energy will raise the central temperature
and hurry the reaction rates even further. This is, of course, an unstable
condition called a thermonuclear runaway. The white dwarf will explode
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and completely annihilate, leaving nothing behind. The fact that the white
dwarfs always explode at a certain mass makes the processes just before
the explosion always the same, leading to very similar light curves. They are
therefore easy to recognize and will have about the same absolute magnitude,
making them very good as standard candles. There is one major difference in
the light–curves, though (Phillips, 1993; Hamuy et al, 1993). Phillips showed
that there is a correlation between the peak magnitude and the magnitude
measured 15 days after the peak (∆m15). The longer the decay time (i.e.
smaller ∆m15) the brighter the supernova is. Phillips made this observation
based on a small set of supernovae, but the correlation was confirmed later
on (Hamuy et al, 1995; Riess, Press & Kirshner, 1994). The origin of this
difference in the lightcurves is not fully understood and is under investigation.
The good part however, is that after the different decays have been taken
into account, the dispersion of these modified magnitudes can be very small,
making SN Ia a very good candidate for a standard candle. There is one
problem left to deal with though. The supernovae is seen at a high redshift,
up to z ∼ 1.5. A rule of thumb is that an event at z = 1 is seen when
the universe is one third of its present age. The SN Ia must therefore not
be a subject of evolution or at least evolve in an easily fashion which can
be predicted and accounted for. Luckily, the SN Ia do not seem to evolve
(Goobar & Perlmutter, 1995; Branch et al, 2001). Since SN Ia is a single
event it does not care about the time since Big Bang, it only cares about the
state of its progenitor. SN Ia is also seen in all types of galaxies, with different
amounts of dust. Both dust in the host galaxy and the existance of a dark
energy dimmer the supernovae, leading to similar results. However, dust also
reddens the colour of the supernovae and it is therefore possible to compare
nearby and distant supernovae. The answer to the question if the host galaxy
dust extinction, after correction, still does contribute to a systematic error is
inconclusive. Several authors claim that the effect is negligible, while others
believe that some supernovae are over- or undercorrected. A positive thing
is that since SN Ia is single event it is also possible to discard a supernova if
it is somehow peculiar. In summary, SN Ia seems to be an excellent choice
as standard candle, hence the great interest in them recently.

For my calculations I have used the supernova measurements from the
first year of five from the SuperNova Legacy Survey (SNLS) program taken
with the MegaPrime/MegaCam wide-field imager located at Canada-France-
Hawaii Telescope (CFHT). For a review on how the measurements and data
reductions were done see (Astier et al, 2005). I have 115 clear type Ia super-
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novae, which are well analysed and, very important, they are analysed in the
same way. The fact that the supernovae are taken by they same telescope
make the SNLS a very robust and reliable dataset. The supernova are well
distributed in distance and cover the range 0.015 < z < 1.01, with a median
redshift of z = 0.43.

2.7 Additional datasets

In addition to the supernova measurements I am also including measurements
from the Cosmic Microwave Background (CMB) and Baryonic Acoustic Os-
cillations (BAO). These measurements are sensitive to different combinations
of the parameters than the supernovae and will therefore obtain different
confidence contour, hopefully intersecting the confidence contour from the
supernovae. The CMB and BAO are good as complementary measurements,
but as such I will not get into much detail about these measurements, I will
only give a quick review. Both these measurements provide an excellent addi-
tion to the supernova results, when combined they constrain the cosmological
parameters much tighter than the use of supernovae alone ever could.

2.7.1 Baryonic acoustic oscillations

The early universe consisted of a homogeneous plasma of electrons, protons,
neutrons, dark matter, photons and neutrinos. However, due to the nature
of quantum mechanics, very small perturbations arise; a few particles come
together, forming a slightly denser region. These perturbations will propa-
gate in the plasma, forming a sound wave where the velocity is dependent on
the medium (Amanullah, 2005). The sound speed for baryons is higher than
that of dark matter, a perturbation in baryonic matter will quickly travel
away. At decoupling, the sound speed of the baryonic medium drop and
the perturbation will freeze in at a characteristic distance. The dark matter
will determine the mass profile, but it will have a small bump at this char-
acteristic distance. The effect of this in the present-day universe is that it
exists a characteristic length scale, approximately 150 Mpc, of the large-scale
structure seen today (Eisenstein et al, 2005). The Sloan Digital Sky Survey
(SDSS) (Eisenstein et al, 2005) observe the large structures in the universe
and is from that able to determine a Hubble-constant-independent distance
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to z1 = 0.35, a typical redshift of the SDSS sample, defined as

A =

√
Ωm

H ′(z1)
1
3

 1

z1

√
| Ωk |

S

(√
| Ωk |

∫ z1

0

dz

H ′(z)

) 2
3

(24)

where H ′(z) is given by equation (23), S(x) is, as before, given by equation( 5)

and the factors
√
| Ωk | are removed for a flat universe. Eisenstein finds A to

be A = 0.469± 0.017. This distance measure acts as a good standard ruler,
which can then be used to calibrate other distances.

2.7.2 Cosmic microwave background

The cosmic microwave background (CMB) is one of the most studied phe-
nomena in astronomy. When the early universe recombined, forming neutral
atoms, it became totally transparent to photons. This occurred at z2 ≈ 1089
and since the last scattering, the photons have been travelling in all direc-
tions, including right towards us, where we measure them today. This is
thermal radiation producing a perfect blackbody spectrum. Because of the
expansion of the universe the wavelength of the photons is stretched; the
associated temperature of this blackbody spectrum is today ∼ 2.7 K. The
CMB is isotropic i.e. it looks similar in all directions. This isotropic, per-
fect blackbody spectrum is a very strong argument for the Big Bang theory,
since no other known procedure can produce such a spectrum. The CMB
measurement (Spergel et al, 2003; Bennet et al, 2003) I use is the reduced
distance to the surface of last scattering, the so-called shift parameter, deter-
mined by the Wilkinson Microwave Anisotropy Probe (WMAP) and defined
as (Ichikawa & Takahashi, 2005; Knop et al, 2003)

I =

√
Ωm√
| Ωk |

S

(√
| Ωk |

∫ z2

0

dz

H ′(z)

)
. (25)

However, Spergel et al (2003) does not provide with a value for I. Several
authors (Knop et al, 2003; Ichikawa & Takahashi, 2005; Wang & Mukherjee,
2004) do that and then refer to Spergel et al (2003), with no obvious way
of how the value is obtained. After some research it became clear that the
value is constructed from equation (25) using Spergel’s best fit for the so-
called WMAPext dataset i.e. they assume a flat universe with a cosmological
constant and Ωm = 0.24. However, when I calculated the shift parameter I
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came up with a different value than the other authors. I found that Knop
et al (2003) took the value for Ωm from the wrong table, hence using other
datasets than they claim to do. The value Ichikawa & Takahashi (2005) and
Wang & Mukherjee (2004) presents is only slightly different than my number;
it is possible they have access to an additional decimal value, not presented in
the article. Anyhow I use the number I calculated myself, I = 1.714± 0.062.
The shift parameter is sensitive to the deviation from a flat universe; by
comparing the results of a flat universe with a non-flat model including CMB,
we can get a good picture of the flatness of the universe.
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3 Markov Chain Monte Carlo

3.1 Principle of Markov Chain Monte Carlo

The simplest and most straightforward way of determining the best fit of
a set of parameters θ = (θ1, θ2, . . .) is to make a grid of points over the
entire parameter space. The χ2–value is then computed at each point and
the best fit is easily obtained as the point with the lowest χ2–value. This,
however, requires a lot of computer time, since the number of points grows
exponentially with the number of parameters. An alternative is the Markov
Chain Monte Carlo (MCMC) method, which is a very powerful tool and is
becoming a standard technique in cosmology nowadays. It is also an old
and well-known method. There are different kinds of MCMC:s, such as
Gibbs sampling and the Metropolis-Hastings (MH) algorithm (Metropolis et
al, 1953; Hastings, 1970). I have used, and will focus on, the latter one.
The advantage of an MCMC compared to a regular grid is that the time
required to compute the MCMC grows approximately linear with the number
of parameters (Neal, 1993) instead of exponentially, as for the grid method.
For a large number of parameters, which is often required in cosmology, the
grid method is therefore not viable.

A MCMC is a statistical method of obtaining samples from a posterior
distribution. A series of point is drawn that is only dependent on the previous
point, it will accept steps in the ”right” way with high probability and accept
steps in the ”wrong” way with lower probability. So the chain will do a walk
through the χ2–surface, accept and reject steps and hopefully find the global
minimum of all parameters. The basic idea of a MCMC is hence quite simple
and can be outlined as follows (see also figure (2))

1. Generate and save the starting point; a set of random parameters θ0 =
(θ10, θ20, . . .).

2. Calculate χ2
0, the χ2–value corresponding to the starting set of param-

eters.

3. Generate a new set of points, θnew, obtained by moving a small step
∆θ from the previous point. The size of this step can be chosen in
many different ways and is crucial for the efficiency of the chain. I will
discuss the step size later.
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Figure 2: Illustrating the Metropolis algorithm for two parameters. Filled
circles represent points belonging to the chain, empty circles are proposed
but rejected points not belonging to the chain. In this example, the chain
would be [θ0, θ1, θ1, θ3, θ4, . . .]. The picture is taken from Doran & Müller
(2004). Note here that the likelihood, L, is computed instead of χ2.

4. Calculate χ2
new, the χ2–value corresponding to the new set of parame-

ters.

5. Calculate χ2
0/χ

2
new.

5a If χ2
0/χ

2
new ≥ 1 take the step. This means; take the new step to

be the starting point (substitute θnew → θ0), save the new point
and go to 3.

5b If χ2
0/χ

2
new < 1 you still might take the step, with a certain prob-

ability. Draw a number u in the region [0, 1]. If u < χ2
0/χ

2
new take

the step according to 5a.

5c If u ≥ χ2
0/χ

2
new do not take the step. This means; discard θnew,

save θ0 as an additional point at the same spot and go to 3.

6. Repeat step 3–5 until some condition is satisfied, i.e. until you believe
you have points enough to reproduce the confidence contours.

The chain will approach regions of lower χ2–values, hopefully finding the
global minimum. If it does it will stay in that region for most of the time
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and not travel too far away from the region of interest. We say that the chain
draws from the stationary distribution, the chain has converged. Since it is
possible to take a step even if it goes in the ”wrong” direction, the chain is
prevented from getting stuck in a local minimum, at least if the χ2–well is
not to steep. This is also making the chain exploring the surface around the
whole region of interest, rather than staying in a small part of it. In fact,
one property of a MCMC is that it is ergodic (Neal, 1993); it will visit every
point on the χ2–surface, given an infinite time.

In practice there are some difficulties to overcome, which I will discuss in
some detail below.

First, the initial steps will not be drawn from the stationary distribution.
Since the starting point is randomly chosen it can take quite some time
before the chain reaches the region of interest. An even bigger problem is
that you do not know weather it has or not. The first few steps that are
not drawn from the stationary distribution are in the literature called the
burn-in period.

Second, and most important, is the choice of the step size. It is vital for
the chain to be properly ”mixed”. Since we do not know the size or shape
of the χ2–surface a priori, the chain must move quickly from one side of the
distribution to the other. Otherwise a finite chain will miss a part of the
region of interest, and there is no way to tell if it has or not. If the step
size is too small, χ2

0/χ
2
new will be very close to 1 regardless of the direction

and almost every step will be accepted. This will lead to a perfect random
walk; the chain can go in every direction, probably not finding the global
minimum. Even if it does, the chain will not stay there. It will also take a
very long time for the chain to move from one side of the distribution to the
other and we will experience poor mixing. On the other hand, if the step
size is too large χ2

0/χ
2
new will be far from 1. Very few steps, only the ones in

the ”right” direction, will be accepted which will also lead to slow mixing.
It is also possible to get stuck in a local minimum for a very long time. It is
hence clear that there exist an optimum step size, which is not easily found.

The third problem is that of convergence. In order to trust the output
results, one must know when the chain is drawing from the stationary dis-
tribution and also if it has visited the whole region if interest. This is not
straightforward and is a very hard problem to solve. One must in some way
come up with a numerical test, or more, to check for convergence. Fortu-
nately, there exists a whole battery of such tests in the literature (Gelman &
Rubin, 1992; Raftery & Lewis, 1992). A review of many of them is found in

18



Cowles & Carlin (1996).
The fourth and probably the easiest problem to solve is the length of the

chain. If you stop it too soon it will not explore the whole target distribution.
The chains must also consist of points enough to reproduce the confidence
contours. The obvious solution is to run for as long as you can, weather it is
a deadline or your patience that sets the limit.

3.2 My Markov Chain Monte Carlo

In this section I will describe how I made my MCMC and how I dealt with
the above-mentioned problems.

I have tried to build my chain somewhat general. The user can change
which parameters that shall be fixed at some value and the ones that will
vary, this is defined through an input file. The user can also choose which
datasets to use; SN, CMB or BAO or any combination of them. In the input
file the user can also choose the number of chains to run simultaneously and
the length of each individual chain. It is also possible to put constraints on
the parameters; that is restricting the parameters from an unphysical or for
any reason unwanted region. This is useful when you have a prior knowledge,
for example that Ωm > 0. It is rather easy to add additional datasets and
measurements in my MCMC as long as it not introduces additional param-
eters. If this is the case one has to do some extensive changes to the source
code of my program.

To solve the first of the above mentioned problems, the burn–in, I have
followed Tegmark et al (2004). I am running several chains, which is good for
several reasons, and computes the overall median χ2–value combined for all
chains. The length of the burn-in period for each chain is from point number
one up to the point that is less than this median χ2–value. The burn-in period
is removed before any other calculation is made. By doing this I probably
discard a small number of interesting points, but that is unavoidable. By
running a very long chain, this has a negligible effect.

The most important problem probably, the step size, is of course the
hardest one to solve. The most common step function to draw from is the
Gauss function i.e. G(∆θ) ∝ e∆θ2/(2σ2). This is sufficiently good for many
problems, but it is far from optimal. First of all, one has to determine the
standard deviation of the Gauss function (i.e. the step size) which can be
very different from parameter to parameter. There is also difficulties if the
parameters are degenerate or if the χ2–surface takes peculiar, banana-shaped
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forms (see figure (3)). To solve this I use an adaptive Gaussian sampling
function (Doran & Müller, 2004; Tegmark et al, 2004; Haario et al, 2003;
Sahlén, Liddle & Parkinson, 2005). This method determines the step size
based on the previous points in the chain and it also take account for the
degeneracy of the parameters. This method is as follows; I first calculate the
covariance matrix

S =


σ2

1 ρ12 . . . ρ1Npara

ρ21 σ2
2 . . . ρ2Npara

...
...

. . .
...

ρNpara1 ρNpara2 . . . σ2
Npara

 (26)

from the points in the chain. σ2
i is the variance of parameter i, ρij is the

covariance of parameters i and j and Npara is the number of parameters. I
then diagonalize this matrix to obtain the eigenvalues, λj, and the eigen-
vectors which I put together to form the transformation matrix T . Then
I draw Gaussian samples, ∆θ′, with the computed eigenvalues λj as stan-
dard deviations. Those are now the step size in the rotated system, i.e.
the sampling distribution is now aligned with the χ2 surface. I then rotate
back to the original coordinate system to obtain the wanted step size by the
transformation

∆θ = T∆θ′. (27)

For many occasions it is sufficient to run a test chain, calculate the covariance
matrix of all the points in the test chain and then use that as input to the
real chain. This is an effective method, but even this method may have
problems where we have a banana-shaped target distribution. It is also not
working in my case, where I am trying to build a general program. The
covariance matrix is of course completely different when you change dataset
or the parameters to vary. I therefore start with a random covariance matrix
and then update it every 100 steps (Haario et al, 2003; Sahlén, Liddle &
Parkinson, 2005; Tegmark et al, 2004). The starting covariance matrix S0 is
usually some best guess. Since my best guess would be different from run to
run I start with a very loosely random covariance matrix, as mentioned. This
is of course not optimal, but I have found empirically that it is working quite
well. In order to improve the efficiency of the chain even further, especially
in the case where the target distribution takes on banana or irregular shapes,
I also scale the covariance matrix with a dynamic factor α (Doran & Müller,
2004). If the χ2–surface is irregular in some way, I want the chain to take
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(2)
θ

θ(1)

Figure 3: An ordinary Gaussian sampler does not take into account the
degeneracy between the parameters θ(1) and θ(2) leading to slow mixing. The
picture is taken from Doran & Müller (2004).
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small steps in some areas and large in some. I initially set α = 1 and before
calculating the covariance matrix (every 100 steps) I check how many of the
last 100 steps that has been accepted. If the acceptance rate of the last 100
steps in the chains is less than 20 % I scale α according to α = α/1.2. The
covariance matrix will get smaller, smaller steps will be proposed, leading to
increased acceptance rate. Similarly, if the chain accepts more than 70 % I
increase α with α = α · 1.2. Doran & Müller (2004) did not specify when
or how much they scaled α, but after some trial and error I how found my
algorithm to be satisfactory. A problem is that the scaling of the covariance
matrix changes the step size of all the parameters, which may of course not
be optimal.

Now to the third problem, convergence. As previously mentioned there
are a lot of available convergence tests. My primary weapon has been the
most famous one, namely the Gelman–Rubin test (Gelman & Rubin, 1992).
This test both look for converge and good mixing. Assume I am running
M chains and have ran all chains for 2N points. I consider only the last N
points of each chain, which are nere labelled yj

i where i = 1, 2; . . . , N and
j = 1, 2, . . . ,M . I calculate the mean of each chain as

yj =
1

N

N∑
i=1

yj
i (28)

and the mean of the whole set of chains as

y =
1

NM

N∑
i=1

M∑
j=1

yj
i . (29)

Next, I calculate variances, both between the M chains and within each chain
as

Bn =
1

M − 1

M∑
j=1

(yj − y)2 (30)

and

W =
1

M(N − 1)

N∑
i=1

M∑
j=1

(yj
i − yj)2 (31)

respectively. The actual test consists of monitoring the quantity R̂, defined
as

R̂ =
N−1

N
W + Bn(1 + 1

M
)

W
. (32)
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R̂ goes asymptotically towards 1 and convergence is obtained if R̂ is always
below a number somewhat larger than 1, for all parameters. Gelman and
Rubin themselves set the convergence criteria to be 1.2, but I choose the
limit to be 1.1 as several other authors (Tegmark et al, 2004). Since R̂ is
approximately 1 + Bn/W , a value near 1 simply states that the variances
between the chains is negligible compared to the variances within the chain.
That is, if the chains are indistinguishable it is hopefully because they all
draw samples from the stationary distribution. By running several chains one
is also able to look at them separately to see if something has gone wrong.
If one or more chains is drawing from another part of the χ2–surface, then
the chain has obviously not converged. It is not advisable to rely your result
on only one chain (Neal, 1993).

To further check for convergence I am also calculating the autocorrelation
of one, say θ1, of the parameters. Since each point in the chain is just a small
step away from the previous one, they are highly correlated. So, a chain
of N points is not equivalently to N different measurements. I therefore
calculate the effective length, Neff , which is approximately the number of
unrelated points, that is; we have a chain that is equivalent to Neff different
measurements (Tegmark et al, 2004). Of course, to obtain some meaningful
results, Neff must be much larger than 1. I monitor Neff as an additional
convergence test; a small Neff means the chain is not properly mixed (Gilks,
Richardson & Spiegelhalter, 1996). The autocorrelation, cj, is now defined
as

cj =

∑N−j−1
k=0 (θ1

k − θ
1
)(θ1

k+j − θ
1
)∑N−1

k=0 (θ1
k − θ

1
)2

(33)

where j is the lag i.e. the lag is specifying the signed distances between
indexed elements of θ1. c0 is by definition 1 and cj is then decreasing with
increasing j. I define the correlation length, cl, as the lag where the auto-
correlation drops below 0.5. The correlation length is the number of steps
required so that point θi+cl

is independent of point θi. Then the effective
length is

Neff =
N

cl

. (34)

All of my chain, except maybe two, has a very long effective length, thus
indicating that they are properly mixed.

To solve the fourth problem, which is not really a problem, I run quite long
chains; usually 4 chains with 10 000 points in each chain. This is sufficient
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to accurately reproduce the confidence contours.
Another problem I had was the construction of the confidence contours.

To obtain the contour for two parameters you marginalize over all the oth-
ers. The χ2–value of two points just next to each other may therefore be
very different; it is dependent on the value of the other parameters. It is
therefore not possible to plot the contours using their χ2–value; one must
instead obtain them from the density of points. Finally I found and used a
program by Sarah Bridle called cosmoloGUI available at:
http://www.sarahbridle.net/cosmologui/. The program is made in MATLAB
and is very good at obtaining the confidence contours and displaying them
in various ways.

3.3 Additional options and enhancements

There are a few more tricks available to enhance the efficiency of the MCMC.
I have not incorporated them in my chain but I will discuss them here briefly,
for the sake of the argument. Green & Mira (2001) suggest a method called
delayed rejection. When rejecting a step, instead of staying at the original
point they immediately propose a second candidate, which depends both on
the original point and the first candidate. This can then be iterated either a
fixed or a random number of times, before finally rejecting. Tierney & Mira
(1999) proved that the delayed rejection method outperform the regular MH.

A second improvement, reparameterization, is efficient in cases of severe
degeneracy or banana shaped distributions. By changing variables one may
be able to completely remove or at least reduce the degeneracy. However,
this may be hard or impossible to do, completely dependent on the science
you are doing. In theory the adaptive covariance with scaling α method
explained earlier also reduces degeneracy and normally only one of these two
methods should be needed.
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4 Results

I have made several simulations, each corresponding to a certain combina-
tion of models and datasets. I am considering the case of a cosmological
constant as well as a time-dependent equation of state of the dark energy.
For each of the models I have determined the best fit of each of the parame-
ters, marginalizing over the others, as well as the confidence contours for two
of the parameters at a time. As for the equation of state of the dark energy, I
have parameterized it as given by equation (11). w0 is the value of the equa-
tion of state today and w1 describes its history. A non-zero w1 imply that the
equation of state is a subject of evolution and is hence more complex than
a cosmological constant. This particular parameterization gives reasonable
values in both cases z → 0 and z →∞. Another common parameterization
w = w0 + w1z does not give a reasonable value as z →∞. If I do not fit one
of the parameters in a run it is fixed at a default value, which is specified in
the input file mentioned earlier. For all my simulations the default values for
the parameters are

θ = (Ωm, Ωx, w0, w1) = (0.3, 0.7,−1, 0). (35)

In some cases I force the universe to be flat, in that case Ωx is always fixed
at Ωx = 1 − Ωm. Each of my runs consists of 4 independent chains with an
individual length of 10 000 steps. An advantage of the MCMC is that all the
necessary information can be obtained from the chain itself. When I deter-
mine the best value for one parameter I again use the cosmoloGUI program.
I plot the parameter against probability, essentially counting the number of
points in a large number of bins. The program gives the approximate 68 %
and 95 % percent interval for that parameter and the best value is at the top
of this distribution, which for some reason is normalized to one. An example
of such a probability plot is given in figure (4) below. I obtain the best value
by reading from the figure; hence the last digit in this value should not be
taken too seriously. In many cases the distribution had a wide and flat top
and the best value was not clearly defined. In addition of knowing which
parameter value is the best, one also want to know how good the fit of that
value is. I quantify such a number known as goodness of fit (GoF), which is
defined as (Hannestad & Mörtsell, 2004)

GoF =
Γ(ν/2, χ2/2)

Γ(ν/2)
(36)
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where Γ(x) is the Gamma function, Γ(x, y) is the incomplete gamma function
and ν is the degrees of freedom defined as the number of measurements minus
the fitted parameters. A GoF of, say 0.2, means that 20 % of some randomly
generated measurements based on the same underlying model would give a
worse fit. One is also interested to know if the addition of a varying parameter
is making the fit better or worse. Generally, the addition of a parameter
lowers the χ2–value, since there are more combinations of parameters to
fit to the data. Therefore, when determining if a paramterer improves the
model or not it is more useful to calculate another quantity; the Bayesian
Information Criterion (BIC) which is defined as (Liddle, 2004)

BIC = χ2
min + Npara ln Ndata (37)

where Npara is the number of fitted parameters and Ndata is the number of
measured data points. A lower value is a better fit, but the absolute value
is not interesting, it is the difference in BIC between different models that
is important. A model which has a BIC lower than 2 compared to another
model is usually considered an improvement whereas a BIC lower than 6 is
considered a strong improvement.
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Figure 4: The solid line is the marginalized probability, which is the one I use
for my result. The dotted line is the mean likelihood of the sample, which I
am not using. See (Lewis & Bridle, 2002) for details.
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4.1 A model with a cosmological constant

4.1.1 SN

I first consider a universe with a cosmological constant, i.e. I vary Ωm and Ωx.
w0 and w1 are fixed at their default values. My first run includes only the SN
dataset and the confidence contours are shown in figure (5). The marginalized
one-dimensional uncertainties and some other useful information about the
chain itself are given in table (1). We see that the confidence contour is quite
large when I use SN only.
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Figure 5: Confidence contours for a model with a cosmological constant.
Only SN is used.
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Results from chain Performance of the 4 chains
Ωm 0.10 < Ωm < 0.48 68 % Convergence 455

0.005 < Ωm < 0.63 95 % Burn-in of chain 1 24
0.30 Best fit Burn-in of chain 2 11

Ωx 0.49 < Ωx < 1.09 68 % Burn-in of chain 3 0
0.25 < Ωx < 1.37 95 % Burn-in of chain 4 24
0.79 Best fit cl of chain 1 5

χ2
min 112.18 cl of chain 2 5

GoF 0.48 cl of chain 3 4
BIC 126.41 cl of chain 4 5

Acc. rate of chain 1 0.44
Acc. rate of chain 2 0.44
Acc. rate of chain 3 0.44
Acc. rate of chain 4 0.44

Table 1: Results for a model with a cosmological constant. Only SN is used.
Convergence is the iteration–number where the Gelman–Rubin test R̂–value
is below 1.1 for all parameters. The Burn-in is the number of discarded
points not belonging to the stationary distribution. The correlation length,
cl, is the number of steps correlated to eachother. A small number implies
good mixing. Acc. rate is the acceptance rate; the fraction of proposed steps
that were accepted.
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4.1.2 SN + BAO

I then combine the SN dataset with that of BAO. Since these two datasets
has different kind of degeneracies, as mentioned, the confidence contour for
this simulation is much smaller. The results are shown in figure (6) and
table (2).
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Figure 6: Confidence contours for a model with a cosmological constant. SN
and BAO are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.30 68 % Convergence 352

0.22 < Ωm < 0.32 95 % Burn-in of chain 1 55
0.27 Best fit Burn-in if chain 2 33

Ωx 0.65 < Ωx < 0.86 68 % Burn-in of chain 3 19
0.54 < Ωx < 0.96 95 % Burn-in of chain 4 49
0.75 Best fit cl of chain 1 5

χ2
min 112.22 cl of chain 2 5

GoF 0.50 cl chain of 3 5
BIC 126.48 cl chain of 4 5

Acc. rate of chain 1 0.45
Acc. rate of chain 2 0.45
Acc. rate of chain 3 0.44
Acc. rate of chain 4 0.44

Table 2: Results for a model with a cosmological constant. SN and BAO are
used.
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4.1.3 SN + CMB + BAO

I then present my best result for a non–flat universe with a cosmological
constant; I combine all three datasets. The results are shown in figure (7)
and table (3), respectively. The addition of the CMB dataset does not affect
Ωm, but Ωx is constrained more tightly.
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Figure 7: Confidence contours for a model with a cosmological constant. All
datasets are used are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.30 68 % Convergence 158

0.22 < Ωm < 0.32 95 % Burn-in of chain 1 25
0.27 Best fit Burn-in of chain 2 22

Ωx 0.70 < Ωx < 0.77 68 % Burn-in chain of 3 80
0.67 < Ωx < 0.80 95 % Burn-in of chain 4 61
0.74 Best fit cl of chain 1 5

χ2
min 112.28 cl of chain 2 5

GoF 0.53 cl of chain 3 5
BIC 126.57 cl of chain 4 5

Acc. rate of chain 1 0.48
Acc. rate of chain 2 0.48
Acc. rate of chain 3 0.50
Acc. rate of chain 4 0.49

Table 3: Results for a model with a cosmological constant. All datasets are
used.
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4.2 A flat model with a cosmological constant

4.2.1 SN + CMB + BAO

Here I now present the result from the simplest model of them all; flat uni-
verse with a cosmological constant. I will vary only Ωm. Since this simulation
obtains a low χ2–value, it gets the lowest BIC–value of them all, implying
that this is the best model for my data. Since the plot is forced to a straight
line I will not present a figure showing the confidence contour here, I will
only give the one–dimensional probability plot for Ωm in figure (8) and give
the additional results in table (4).
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Figure 8: Probability plot for a flat model with a cosmological constant. All
datasets are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.29 68 % Convergence 138

0.23 < Ωm < 0.31 95 % Burn-in of chain 1 56
0.27 Best fit Burn-in of chain 2 24

Ωx 0.71 < Ωx < 0.75 68 % Burn-in chain of 3 24
0.69 < Ωx < 0.77 95 % Burn-in of chain 4 53
0.73 Best fit cl of chain 1 4

χ2
min 112.40 cl of chain 2 4

GoF 0.55 cl of chain 3 4
BIC 121.92 cl of chain 4 4

Acc. rate of chain 1 0.55
Acc. rate of chain 2 0.55
Acc. rate of chain 3 0.55
Acc. rate of chain 4 0.54

Table 4: Results for a flat model with a cosmological constant. All datasets
are used.
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4.3 A model with a constant equation of state

In the next case I the drop the assumption that the dark energy is a cos-
mological constant and could instead consist of something else. I am now
varying Ωm and w0 whereas w1 is still fixed, i.e. I do not let the equation of
state evolve in time.

4.3.1 SN

In this scenario I am only including the SN dataset. Unfortunately, the SN
dataset only is not able to constrain these three parameters; my chain has
not converged at all. Hence the results of this simulation are not reliable. I
therefore choose not to include the results of this simulation.

4.3.2 SN + BAO

By combining the dataset with BAO I am able to constrain Ωm quite well.
However, the addition of BAO does not constrain Ωx or w0 much and ad-
ditional datasets is required if smaller confidence contours is wanted. The
result of this simulation as shown below anyway. Since this simulation has a
quite irregular distribution I ran 4 chain with 20 000 points each, i.e. twice
as much as for a normal chain, in order to be sure that the whole region
of interest was explored. Unfortunately, the improvement of this effort was
minor. All four chains also have a large correlation length, cl, indicating that
the chains are not properly mixed.
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Figure 9: Confidence contours for a model with a constant equation of state.
SN and BAO are used.
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Figure 10: Confidence contours for a model with a constant equation of state.
SN and BAO are used.
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Figure 11: Confidence contours for a model with a constant equation of state.
SN and BAO are used.

Results from chain Performance of the 4 chains
Ωm 0.24 < Ωm < 0.29 68 % Convergence 708

0.22 < Ωm < 0.31 95 % Burn-in of chain 1 69
0.27 Best fit Burn-in of chain 2 41

Ωx 0.21 < Ωx < 0.73 68 % Burn-in of chain 3 11
0.17 < Ωx < 1.81 95 % Burn-in of chain 4 55
0.37 Best fit cl of chain 1 49

w0 −2.16 < w0 < −0.60 68 % cl of chain 2 49
−4.96 < w0 < −0.60 95 % cl of chain 3 49
-0.70 Best fit cl of chain 4 49

χ2
min 112.15 Acc. rate of chain 1 0.27

GoF 0.48 Acc. rate of chain 2 0.33
BIC 131.16 Acc. rate of chain 3 0.27

Acc. rate of chain 4 0.33

Table 5: Confidence contours for a model with a constant equation of state.
SN and BAO are used.
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4.3.3 SN + CMB + BAO

When I now include all three datasets in order to obtain my best result
for the time-independent dark energy universe, the confidence contours gets
smaller. This time all of the three parameters are well constrained, as we can
see in figures (12), (13) and (14) below. Other results are shown in table (6),
as usual. Figure (12) is almost identical to figure (7), indicating that letting
w0 loose has no effect on Ωm and Ωx.

Created using CosmoloGUI

Ω
m

Ω
x

0.22 0.24 0.26 0.28 0.3 0.32 0.34

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Figure 12: Confidence contours for a model with a constant equation of state.
All datasets are used.
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Figure 13: Confidence contours for a model with a constant equation of state.
All datasets are used.
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Figure 14: Confidence contours for a model with a constant equation of state.
All datasets are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.29 68 % Convergence 494

0.23 < Ωm < 0.32 95 % Burn-in of chain 1 208
0.27 Best fit Burn-in of chain 2 203

Ωx 0.71 < Ωx < 0.76 68 % Burn-in of chain 3 235
0.68 < Ωx < 0.79 95 % Burn-in of chain 4 16
0.73 Best fit cl of chain 1 6

w0 −1.11 < w0 < −0.94 68 % cl of chain 2 6
−1.20 < w0 < −0.86 95 % cl of chain 3 6
-1.0 Best fit cl of chain 4 6

χ2
min 112.24 Acc. rate of chain 1 0.39

GoF 0.50 Acc. rate of chain 2 0.38
BIC 131.29 Acc. rate of chain 3 0.39

Acc. rate of chain 4 0.38

Table 6: Confidence contours for a model with a constant equation of state.
All datasets are used.
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4.4 A flat model with a constant equation of state

I also see how the parameters behave when I am forcing the universe to be
flat. I am now only varying Ωm and w0. Since the CMB is sensitive to the
curvature of the universe it should not be needed to include that dataset
when looking at a flat universe. However, I will also see what happens if
I assume a flat universe and include CMB anyway. Will the CMB data
improve the results or is it completely equivalent of assuming a flat universe?
For these simulations I will only show the plots containing Ωm and w0 here;
the plot showing Ωm and Ωx is locked at a straight line and is therefore not
so interesting. The plot of Ωx and w0 is just the reflection of the Ωm − w0

plot and is therefore unnecessary too.

4.4.1 SN

Here I am only including SN. The results are shown below in figure (15) and
table (7).
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Figure 15: Confidence contours for a flat model with a constant equation of
state. Only SN is used.
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Results from chain Performance of the 4 chains
Ωm 0.23 < Ωm < 0.48 68 % Convergence 913

0.05 < Ωm < 0.52 95 % Burn-in of chain 1 98
0.40 Best fit Burn-in of chain 2 42

Ωx 0.52 < Ωx < 0.77 68 % Burn-in of chain 3 76
0.48 < Ωx < 0.95 95 % Burn-in of chain 4 44
0.60 Best fit cl of chain 1 19

w0 −1.58 < w0 < −0.65 68 % cl of chain 2 20
−2.32 < w0 < −0.54 95 % cl of chain 3 28
-1.0 Best fit cl of chain 4 21

χ2
min 112.21 Acc. rate of chain 1 0.23

GoF 0.48 Acc. rate of chain 2 0.23
BIC 126.44 Acc. rate of chain 3 0.22

Acc. rate of chain 4 0.23

Table 7: Confidence contours for a flat model with a constant equation of
state. Only SN is used.
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4.4.2 SN + BAO

As usual I am now including BAO to see what happens. The results are shown
below. This figure looks very much like figure (13), in this case implying a
flat universe is equivalent with including the CMB dataset.
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Figure 16: Confidence contours for a flat model with a constant equation of
state. SN and BAO are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.29 68 % Convergence 505

0.23 < Ωm < 0.31 95 % Burn-in of chain 1 71
0.27 Best fit Burn-in of chain 2 8

Ωx 0.71 < Ωx < 0.75 68 % Burn-in of chain 3 84
0.69 < Ωx < 0.77 95 % Burn-in of chain 4 114
0.73 Best fit cl of chain 1 5

w0 −1.12 < w0 < −0.94 68 % cl of chain 2 4
−1.22 < w0 < −0.86 95 % cl of chain 3 4
-1.0 Best fit cl of chain 4 5

χ2
min 112.22 Acc. rate of chain 1 0.44

GoF 0.50 Acc. rate of chain 2 0.45
BIC 126.49 Acc. rate of chain 3 0.45

Acc. rate of chain 4 0.44

Table 8: Confidence contours for a flat model with a constant equation of
state. SN and BAO are used.
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4.4.3 SN + CMB + BAO

Now I include CMB even though I imply a flat universe to see if any im-
provement is obtained relative to the preceding figure. The plots including
Ωx are not shown. Since the difference between figure (17) and (16) is min-
imal we see that CMB is equivalent with implying a flat universe, at least
when looking at the time-independent case.
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Figure 17: Confidence contours for a flat model with a constant equation of
state. All datasets are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.29 68 % Convergence 351

0.23 < Ωm < 0.31 95 % Burn-in of chain 1 22
0.27 Best fit Burn-in of chain 2 207

Ωx 0.71 < Ωx < 0.75 68 % Burn-in of chain 3 36
0.69 < Ωx < 0.77 95 % Burn-in of chain 4 65
0.73 Best fit cl of chain 1 5

w0 −1.11 < w0 < −0.94 68 % cl of chain 2 4
−1.20 < w0 < −0.86 95 % cl of chain 3 5
-1.0 Best fit cl of chain 4 5

χ2
min 112.34 Acc. rate of chain 1 0.45

GoF 0.53 Acc. rate of chain 2 0.44
BIC 126.63 Acc. rate of chain 3 0.43

Acc. rate of chain 4 0.44

Table 9: Confidence contours for a flat model with a constant equation of
state. All datasets are used.
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4.5 A model with a time-dependent equation of state

Now I am making the full simulation with a time-dependent equation of
state. Both w0 and w1 are varying. For this set of parameters it is not
possible to obtain reasonable constraints of SN data only, all my simulations
here therefore include CMB, BAO or both.

4.5.1 SN + BAO

I am first considering the flat universe case; the use of the CMB dataset
is therefore not needed. The result of this simulation is shown below; in
figures (18), (19), (20) and table (10). As before I do not present plots
including Ωx since it is the reversion of Ωm. In this case (compared to the
previous one) the intervall for w0 gets significantly larger. It is usually very
hard to put constraints on the parameters when I let w1 free and the possible
time-variation of Ωx is hard to find.
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Figure 18: Confidence contours for a flat model with a time-dependent equa-
tion of state. SN and BAO are used.
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Figure 19: Confidence contours for a flat model with a time-dependent equa-
tion of state. SN and BAO are used.
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Figure 20: Confidence contours for a flat model with a time-dependent equa-
tion of state. SN and BAO are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.30 68 % Convergence 440

0.23 < Ωm < 0.33 95 % Burn-in of chain 1 26
0.27 Best fit Burn-in of chain 2 47

Ωx 0.70 < Ωx < 0.75 68 % Burn-in of chain 3 85
0.67 < Ωx < 0.77 95 % Burn-in of chain 4 22
0.73 Best fit cl of chain 1 5

w0 −1.37 < w0 < −0.61 68 % cl of chain 2 6
−1.73 < w0 < −0.18 95 % cl of chain 3 6
-1.1 Best fit cl of chain 4 6

w1 −2.87 < w1 < 2.38 68 % Acc. rate of chain 1 0.37
−6.21 < w1 < 4.71 95 % Acc. rate of chain 2 0.38
0.0 Best fit Acc. rate of chain 3 0.37

χ2
min 112.23 Acc. rate of chain 4 0.37

GoF 0.48
BIC 131.24

Table 10: Confidence contours for a flat model with a time-dependent equa-
tion of state. SN and BAO are used.

49



4.5.2 SN + CMB + BAO

Here I run a simulation for a flat universe but includes CMB anyway. As
before, the reason for this is to see if CMB improve the results any further.
The result is as always seen below; figures (21), (22), (23) and table (11). The
plots including Ωx are not shown, as always for a flat universe. This time we
see a clear difference relative to figures (18)–(20); especially for w1. Now the
CMB dataset improves the results. When investigating the time-dependent
case CMB is not equivalent to implying a flat universe.
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Figure 21: Confidence contours for a flat model with a time-dependent equa-
tion of state. All datasets are used.
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Figure 22: Confidence contours for a flat model with a time-dependent equa-
tion of state. All datasets are used.
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Figure 23: Confidence contours for a flat model with a time-dependent equa-
tion of state. All datasets are used.
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Results from chain Performance of the 4 chains
Ωm 0.25 < Ωm < 0.30 68 % Convergence 648

0.23 < Ωm < 0.32 95 % Burn-in of chain 1 16
0.27 Best fit Burn-in of chain 2 33

Ωx 0.70 < Ωx < 0.75 68 % Burn-in of chain 3 100
0.68 < Ωx < 0.77 95 % Burn-in of chain 4 59
0.73 Best fit cl of chain 1 6

w0 −1.22 < w0 < −0.67 68 % cl of chain 2 6
−1.38 < w0 < −0.28 95 % cl of chain 3 6
-1.0 Best fit cl of chain 4 6

w1 −2.07 < w1 < 1.20 68 % Acc. rate of chain 1 0.33
−5.00 < w1 < 1.80 95 % Acc. rate of chain 2 0.34
0.2 Best fit Acc. rate of chain 3 0.34

χ2
min 112.29 Acc. rate of chain 4 0.33

GoF 0.50
BIC 131.34

Table 11: Confidence contours for a flat model with a time-dependent equa-
tion of state. All datasets are used.
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4.5.3 SN + CMB + BAO

Here I am even dropping the flat universe prior and let all parameters vary,
including all the datasets. I am doubling the lengths of the chains to 20 000
in this simulation. As seen in the pictures below some of the parameters has
a ”tail” which was probably not fully explored by all four chains when they
were 10 000 points long. Since this is the ”full” simulation were I include
everything I got, I also believed this run was worth some extra time. The
contours for Ωm and w0 looks quite the same as in the previous simulation.
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Figure 24: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.
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Figure 25: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.
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Figure 26: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.
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Figure 27: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.
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Figure 28: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.

55



Created using CosmoloGUI

w
0

w
1

−1.5 −1 −0.5 0 0.5
−12

−10

−8

−6

−4

−2

0

2

Figure 29: Confidence contours for a model with a time-dependent equation
of state. All datasets are used.

Results from chain Performance of the 4 chains
Ωm 0.26 < Ωm < 0.30 68 % Convergence 806

0.23 < Ωm < 0.33 95 % Burn-in of chain 1 59
0.27 Best fit Burn-in of chain 2 134

Ωx 0.69 < Ωx < 0.76 68 % Burn-in of chain 3 39
0.53 < Ωx < 0.80 95 % Burn-in of chain 4 154
0.73 Best fit cl of chain 1 10

w0 −1.25 < w0 < −0.58 68 % cl of chain 2 10
−1.62 < w0 < −0.20 95 % cl of chain 3 11
-1.0 Best fit cl of chain 4 10

w1 −2.38 < w1 < 1.67 68 % Acc. rate of chain 1 0.29
−5.06 < w1 < 2.60 95 % Acc. rate of chain 2 0.31
-0.2 Best fit Acc. rate of chain 3 0.32

χ2
min 112.27 Acc. rate of chain 4 0.31

GoF 0.48
BIC 136.08

Table 12: Confidence contours for a model with a constant equation of state.
All datasets are used.
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4.6 Future results

As an additional bonus I have made runs with simulated datasets. This is just
to get a hunch of what the future holds. I have simulated 1200 supernovae;
this is what we could expect from SLNS and other SN Ia search programs
in five years. These simulated data are constructed to give the result Ωm =
0.3, Ωx = 0.7, w0 = −1 and w1 = 0. Therefore the results themselves are
not important, it is the size of the confidence contours that is interesting.
I have also simulated a result which the Planck satellite may measure; the
shift parameter is I = 1.74969 ± 0.7%. BAO will give results for three
different redshifts; 0.35, 1.0 and 3.0. For these the according distances are
0.486831± 3.6%, 0.381531± 0.67% and 0.208112± 1%. Since the magnitude
of these simulated supernovae are normalized in a different way than the real
ones, I do not get a χ2–value of the same magnitude. Hence the GoF value
does not make sense and it is not meaningful to compare the BIC–value of
these simulations with the real ones, it is only meaningful to compare the
BIC–values of future results with each other.

4.6.1 SN

Just for comparison I am running a universe with a cosmological constant and
the SN data only. This is just to compare the size of the confidence contours
with the well-known result in figure (5), here they are much smaller.
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Figure 30: Confidence contours for a model with a cosmological constant.
Only the simulated future SN is used.

Results from chain Performance of the 4 chains
Ωm 0.26 < Ωm < 0.34 68 % Convergence 458

0.22 < Ωm < 0.37 95 % Burn-in of chain 1 39
0.30 Best fit Burn-in of chain 2 7

Ωx 0.62 < Ωx < 0.77 68 % Burn-in of chain 3 76
0.54 < Ωx < 0.83 95 % Burn-in of chain 4 214
0.70 Best fit cl of chain 1 7

χ2
min 4.81 cl of chain 2 7

GoF — cl of chain 3 6
BIC 26.08 cl of chain 4 6

Acc. rate of chain 1 0.57
Acc. rate of chain 2 0.58
Acc. rate of chain 3 0.57
Acc. rate of chain 4 0.56

Table 13: Results for a model with a cosmological constant. Only the sim-
ulated future SN is used. I was not able the compute GoF for such a large
number of datapoints.
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4.6.2 SN + BAO + CMB

Now I am running the whole lot. All parameters with all datasets included.
The results are shown below in figure (31)–(36) and table (14). This is the
kind of results one is expecting in five years. By looking at this plot one can
decide whether it is worth the money or not.
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Figure 31: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.
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Figure 32: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.
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Figure 33: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.
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Figure 34: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.

Created using CosmoloGUI

Ω
x

w
1

0.67 0.68 0.69 0.7 0.71 0.72

−1.5

−1

−0.5

0

0.5

1

Figure 35: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.
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Figure 36: Confidence contours for a model with a time-dependent equation
of state. All simulated future datasets are used.

Results from chain Performance of the 4 chains
Ωm 0.294 < Ωm < 0.306 68 % Convergence 1422

0.288 < Ωm < 0.312 95 % Burn-in of chain 1 214
0.30 Best fit Burn-in of chain 2 339

Ωx 0.692 < Ωx < 0.708 68 % Burn-in of chain 3 301
0.683 < Ωx < 0.715 95 % Burn-in of chain 4 325
0.70 Best fit cl of chain 1 10

w0 −1.10 < w0 < −0.90 68 % cl of chain 2 8
−1.19 < w0 < −0.80 95 % cl of chain 3 8
-1.0 Best fit cl of chain 4 10

w1 −0.45 < w1 < 0.45 68 % Acc. rate of chain 1 0.36
−0.91 < w1 < 0.85 95 % Acc. rate of chain 2 0.37
0.1 Best fit Acc. rate of chain 3 0.37

χ2
min 4.84 Acc. rate of chain 4 0.37

GoF —
BIC 40.30

Table 14: Confidence contours for a model with a constant equation of state.
All datasets are used.
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5 Conclusion

One can look at any of the plots, say figure (5), to confirm the results of
Riess et al (1998) and Perlmutter et al (1998) that the universe is expanding.
This is usually described by the deceleration parameter1

q0 =
Ωm

2
− Ωx. (38)

With very much more than 95 % certainty the deceleration parameter is
negative i.e. the universe is accelerating.

By comparing figures (16) and (13), i.e. the flat model with a time-
independent equation of state with the non-flat version where I instead in-
clude CMB, we see that the difference is very small. This means that instead
of including the CMB one can just assume a flat universe. However, when
comparing figures (18)–(20) with figures (24)–(29), where I now vary w1, I
get a slightly different result. Figure (27) and (28) show that Ωx has a clear
”tail” with very low values, which are associated with low values for w0 and
high values for w1. This specific combination for the equation of state also
fits the data. For the flat universe the low values of Ωx gives a high value for
Ωm, which are inconsistent for the model. Hence figure (18) lacks the tail of
Ωx. When exploring the time-dependence of the dark energy it is therefore
wise not to assume a flat universe, but include CMB instead.

In the simulations where I assume a flat universe but include CMB any-
way, the contours are getting somewhat smaller relative to the figures where
CMB are excluded, especially in the time-dependent case. The confidence
contour showing w1 (figure (22) and (23) shrinks quite remarkably. As be-
fore, the CMB measurement is not exactly equivalent with assuming a flat
universe. One can improve the results further by including CMB in all cases.

When comparing figure (7), where I include all datasets in the cosmo-
logical constant model, with figure (12), where I include all datasets in the
time-independent equation of state model, we see that they are almost identi-
cal. Hence, dropping the prior that the dark energy is a cosmological constant
makes no effect on the confidence regions of the energy densities.

One can also note that by letting the equation of state vary in time,
figures (18)–(29), there is little effect on Ωm and Ωx when comparing with the

1Until 1998 it was taken for granted that the universe was decelerating, the question
was how much. This was the second time the universe fooled us completely. I wonder
when it is going to happen the third time.
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corresponding simulations for the time-independent model. The confidence
contours of w0 on the other hand are increasing dramatically when I let w1

free. Hence the strength of the energy density of the dark energy can be
determined quite well from the datasets I use, but the nature of it, described
by the equation of state, is harder to determine.

My best model, according to BIC, is the simplest one where I vary only
one parameter; Ωm (plus the uninterestingM), corresponding to a flat model
with a cosmological constant. This means that the data do not support the
introduction of more parameters, in most simulations they take values near
this model even though they are free to take any value at all. However,
saying that this model is the best does not mean that it is the true model.
In many simulations the confidence contours are large, especially for w0 and
w1, so there are many models which are consistent with data. The BIC only
suggests the simplest one because that is what physics is all about; we want
to describe the universe as simple as possible.

In figures (24)–(29), where I let all parameters free, we see that the
data is still consistent with a cosmological constant. The best-fit values
are (w0, w1) = (−1.0,−0.2) and the values of the cosmological constant,
(w0, w1) = (−1, 0), is well within the 68 % contour. These contours, how-
ever, are very large, especially for w1 and this model can therefore not rule
out other theories for the dark energy. In figure (36) where the w0−w1 plot
is made for the simulated future results, we see that the confidence contours
have shrunk considerably, but not enough as to rule out many models. It is
very difficult to determine the possible time variation of dark energy, so in
order to determine the nature of the dark energy, we must therefore continue
to do more and better measurements, especially of distant supernovae, even
more than those we will probably have in five years.
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6 Appendix A - The evolution of the Hubble

parameter

The Friedmann equation, equation (6), gives

H2 =
8πG

3
(ρm − ρλ)−

k

R2
(39)

where c as usual is set to 1. Since matter is diluted over a sphere as the
universe expand we have

ρm ∝ R−3 (40)

whereas the cosmological constant by definition goes as

ρλ ∝ constant. (41)

By using the critical density, equation (13), and re-write equation (39) using
the present-day values, equation (40) and (41), we obtain

H2

H2
0

= Ωλ + Ωm

(
R

R0

)−3

− (Ω− 1)
(

R

R0

)−2

. (42)

Since Ωk = 1− Ω and R0

R
= 1 + z we now have

H2

H2
0

= (1 + z)3Ωm + (1 + z)2Ωk + Ωλ (43)

If we assume that the dark energy is something different than a cosmological
constant things get a little more complicated. We must also consider the
evolution of the density of the dark energy, ρx, defined as, if the equation
of state of the dark energy is parameterized as equation (11) (Ichikawa &
Takahashi, 2005)

ρx(z) = ρx0(1 + z)3(1+w0+w1)e
−3w1z

1+z . (44)

This gives, finally

H2

H2
0

= (1 + z)3Ωm + (1 + z)2Ωk + (1 + z)3(1+w0+w1)e
−3w1z

1+z Ωλ (45)
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