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Abstract

The possibility to use time delays from gravitationally lensed mul-
tiple sources to estimate the logarithmic slope of the density parameter
7, the matter energy density parameter 1), and the Hubble constant
Hy in a flat universe is investigated.

By using the flux ratios, 7 can be estimated. It is found to depend
on the differences between the image angles and on the uncertainty in
the observed flux ratio.

By using the quotient between the time delays, 2y can be esti-
mated. It is found to depend on the angular distances between the
sources, on the image angle separations and on the uncertainties in the
image angles and in the time delays.

By combining the time delays, Hy can be estimated, and is found
to depend mainly on 7 and the angular distance to the lens.
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Figure 1: Gravitational lensing occurs when a massive object is acting as a lens
on a background object, light rays that would have otherwise not reached us are
bent from their path and the source appears in another position.

Introduction

This thesis is the final part toward a master degree in physics at the Depart-
ment of Physics/Astronomy at Stockholm University, under supervision of
Edvard Mortsell.

The quest for the cosmological parameters that determines the geometry,
the history and the dynamics of the universe is a long-standing issue in
observational cosmology. By combining observations from e.g. the Cosmic
Microwave Background and the luminosity from distant type Ia supernovae,
a new standard model of cosmology has emerged; a flat universe with an
accelerating expansion.

A method to obtain information about the large-scale geometry of the
universe is through gravitational lensing, see Fig. (1). Since the effects from
gravitational lensing depends on the ratio of the angular size distances which
are sensitive to the cosmological parameters, investigations of a gravitation-
ally lensed system can reveal information about the cosmology.

In this thesis I investigate how some of the cosmological parameters
can be estimated through time delays from a gravitationally lensed system
where two sources are multiple lensed, i.e. when two or more images from
one source appears. | call a system where four images appears from two
sources (two from each), that is two families of two images [10], for a Double
Objects Lensing! system, abbreviated as DOL. In all simulations I assume
we are living in a flat universe.

'T have not found any good name for this kind of system, so the name Double Objects
Lensing is something I have made up myself.



This thesis is split into seven parts:

Chapter 1 very briefly introduces gravitation, the electromagnetic force
and optics.

Chapter 2 is about cosmology and introduces, explains and derives the
cosmological parameters that I estimate through DOL.

Chapter 3 explains gravitational lensing and how important the role of
the lens is. Two lens models are explained and in each one a time
delay function is derived; the most important equations in my DOL-
simulations.

Chapter 4 deals with double objects lensing and explains how the DOL-
systems are simulated, the statistical tools that are used, how the
cosmological parameter estimations depend on the measurable param-
eters, how the flux ratio can be used to estimate the halo profile of the
lens and discusses the uncertainties that appears.

Chapter 5 presents the results from my simulations. I simulate five DOL-
system with different observables and investigates how different DOL-
systems affects the estimations. Two types of estimations are made
for each simulation, one where the time delay quotient is used and
another where the time delays are summed.

Chapter 6 discuss the results from the simulations and prospects for the
future of using time delays from DOL-systems.

Appendix contains some tricky or too long calculation that had to be made
but does not fit inside the thesis.



1 The Nature of Gravity and Light

1.1 Gravitation

In our everyday life we are all affected by the natural force of gravity, some-
times it does us good and sometimes it pains, like when one is jogging upward
in a terrain trail. For many people gravity is associated with Newton, hit by
an apple while sitting under a tree. However, what Newton really wanted
to show with the story of the falling apple, was a phenomena that happens
between all bodies everywhere in the universe. Newton had found, that the
phenomena of gravity that pulls the apple down is acting on every massive
object in the universe. So likewise, the falling apple could be the earth and
the ground could be the sun, lucky for us the earth’s velocity around the
sun saves us from crashing into it.

The gravity one feels from an object is due to its mass and ones own mass,
the more massive object you interact with, the more the force of gravity
tugs on you. The gravitational force between two object’s is attractive and
central, i.e. along the line of centers of mass. The universal law of gravity
that Newton found was

GM, My -
Fgravz'ty = _Taéb Rab (1)

where G is the gravitational constant? which has the same value for all
materials, for this reason the law is called the universal law of gravitation.
M, and M, are the masses of the objects, R is the distance and the vector

R, denotes the direction of the force from the object exerting the force, in
this case from object a, to the object experiencing the force, object b.

1.2 The Electromagnetic Force

Another force of nature that we witness in our daily life is the electromag-
netic force, the force that gives us light in all its shapes®. Like the force
of gravity is interacting between all objects with mass, the electromagnetic
force is interacting with all objects with charge, with one difference; the
electromagnetic force can both be attractive and repulsive. The charge of
an object can be positive or negative. Similar to an object with mass, an
object with charge builds up a force field stretching out in every direction
from it. The electrostatic force between different charges is called Coulomb’s
law and it is given by

Fcoulomb = kE% Rab (2)

2The value of G is 6.67-107'! Nm?/kg?.
3Here light means all types of electromagnetic radiation, from radio waves to gamma
rays. The light that our eyes are sensitive to is called the optical light, or the visible light.
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Figure 2: An observer exposed to light rays from a swimming-bath lamp.

where kg is a constant, @), and Q) are the charges of the objects, R is the
distance and the vector f{ab denotes the direction of the force. When using
eq. (2) the force gets repulsive when the object exerting the force and the
object experiencing the force has the same sign of charge, when the signs
are different the force is attractive.

Equation (2) holds only if the charges are resting or moving with the
same velocity relative each other, therefore it is called the electrostatic force.
If one charge begin to accelerate or decelerate relative to the other, the elec-
trostatic field will be disturbed. The disturbance will propagate outward
from the accelerated charge with a constant velocity as a wave, an elec-
tromagnetic wave or light. In short, light is an electromagnetic wave that
originates from a disturbance in the electromagnetic field, and what kind of
light that is emitted depends on the velocity change of the charge, the faster
accelerating, or decelerating, the shorter the wavelength of the emitted light.

1.3 Lensing of Light

Nothing travels faster than the speed of the light in vacuum and you need
an infinite amount of energy to reach this velocity, so it is impossible, but it
is possible to travel faster than light in other materials. Light goes slower in
water than it does in air, something that can be seen in a swimming-bath
with a lamp under the surface, see Fig. (2). Above the surface the lamp can
be seen in one position, while under the surface the lamp is seen in another
position. This is due to the fact that light always takes the path where the
time function is stationary, i.e. at its minima, maxima and saddle points,
this phenomena is called Fermat’s principle after the French mathematician



1.3 Lensing of Light )

time

time

Figure 3: Time-analysis of some possible paths from a light source s to an observer
at p. In the lower figure a trick on nature is played by a focusing lens (this figure
is adapted from [6]).

Pierre de Fermat?.

In Fig. (2) three different light paths are shown. Because light slows
down in water, path a (solid) the shortest in distance is not the shortest in
time. ¢ (dashed) is the path that spends the longest time in air, but it turns
out that path b (dotted) represents the path of the light. Thus, standing at
the rim you will believe that the lamp is in path b’s prolongation.

By constructing lenses some parts of a light beam can be slowed down.
In Fig. (3), two different systems are shown where a point p receives light
rays from a source s. According to Fermat’s principle, in the upper figure
p sees the light ray that has propagated straight from s, the plot to the
right shows the differences in time arrival at p. In the lower figure a lens
is inserted between the source and the observing point p. Since light goes
slower through glass than air, the rays slows down a bit when they pass
through the glass lens. By constructing the lens so the rays with the longest
geometrical way spends the shortest time in glass, all rays will arrive at
point p at the same time, shown in the right time-arrival plot. Therefore,

4Like many other physical phenomena, a light ray path is determined by probability.
To say that light always travels the path where the time function is stationary is an
approximation, but it will hold in this thesis.
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the lens is focusing the rays and there will be a magnified image of s at p.
The value of the magnification depends on the distances between the source,
the lens and the observer.

This thesis is about gravitational lensing, i.e. a system where light rays
are affected by the gravity from a massive object. So, in analogy with
the lensing of light in Fig. (3) the massive object in Fig. (1) is lensing the
light from the background source (assuming that the massive object is not
transparent and blocking the straight rays).



2 Cosmology

2.1 About Cosmology

In cosmology the universe’s origin, evolution and structure are studied. To-
day, the leading theory of the origin of the universe is the big bang theory,
which states a very fast spatial expansion starting 13.6 billions years ago.
Evidence have been found, and are still being found, that supports the the-
ory of the big bang, e.g. the discovery of the expansion of the universe,
the background radiation, the darkness of the sky (the fact that the starry
sky is not filled with stars), the abundances of light elements like hydrogen
and deuterium and the homogeneity of the universe (data showing that our
location in the universe is not special) [20].

Modern observational cosmology began with the discovery of the ex-
pansion of the universe, made by Edwin Hubble 1929. Hubble found that
distant galaxies, not members of the local group, are receding from us with a
velocity proportional to their distance. According to the well known theory
of gravity the expansion should decrease with time, but 1998 it was found
that this expansion is accelerating [22], which makes up one of the deepest
mysteries in cosmology: the force behind the accelerating expansion of the
universe [20] [8].

On large scales, larger than 100 Mpc, the universe appears homogeneous
and isotropic®>. Homogeneous means that any measurable property of the
universe is the same everywhere, the density has the same non-zero value
everywhere at present time, and isotropic means that the universe looks the
same in every direction. That the universe is homogeneous and isotropic
constitutes the cosmological principle, introduced by Einstein 1917, before
anything was known about the large-scale structure beyond our Galaxy. The
cosmological principle is also taken to be valid at all epochs [20].

2.2 The Expansion

A light wave can be Doppler shifted in the same manner as a sound wave’.

When observing a receding galaxy the emitted light becomes redder, i.e.
the wavelength becomes longer, and if the galaxy is approaching the light
becomes bluer. For a velocity v much smaller than the speed of the light c,
the Doppler formula gives

=- (3)

%1 pc (parsec)= 3.085678-10'6m
5When a sound becomes Doppler shifted the tone gets higher when its approaching
and lower when its receding.
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where A, and )\, are the observed and emitted wavelengths. The shift in the
wavelength for all velocities is then defined by the redshift, z, as

A= Ao Ao
z= " = Ae—1+z. (4)

According to the cosmological principle, the observed recession of galax-
ies follows the same pattern in whatever direction we look, and the universe
remains homogeneous. Therefore, the overall effect of the expansion is a
change of length scale. In cosmology the expansion of the universe is con-
trolled by a single function of time, the scale factor function R(t).

Assume that a distance AB has the length [; at time t;, then at time ¢
its length is

()

"= gey @~ rRe) (6)

The velocity in eq. (6) is the expansion velocity of the distance between A
and B, i.e. the points A and B are not moving but the space in every single
point is expanding.

In cosmology the rate of expansion is characterized by the Hubble pa-
rameter H defined by

H="2Y (7)

As one can see in eq. (7), the Hubble parameter is a function of time and
independent of position, it is an observable measure of the rate at which the
universe is expanding [20].

Equation (6) shows that, when observing a distant galaxy it is not the
receding velocity that makes the light Doppler shifted, it is the expansion
of the universe that is redshifting the light, i.e. the wavelength of the prop-
agating photons expands. This gives the following relation between redshift
and expansion
A() _ Ve . R(to) _ l() o dt()

_ Ve _ —0_ G _y 8
> w R L d. 7 ®)

where v is the frequency of the photon, the subscript 0 denotes the value at
the present time. Here is also shown how a distant observer sees all physical
processes slowed down with a factor (1 + z), i.e. the observed time interval
dto is longer than the time interval dt. measured at the location of the event.
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2.3 Dark Energy

Throughout the 1920s it was taken for granted by cosmologists that the
universe was static. In order to obtain a static distribution of matter 1917,
Einstein added a constant in his field equations when he applied his theory
of general relativity to the distribution of matter in the universe. Einstein
called this constant the cosmological constant, denoted as A, which in the
equations gave rise to an repulsion that could balance the gravity of the
matter distribution.

In January 1930 at the Royal Astronomical Society in London, Edding-
ton and de Sitter reached the conclusion that the static solution was not
satisfactory and proposed a paradigm shift from a static to an expanding
universe. However, a non-static solution was already found by Lemaitre
and later it was discovered that Friedmann also had found a solution 1922.
Finally, Robertson and Walker independently showed that there are no al-
ternative solutions to the field equations. As a result, the solution of Ein-
stein’s theory for an expanding universe is called the Friedmann, Lemaitre,
Robertson-Walker model, abbreviated as FLRW [20].

The unknown repulsive force behind the accelerating expansion is often
attributed to different forms of dark energy. Two facts we know about dark
energy are that it has negative pressure and that it makes up about 70 %
of the universe.

Different kinds of mechanisms driving the accelerating expansion would
produce different observable consequences. Today, the simplest interpreta-
tion of the accelerating universe is in terms of the cosmological constant or
the vacuum energy. According to quantum theory vacuum is not empty, sub-
atomic particles and their antiparticles creates and annihilates in vacuum,
the Casimir effect. However, calculations shows that the vacuum density is
10'?2 times as big as the observed dark energy [2], and such a value would
cause the acceleration to rip apart galaxies, stars, atoms and life would be
impossible. Since we cannot ignore quantum mechanics something must
decrease this vacuum energy [19].

Several teams of researchers are conducting and planning experiments to
investigate this unknown force. On the cosmic scale, astronomers are devel-
oping new sky surveys searching for supernovae and using the effects from
gravitational lensing to determine the cosmological parameters. On a small
scale, particle physicists are doing experiments that may reveal whether the
answer to the mysteries lies in hidden spatial dimensions or in undiscovered
fundamental particles.

2.4 Geometries

If the Pythagorean law holds between the points (z,y) and (x + dz,y + dy),
the geometrical properties are Euclidean and, when we consider the limit as



10 2 COSMOLOGY

the separation of the two points goes to zero, the infinitesimal distance ds
between the points is given by

ds? = da® + dy?. (9)

When space is curved like on the surface of a sphere, the geometry is non-
Euclidean and the Pythagorean law will not hold, instead the distance law
is given by

ds® = r? 4 d6? + r? sin? 6 d¢? (10)

where r is the radius and 6 and ¢ are the two spherical angles. For instance,
on a spherical surface the angles on a triangle will exceed 180° and if the
surface is saddle shaped the sum is less than 180° [20].

Now, if we turn to special relativity we define a four-dimensional geom-
etry called spacetime, based on our three spatial dimensions and the dimen-
sion of time”. Clocks run differently in different frames depending on their
velocities, and the time in a given frame is called proper time, 7. Proper
time is invariant when one changes frame, since it is a property for a given
particle and not the coordinate system. In analogy with the Pythagorean
law, the geometry in special relativity defines a distance in spacetime as

ds®> = 2 dr? = 2 dt?* — da? (11)

where c is the speed of the light, ¢ is time and z is the distance in space
simplified to one dimension instead of three [20].

General relativity is all about proper time and gravity, special relativity
is just a local part of general relativity. General relativity gives an expression
for the proper time in a global frame. The basic idea is that the spacetime
in general relativity is allowed to have a more general geometry, e.g it can
be curved and expanding. The geometry, or the metric, that Friedmann,
Lemaitre, Robertson and Walker found when solving Einstein’s field equa-
tions for a dynamic universe defines a distance in spacetime as

dr?
1—kr2

ds® = 2 dt? — R(t)2( + 72 d6* + r? sin’ 0d¢2). (12)
This equation is usually abbreviated as the FLRW-metric [20].

In eq. (12) the curvature factor k shows up. This factor can have three
different values depending on the curvature of the universe. Ina k =1
universe, the spacetime is positively curved and the universe is finite or
closed. In a crude analogy to a three-dimensional geometry we can think
of it as the surface on a sphere. In a k¥ = —1 universe, the spacetime is
negatively curved and the universe is infinite or open, in three dimensions
we can crudely think of it as a surface on saddle. Finally, in a kK = 0 universe,
the spacetime is flat and the universe is infinite [20].

"In fact time is distance, you can measure a distance in seconds as well as in meters.
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2.5 Densities

The foundation stone of the standard model of cosmology is the FLRW-
metric, and what then determines the dynamics of the universe are the
energy density parameters.

Consider macroscopically the universe at all times as a gas of particles
with a density p. These particles can now be representing galaxies or clusters
of galaxies as well as photons. Einstein’s field equations then yield one of the
most fundamental equations of cosmology the Friedmann equation, which
tells us how the scale factor changes with time

2
(‘2—?) = gﬂGpR2 — ke + %ARQ. (13)
The mean density p(t) includes densities from all kinds of matter (both
visible and dark matter®) and radiation and can therefore be written as
p = pm + pr- The cosmological constant is given by A = 87 G pp. Using
these expressions in combination with eq. (7) we can rewrite the Friedmann
equation as
8 G

2 2 2

(Pm + pr +pa) |- (14)
This equation shows how the curvature of the universe is related to the
density in the universe. As discussed above, k can have three different
values which now relates to eq. (14) as

H2
= _ 1
E=0= pm+pr+pr 8 G (15)
3 H?
k=-1 = pm+p o 16
Pmtprtpa < oo (16)
2
k=41 = pm-+pr+pr> . (17)
8T G

These relations show that the curvature of the universe is determined by the
right hand term in egs. (15)- (17), the critical density defined as

3H?
Pe= gn '

(18)

The densities from matter, radiation and the cosmological constant can
then be expressed in terms of the critical density as

Qi = pi/pe (19)

8Dark matter means all kinds of matter that we can not see, e. g. planets, brown dwarfs,
neutrinos, black holes etc.
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which gives
. 81 G PM

Qy = — % 20
87 G pr
Op= 2 21
R 3 Hg ) ( )
A
Oy = —— 22
A 3 Hga ( )
where the uppercase letters denote the values at the present time [20].
By defining the curvature energy density parameter as
kc?
Q= ———— 23
T T R(to)? HY’ 23)
we can rewrite the Friedmann equation as
1=0m+Qr+ Qx + Qk. (24)

Since the present value of Qx = 0 and the present value of Qg is so small
that it can be neglected, the destiny of the universe is determined by the
balance between Qs and Q4 [20] [8]. Equation (24) can then be rewritten
as

Qp=1- Q. (25)

2.6 Distances

Our view of very distant objects is complicated by the cosmic expansion that
increases the wavelength of light and by the curved spacetime that it passes
through. When we view a galaxy its brightness is diminished by one power
of (1 + z) because every received photon carries less energy, and another
power because they arrive at a slower rate, see eq. (8) [27].

When we receive the light from a galaxy emitted at time %1, the light
is spread out over a sphere with the area 47r?(t1)R%(ty), where r(t1) is the
galaxy’s radial coordinate [27]. Therefore, the flux S of energy that we
receive is related to the total or bolometric luminosity L by

. L L
©4mwr2(t)) R2(to) (L +2)2 ~ 4mwd}(z)

(26)

where dy, is the luminosity distance. Thus, the luminosity distance to an
event at position 1 and time #; is given by

dr, = R(to) (1 + Z) 1. (27)

Another important cosmological distance is the angular distance dg,
which tells us how large an object will appear when it is seen at redshift z.
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If a galaxy at a distance d subtends an angle o on the sky, the size of the
galaxy D is given by the small angular formula

D = ad. (28)

However, we observe the size D when the light was emitted, therefore d must
be equal to the galaxy’s radial coordinate multiplied with the scale factor
at the time of emission [27]. This gives the angular distance to an event at
position r; and time %1 as

dA = R(tl) 1. (29)

Combining egs. (8), (27) and (29) gives the radial coordinate as

_da(1+42)

"= TR (30)

Consider now a radially incoming light ray to an observer, situated at
the origin of a 7,6, ¢ coordinate system so 6§ and ¢ are both constant, and
df = d¢ = 0. Inserting these values in eq. (12), together with the condition
that light rays move of paths of zero proper time gives

dr V1 — kr?
i RO c. (31)

Multiplying eq. (31) with R(tp) and using eq. (8) gives

dr
R(ty))——= = c(1 + 2) dt. 32
( 0) m C( Z) ( )
In [2] this useful differential equation is given
dt 1
a _ 7z (33)
dz Hy(1+2)[1+2)201+Quz)—2z(2+2) Q]
Equation (32) together with eq. (33) gives
™ dr 1 dz
R(to)/ = C/ 172"
0 V1—kr 0 Ho[(142)2(14+ Qumz) — 2(2 4 2)Q4]
(34)

After some calculations, with the use of egs. (25) and (30), eq. (34) gives
the angular distance for a flat universe (k = 0) as

c 21 dz
AalHo, i, 2) = gy / (@ gp—pag?

In the next chapter we show how the time delays in a gravitational
lensing system depend on the angular distances, which through eq. (35) are
sensitive to the cosmology.



14 3 GRAVITATIONAL LENSING

3 Gravitational Lensing

3.1 A Short History of Gravitational Lensing

Although gravitational lensing (see Fig. (1)) in a cosmological context was
discovered 1979, the possibility of its existence had been suspected long
before. Albert Einstein [5] proposed that rays of light could be bent by a
gravitational field with celestial objects acting like lenses and form magnified
images. At the same time he thought that the angular image splitting from
stellar-mass lenses was too small to be resolved by an optical telescope. This
was an outgrowth of his theory of general relativity, where the presence of
matter can curve spacetime, and the path of a light ray will be deflected
as a result. Einstein predicted a shift in a star’s apparent position by 1.74
arcseconds when it is lensed by the sun. During a total solar eclipse 1919
at the island of Principe, the British astronomer Arthur Eddington took
photographs of the sky around the sun and found out that nearby stars had
moved just the angle predicted by Einstein [18].

1962 at Oslo University, Sjur Refsdal was defending his diploma-thesis
and got rejected on his gravitational lensing part, the examiner claimed
one had to use physical optics instead of geometrical optics which Refsdal
had done. Anyway, he did not give up proving that geometrical optics was
right, and that was the way he came to calculate time delays [12], i.e. the
difference in travel time for light compared with the travel time without
any intervening lens. In 1964, Refsdal [21] then described how the Hubble
constant could in principle be measured by gravitational lensing of a variable
source [18].

With the discovery of quasars 1963 [23], which is a good class of sources
for studying the effects of gravitational lensing, the thought of observing
gravitational lensing were brought up to daylight again. Quasars are active
galactic nuclei so bright that they outshine their host galaxies. They are very
distant objects so the probability is relatively high that something massive
is intervening between them and us. They are much smaller than typical
scales of galaxy lenses and their optical region is very compact, the resulting
magnification can therefore be large and multiple images can be separated
and detected [18].

What had been a dream for a few theoreticians became reality 1979
when Walsh, Carswell, Weymann [30] discovered the first example of grav-
itational lensing in a cosmological context, the quasar QSO 0957+561A,B.
The determination of the Hubble parameter by using the time delay ef-
fect from gravitational lensing system now became a realistic possibility.
Gravitational lensing has nowadays developed into a powerful tool to study
important questions in astrophysics and cosmology [18].

Today, sky surveys have found a lot of gravitational lensed objects, one
year ago (June 2003) 72 multiple image systems were known [24] and the
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list continues to grow with improved observing techniques. In 1986 the first
Einstein ring was discovered; the radio source JVAS B1938+666, lensed
like a ring by an intervening galaxy. Also discovered in 1986 was a new
lensing phenomena; strongly giant arcs around clusters of galaxies, and after
measuring the redshifts of one of the arcs one could determine that it was
an image of a background galaxy [24].

Even better time delays than from quasars could be provided from su-
pernovae [11], but no lensed supernova has been found yet. A supernova
occurs when a star between 10-40 solar masses stops burning and shrinks
due to its on gravity. The star will then keep shrinking until the core gets
degenerated with neutrons, the degenerated core can then not shrink any-
more and the sudden stop of the collapse will produces an outgoing shock
wave, an explosion, i.e. a supernova of Type II [27].

Another type of supernova occurs when the remainder of a star that was
less massive than 10 solar masses during its main sequence®, i.e. a white
dwarf, accretes mass from its binary companion. This mass accretion makes
the white dwarf exceed the Chandrasekhar limit, where the star can not
support its on weight, and will then explode in supernova of Type Ia [27].

Supernovae of Type Ia are currently considered as the best astrophysical
sources with known luminosity, i.e. standard candles [8]. They have three
important features required of a standard candle; they are very luminous, the
dispersion of their absolute magnitude about the mean is small and finally,
the physical characteristics of low and high redshifts are very similar [20].

3.2 Basics of Gravitational Lensing

In general, light propagation in a curved spacetime is a complicated prob-
lem. However, for almost all cases of relevance to gravitational lensing, we
can assume that the geometry is described by the FLRW-metric (see sec-
tion 2.4) and that the matter responsible for the lensing are no more than
local perturbations in an otherwise homogeneous universe [18].

When light paths propagates from a source past a lens to an observer
(see Fig. (1)) the paths can be broken up in three zones. In the first zone,
light goes from the source to a point close to the lens through a unperturbed
spacetime. In the second zone, the vicinity near the lens, the light is de-
flected. When studying the deflection inside the second zone we can assume
a local flat spacetime which is weakly perturbed by the Newtonian gravita-
tional potential, arisen from the lens’s mass distribution. Our assumptions
holds if the Newtonian potential @ is small, | ® | < ¢?, and if the velocity v
of the lens is small, v < c. Finally, in the third zone light goes through an
unperturbed spacetime from the lens toward the observer [18].

9The main sequence is a star’s epoch of hydrogen burning.
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Figure 4: Sketch of typical gravitational lens system. A light ray propagates from
a source S to an observer O, passing a lens at distance &, i.e. the impact parameter.
The angular separations of the source and the image seen from the observer, are 3
and 0 respectively. & is the deflection angle and « is the reduced deflection angle.
The distance between the observer and the lens is D;, between the observer and
the source, D and between the lens and the source, D,.

3.2.1 The Lens Equation

In Fig. (4) a typical gravitational lens system is shown with an optical axis
defined as a straight line through the lens center and the observer. A light
ray is deflected by the angle & when propagating from a source S to an
observer O, 8 is the angle between the optical axis and the true position
and @ is the angle between the optical axis and the image position I. & is
the transverse distance between the optical axis and the point where the ray
pass the lens. The angular distances are; D; between observer and lens, D;
between observer and source and D,;, between source and lens.

Assuming that the angles are very small and approximating, e.g. tan § =
[, one finds that

Dls ~

B=06-— D, . (36)

In gravitational lensing it is convenient to introduce the reduced deflec-
tion angle « [18] [24], which is the angle that separates the true position
and the image (of course one can not see this angle). From the geometry in
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Fig. (4) one can show that the reduced deflection angle is

D
o= FI: é. (37)

Combining egs. (36) and (37) gives
B=06-—af). (38)

This is the lens equation relating a source’s true position to the observed. In
general, the equation is nonlinear which makes multiple images possible [24].

3.2.2 Deflection Angles

The effects from the spacetime curvature on light paths can be expressed in
terms of a refractive index n, which is given by [18]

2 2
nzl—c—2<1>:1+c—2|<1>|. (39)
The deflection angle of a light ray when passing through a gravitational field

is given by (e.g. [18])

2
a:-/vwdzz?/m@dz. (40)
C

This equation shows that the deflection angle is the integral of the perpendic-
ular gradient of n along the light path. In all cases of interest this deflection
angle becomes very small, and we can therefore simplify our calculations
by integrating V, n along an unperturbed light ray, instead of along the
deflected ray [18].

Consider the point mass lens in Fig. (5), the Newtonian gravitational
potential around the point mass is given by

GM
Vb? + 22
where b is the distance between the point mass and the unperturbed light ray

and z is the distance along the unperturbed light ray where the deflection
occurs. By using eq. (40), a point mass lens gives the deflection angle

®(b, z) = — (41)

(42)

Equations (41) and (42) shows that most of the deflection occurs within
Az ~ +b to the point of closest encounter between the ray and the point
mass. This Az is very small compared with the distances between source
and lens and lens and observer, the lens can therefore be considered as very
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source

point mass

Figure 5: Light deflection by a point mass lens. Most of the deflection occurs
within Az ~ £b (this figure is adapted from [18]).

thin and the mass distribution of the lens can be projected along the line-of-
sight, like a mass sheet perpendicular to the line-of-sight. The plane of this
mass sheet is called the lens plane. The deflection angle depends solely on
the mass sheet [18] [24], which is characterized by its surface mass density

£(©) = [ ol )z (43)

where the impact parameter £ is a two-dimensional vector in the lens plane.
The deflection angle at £ is the sum of the deflection contributions from all
the mass element in the lens plane [18] [24], i.e.

oy _ 4G (-5 H;

a(e) = = / E=O2C) g (44)
¢ [ §—¢|

In the case of a circularly symmetric lens, we can shift the coordinate sys-

tem to the center of symmetry and reduce the deflection to a one-dimensional

problem [18]. The deflection angle directed toward the optical axis is then
given by

L AGM()
where ¢ is the distance from the lens center and M (&) is the mass enclosed
within radius & given by

(45)

3 o,
M(€) = 2 /0 () € dé. (46)
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source

* gD

observer

Einstein ring

Figure 6: When the lens and observer are perfectly aligned the image becomes a
ring, i.e. Einstein ring.

3.2.3 Einstein Radius

If a source lies exactly on the optical axis (5 = 0) and is lensed by a circular
symmetric lens, a ringlike image can occur; an FEinstein ring (see Fig. 6).
The Einstein radius is important in gravitational lensing. For instance, when
a source is multiple imaged the angular separations between the images is of
order two Einstein radii, and in many models the projected Einstein ring on
the source plane roughly represents the source’s border area between getting
multiple imaged or not [18].

The Einstein radius can be found by consider a circularly symmetric lens
with an arbitrary mass profile. According to egs. (45), (37) and (38), the
lens equation gives

Dys 4G M(6)
- = 47
6 Dle C2 0 ( )
By setting 8 = 0 in eq. (47) one obtains the Einstein radius as
1
4GM D 3
0, = | LG M0n) Dis 12 (48)

c? Dle

3.2.4 Magnification

Since gravitational light deflection is not associated with emission or ab-
sorption of light, the surface brightness is preserved and the intensity of
the images can be magnified. The total flux received from a gravitationally
lensed object is proportional to the ratio between the solid angles of the
image and the source. The magnification factor is denoted p and is, for a
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circular symmetric lens, given by

image area 0 do
& = . (49)

magnification = ———
source area B dﬁ

3.2.5 The Time Delay Function

Consider again the light ray in Fig. (4) which propagates from a source to
a point on the lens plane, and then from there to an observer. For a given
path there is a geometrical and a gravitational time delay, i.e. the light ray
is delayed relative to propagation in vacuum [3].

The geometrical contribution is the extra light path that arises when the
lens deflects the light ray. In appendix A it is shown that the geometrical
time delay can be written as

3 | [ e e (50)

The gravitational time delay arises in the vicinity of the lens where, as
in optics, the refractive index n slows down the speed of the light to ¢/n.
The gravitational time delay Aty is obtained by integrating over the light
path from the observer to the source

Atgeo =

c

2
Aty = —(1+2) /C—3 B dl. (51)

where the redshift factor appears due to eq. (8).
Writing
Aty = —

5] (22 o

where () is the deflection potential [24], defined in [18] as a the projection
of the Newtonian potential along the line-of-sight as (see eq. (41))

c

Dls
= ®(D
v(0) = 5o [ Di0, D (53)
the total time delay then takes the form
1+ 21 [DDs
Aty = Dty + Bt = |2 [T (2087 - 000)]. (54)
S

According to Fermat’s principle Vg Aty:(0) = 0, so the lens equation
(eq. (38)) can be rewritten as a gradient

1
Vo |30 87 -] =0 (55)
where the gradient of 1 with respect to 8 gives the reduced deflection angle

as (cf. eq. (42))

2D
Vo =Dy Ve = 5 ’S/vm D6, 2)dz = . (56)
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This means that the competition between the geometric and the gravita-
tional delays leads to the formations of images at the functions stationary
points (minima, maxima and saddle points), so for a given source position
B one can find all the associated positions 6 [18] [14].

Interpreting time delays requires a model for the lens’s gravitational po-
tential, and in most cases the uncertainties in this model will then dominate
the uncertainties in the calculated cosmological parameters that the time
delay function can provide. Therefore, due to the gravitational delay, time
delay lenses provides a probe of the dark matter distribution in the lens,
since they measure the matter distribution in the lens [14].

3.3 Types of Gravitational Lensing

Depending on the mass distribution, the shape of the lens and the im-
pact parameter, there are different types of gravitational lensing, including;
strong-, weak- and microlensing. Below is a short description of the these

types [27] [2].

3.3.1 Strong Lensing

Strong lensing is the most extreme bending of light, causing more than one
image to appear, so called multiple images. If the source is time varying,
the multiple images will vary with time as well, which makes it possible to
measure time delay differences between the images. If the lens is circularly
symmetric and lies perfectly aligned with the source, a ring-image will ap-
pear; a so called Einstein ring (see Fig. 6). More often the shapes of the
images are stretched out and curved as arcs [27].

3.3.2 Weak Lensing

Weak lensing appears when the lens is not strong enough to make multi-
ple images, instead one single image will appear. The source can still be
distorted, both magnified and stretched out as an arc. If all sources were
well known, weak lensing could then be used to get informations about the
lens. Weak lensing is a useful tool to measure the distribution of mass,
since it measures all kind of masses both the luminous matter and the dark
matter [27].

3.3.3 Microlensing

Microlensing occurs when the lensing effect affects the luminosity of one
source, a faint source can thereby get visible for our detectors, e.g. when a
massive object passes in front of a source and multiple images can not be
resolved. This technique is used to map the Galactic density of dark matter
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objects such as MACHOs (Massive Astrophysical Compact Halo Objects),
e.g. brown dwarfs, neutron stars, black holes and planets [2].

3.4 The Singular Isothermal Sphere Model

A simple but realistic starting point for modeling lens potentials is the Sin-
gular Isothermal Sphere Model, abbreviated as the SIS-model [14]. In this
model a galaxy’s stars and other mass components are macroscopically con-
sidered as an ideal gas of particles with density p and mass m. The equation
of state for an ideal gas then takes the form

pkT
p=—
m

(57)

where k is the Boltzmann constant'®. In thermal equilibrium, the tempera-
ture T is related to the velocity dispersion o, of the stars through

mo?2 = kT. (58)

Usually one assumes that a stellar gas is isothermal, which gives that o,
is constant across the galaxy. Narayan and Bartelmann (1995) [18] gives a
solution of eq. (57) as

- (59)

where r is the radius of the sphere.

3.4.1 SIS- Deflection Angle

Projecting the mass distribution from eq. (59) along the line-of-sight, the
surface-mass density is obtained after using eq. (59) in eq. (43) as (see ap-
pendix B)

%) = (60)

By combining egs. (45), (46) and (60
distribution takes the form

[N}
~— Q‘ﬁqm
AN

, the deflection angle for a SIS-

& =dr 2. (61)

c2

SN

The Einstein radius for a SIS is then given by eq. (38) as

Dls
0 = d — = (X. 62
B=ap (62)
Although the lens equation for a SIS is essentially one-dimensional, mul-
tiple images do appear. To clarify, consider a source located at a positive
coordinate from the optical axis of a SIS-lens, i.e. § has a positive value.

'%The value of the Boltzmann constant is k = 1.380658 - 10> J/K
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Because the image position @ is always directed toward the optical axis, the
solutions of the lens equation are

0L =05 +0g. (63)
However,
>0p = 0_-=p—0g <P

which is impossible (see Fig. 4). Therefore, eq. (63) holds only if the condi-
tions 8 < O is satisfied.

3.4.2 SIS- Time Delay Function

Consider a SIS-lens producing two images a; and ag at the angles 6,, re-
spective 6,, from the optical axis. Combining egs. (56) and (61) gives the
deflection potential for an SIS-lens as

Dla 0'2
D, C_;) =0 ’Lﬁ(gz) = wb;. (64)

Vo, = 4m

Using this lens potential expression in eq. (54), the time delay between the
two images a1 and as can be calculated as (see appendix C)

11+ 21 DD

Atgis = Dtg, — Mg, = 5 [ . ] [T] (02, —62). (65)
Thus, the SIS-model suggests that the determination of the cosmological

parameters'' is reduced to a problem of measuring the time delays, the

redshifts and the positions of the images [14].

3.5 Power Law Lens Potential Model

Numerical simulations of Cold Dark Matter models show that dark matter
halos exhibit a universal density profile with a central slope p o r~"7, with
n=1— 1.5, and at large radii the profile steepens to p oc =2 [17].

A general expression for a gravitational lens potential is given as [14]

02 0; 3-n
w00= 525 (5) (60

where 7) is the logarithmic slope of the density parameter [13]. This potential
model is called the power law lens potential. For n = 2, this model corre-
sponds to a SIS-potential and for the limit 7 — 3 it approaches a point mass
potential [14].

"' The cosmological parameters Hy and Qs appears in the angular distance expressions.
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3.5.1 Power Law Lens Potential- Time Delay Function

When a gravitational lensing system produces two images, a1 and ao, one
can define an annulus of average angle

_ 0y + 0y

() =

(67)

and width
AC =0, —0,,. (68)

By expanding the expression for the power law lens time delay in [13] as a
series in the ratio A(/(¢), the time delay can be approximated as

9 2 3
Atr) = 1 [”jl] [—DDD] (62,—62,) (n—1) [1—(2 ) (%) +0(%) ] (69)

Assuming that A(/(¢) is small, higher-order terms can be ignored and
eq. (69) can be rewritten as

Atn) ~ 3 [”j’] [DL;D] (62, —62) (1= 1) [1— Con (1 - 92‘19)] (70)

Compared with the time delay difference for a SIS-model this model also
requires a value for the logarithmic slope of the density parameter.

Since the expressions for the angular distances includes Hy and Q,/, the
value of 5, Hy, and s can be estimated with eq. (70) by using time delays
from multiple images. By finding two or more objects multiple lensed by
the same lens, their time delay differences can for instance be divided with
each other and thereby reduce some factors in eq. (70), and probably make
better parameter estimations.
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4 Double Objects Lensing

Hubble Space Telescope (HST) observations have found families of multiple
images with different measured spectroscopic redshifts [10], but these obser-
vations are lensed galaxies so they are bad candidates for measuring time
delays. In the cluster Abell 2218, Soucail, Kneib and Golse (2004) [26] have
studied 4 multiple images to determine the cosmological parameters 2/,
Qp and w (the equation of state parameter). The basic idea in their method
is that each family of multiple images constrains the cluster potential, and
as this lensing test depends on the angular distances D;;/D; it also depends
on the cosmological parameters, eq. (35). Their method is an extended ver-
sion of Link and Pierce (1998) [15] work on determination of cosmological
parameters using gravitational lensing system.

Sharon, et al (2004) [25] has found over 130 images of 35 lensed galaxy
families behind the lensing cluster A1689. They calculated the surface mass
distribution in A1689 and found it to flatten steadily toward the center.
They have also found the mass to light ratio 30 % larger than any other
well-studied cluster. Due to the redshift of the lens, z = 0.18, the depen-
dence on cosmological parameters is weak and they could not constrain the
cosmological parameters with accuracy [25].

No one has yet found a system with two quasars or supernova multiple
lensed by the same lens, a so called DOL-system with measurable time
delays. If such a DOL-system was found one could use eq. (70) to determine
some cosmological parameters and the matter distributions of the lens.

4.1 About Double Objects Lensing Simulations

Different DOL-system can be simulated by changing the measurable parame-
ters, i.e. oy, z; and 6;, from now on called the observables. In my simulations
I consider the time delay one gets from a power law lens, eq. (70), as the
theoretical time delay, Aty,, and the observed time delay, Atyps, as the value
one gets from a SIS-lens. Therefore, my simulated observed time delays are
calculated by combining egs. (35), (65) and (76) with the values for Hy and
Qs as [29]

{ Hy = 70 [kms~! Mpc™!] (71)
Qv = 0.30

The true values for the varying parameters, i.e. Hy, Qs and 7, are
then estimated with a y?-test, with the theoretical time delays against the
observed time delay.

4.1.1 x’-test

A y?-test is a statistical tool for investigating whether an observed distribu-
tion is consistent with an expected theoretical distribution [28]. The x? is
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simply a sum of squares with the general form

(72)

5 <=~ [theoretical value — observed value
X’ =) —
T standard deviation

where 7 is the number of measurements. The agreement is best where
x% = x2,;,, i-e. where the theoretical value approaches the observed.
When y?-testing time delays the x? takes the form

X=)

where oy, is the uncertainty in the power law time delay and o, is the
uncertainty in the observed time delay.

The x2-test gives a confidence interval for each varying parameter, e.g.
where the probability is 68.3 %, 95 % or 99 % that the true value is within the
calculated value. A confidence interval can be plotted as a contour around a
confidence region of a certain probability of finding the true parameter value.
In a x? distribution with two fitted parameters the following confidence
regions are given in [4]

(Atyn(n, Qar, Ho) — Atgps)?
Tip + Tops

(73)

Probability | Confidence region
683% | X°= X% +2.30
95 % X? = X2in+5.99
99 % X *+%21,

4.1.2 Constraints

In some x2-tests degeneracy appears in parameter space. For instance, when
dividing the time delay differences the confidence regions in (23/-1 space
becomes very elongated. One way to remove or at least mitigate these
degeneracies can be done by applying constraints or priors on the parameter,
i.e. one can impose or assume a prior knowledge [29] [9].

Thus, if we have prior knowledge of Qs the degeneracy can be removed
or mitigated by [9]

(QM - QM TiOT)2
X2 = X(2) + D) £ (74)
Upm'or

where X% denotes the X2 without prior knowledge of Qj7, and oppior is the
uncertainty in Qaz,,;,, -

4.2 Observables

Since a change in a DOL-system’s redshifts and velocity dispersion affects
the image angles and the time delays, the observables are depending on each
other. The subsections below explains how my observables are chosen and
how the flux can be used to improve the parameter estimations.
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4.2.1 Image angles

When the time delay function for a power law lens, eq. (70), was derived,
the assumption was made that A¢/(¢) is small. The image angles are then
depending on this assumption as

g:201—92
() b1 + 62

<1 (75)

For a SIS-lens producing two source images at the angles 6; and 65,
appendix C show that

O — 01 + 6, (76)
2
where 6 is given by eq. (62).
Now, combining eq. (75) and eq. (76) gives
91 < %QE, (77)
92 > %GE

which will limit my simulated image angles. Note that larger image angle
differences could be simulated by not making the assumption in eq. (70)
(results from the simulations shows that larger image separations improves
the parameter estimations).

By simulating DOL-systems with different z; and o,, the image angles
are calculated by using the eqs. (61), (62), (76) and (77). These angle
values are then considered as the observed image angles.

To get useful time delays for my parameter estimations the light path
differences between the images must be significant. Therefore, I simulate
the observed image angles at the limit of eq. (77), which gives

0a, = 14965
00, = 0.5165

0, = 1.496p (78)
0, = 0.516p

Appendix D show that the image magnification for a SIS-lens is depen-
dent on the image angle and on . By using the chosen values from eq. (78)
the magnification for each image from a lensed source becomes

(79)

0= 1490 — 1 =|5%|~3
= 0510 — po=|525|~1

Therefore, in all simulations, the energy flux from 6,, and 6,, becomes three
times larger than from their sources, and unchanged from 6,, and 6,.
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Time delay [days] dependence on z, and g, | Time delay [days] dependence on z, and g, |

Figure 7: SIS time delay dependence in days on zs, and o, for a lens at redshift
z1 = 0.5 and Qp; = 0.3 in a flat universe.

4.2.2 Measuring Time Delays

Time delays are hard to measure if the fluxes from the images are not time
varying, or if the images are faint or if they lie to close to each other [14].
Therefore, gravitational lensed galaxies are not good sources for time delay
studies, better sources for measuring time delays are quasars and supernovae.

The first time delay measurement was made 1984 [7], in the double
quasar QSO 09574+561A, B. The basic procedure for measuring a time delay
is that an observation must produce light curves for the individual lensed
images that are well sampled compared to the time delays, and that during
this period the lensed source have brightness fluctuations of time scales
shorter than the this period [14].

The properties of the lens determines the time delay. For instance, the
more massive the lens, the longer the time delay. The time delays are also
affected by the profile of lens, its ellipticity, surrounding massive satellite
galaxies and if it is a member of a cluster; the cluster surface density at the
position of the lens [14] [31].

In my simulations the velocity dispersion is chosen just enough to make
time delays about a few years. Fig. (7) shows how the SIS time delay depends
on the redshift of the source z; and o, in a lens at redshift z; = 0.5 and
Qpr = 0.3 in a flat universe.

4.2.3 Redshift Proportions

To find where the simulated redshift proportions in a DOL-system gives the
best parameter estimations, I made a program calculating for which z; Qs
has the smallest 68.3 % confidence interval for fixed z, and z.

4.2.4 Flux Ratio
The fluz ratio for a lensed object in a DOL-system is given by [17]

_ M1
T=—
|H2|
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where f; is defined in eq. (49). After some calculations using eq. (49) in
eq. (80), the flux ratio from a power law lens can be expressed as

b |l @m0+ 02) /(67" 4657 ‘ _
ro 02111 - (2—n) 0,77 (61 +62) / (67" +657")
o | L= =m0 (O +0:) /(07" + 65 ") ‘ _
- @—m e (00 +02) /(07 + 6577
= Tsis " Tchi (81)
where
0
Tsis = é (82)
and
B B 1-n 2—n 2—n
roni = 1—(2—m)0 " (61 +62) /(67" +65, ") (83)

1—(2-0)0,7" (00 +6:) /(07" +657") |

In appendix E the r;-expressions are calculated.

Thus, by using the flux ratios from a DOL-system one can estimate 7
alone with no information needed about the cosmology.

The uncertainties in the flux ratios are dominated by the effects of mi-
crolensing by compact objects and millilensing by cold dark matter, rather
than from flux measurement uncertainties [17]. Mortsell, Dahl and Hannes-
tad (2004) [17] estimates this uncertainty as oops = fobs Tobs = 0.5 Tops, Where
fobs depends on the micro- and millilensing mentioned above. Therefore, oy,
can be neglected and the x?-test for the flux ratio becomes

=3 (Tth(n,91,92) - Tobs>2 -y (Tchz'(m?; 02) — 1>2 (84)

f obs Tobs

where as before s denotes the simulated value (using the SIS lens model)
and 4, denotes the theoretical value (using the power law lens model).

4.3 Different Types of Estimations

In every simulation I will run two different types of estimations; one where
the values of 3, and 7 are investigated by taking the quotient between the
time delay differences of two lensed objects (in this case the Hy parameter
disappears), and another where the values of Hy, Qs and 7 are investigated
by summing the x? values for each lensed object. In each type of estimation
the x? expressions takes different forms.
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4.3.1 Expression for the Power Law Quotient

In a DOL-system with two lensed sources a and b each producing two images,
the power law time delay quotient between the sources becomes

2 20, 2
02, —02,][3- @ (1~ 5,75,
Qpow = Dq 02 _ 92 9 29b2 2 (85)
b b2 3 o (2 B n) (1 o 0b1 +0b2)
where
D, Dy,
D, = 86
" Dy Dy, (86)
which according to eq. (35) is given by
Dy = fma [nM(<1+z3i§—1>+111/2 Uzob [nM(<1+é3i3é—1>+111/2 B fzol [nM(<1+z§l§—1>+11”2]. (87)

fzb dz [f»'m dz _ le dz
zo [Qm((14+£)3-1)+1]1/2 LJzg [Qpr((14£)3—1)41]1/2 zo [Qm((14£)3-1)41]1/2

Thus, dividing the time delays kills the Hubble parameter and only two
parameters remains, 23; and 7.
Since the flux ratio eq. (81) is sensitive to 1 and not to 57, the flux
ratios can be added to the y2-test and act like a prior for 7. For i number
of sources and j number of varying parameters, the x? takes the form

X2(QM17771) X2(QMJ"771)
Xz = .. ) (88)
XQ(QMUnj) XQ(QMjanj)
where
2 (ch - QObs Tchi; —
X (Qs,m) = +) : (89)
q2th + Jgobs 7 ( fObS )
where gops = Aty /Aty,,, and og,,, is the propagation in g5 given by

2 241/2 52 1/2
_ aqdzs 8qobs _ (St obs tbabs
Ogops — [(aAtaabs 6taobs) + (6Atb 6tbobs) :| = qobs [At% + Atgabs . (90)

obs

Without any covariance among the observables the uncertainty o,,, be-
comes

_ dq 2 dq 2 Oq 2 dq 2
Tan = [(aeal ‘5"“1) + (aeaz ‘5"“2) + (ae,,l ‘5‘“1) + (ae,u 5‘“2) +
1/2
o 0i) + (gda) + (55 04)
(8za 9 ) + (az 0 ) + 0z 9 ) (01)

In appendix F the expression for oy,, is calculated.
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4.3.2 Expression for Summing x?

When summing x? for a DOL-system the time delay is At;(Q4s, Hy,7), so
all parameters remains. In the contour plots I will use a fixed value for g
and then perturb it to see how the perturbation affects the estimation of
Q M and H().

Therefore, for 1 number of sources and j number of varying parameter
values, the total x? takes the form

XQ(QM1’H01) X2(QM]"H01)
XZ(QMI,H()J.) X2(QMj,H0j)
where
(AtZ — Atiobs)z

2
Qu, Hy) = E
X ( M, 0) 0_22 +O_Z20bs

%

(93)

where At; and At; ,, are given by eq. (70) respective eq. (65), the uncer-
tainties og; are propagated without any covariance as

1/2

0At 2 (OAt 2 (O0AL 2 (OAL 2 rOAL 2
7ien = [(@‘”il) +(am, 00=) + (G, 0) +(55 02) +(5 ) ] e

i

In appendix G the expression for oy, is calculated.

4.4 TUncertainties

In the y2-expression, eq. (73), the uncertainties are oy, and oy, where the
later takes different forms depending on estimation type. When running
my estimations the contribution from ¢,; in the eq. (91) becomes very small
compared to the contribution from dy,, using d,, = 0.001 [11]. Therefore, the
quotient parameter estimations are affected by the measurement errors from
the observed image angles and the observed time delay. The domination of
dp, in eq. (91) can be understood if one thinks about how an error in the
angle measurements can make the geometrical light path significantly longer
or shorter.

The uncertainty d; from lensed quasars can be estimated from current
SIS time delay observations, e.g. [14] or [31]. In the simulations, d; from a
lensed quasar is estimated as §; = 2.0 [days].

Mértsell, Dahle and Hannestad (2004) [17] estimates §; = 0.15 [days]
when using the future Supernova Acceleration Probe (SNAP), which makes
this o, only valid when observing supernovae.

The uncertainty in the image angles are estimated in Goobar et al.
(2002) [11] as dg, = 0.01".

Anderson and King (2000) [1] reports that, having a rich star field their
Point Spread Function can measure the position of a bright star with a
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precision of 0.002”, which is the used uncertainty in my most extreme sim-
ulations.
In the flux ratio estimation, eq. (84), fops = 0.5 [17] is used.

4.5 Sub-simulations

Due to the uncertainty in determining the observed uncertainties and their
domination in the quotient estimations, I make four sub-simulations with
different values of dp, and ;.

In the sub-simulation called quasar, two quasars are lensed in a DOL-
system with the uncertainties

(95)

dp, = 0.01 [arcsec]
0t 2.0 [days].

In the sub-simulation called nova-quasar, one quasar and one supernova
are lensed in a DOL-system with the uncertainties

do, = 0.01 [arcsec]
dtsye. = 0.15 [days] (96)
0tgso = 2.0 [days]

where d;5,, = 0.15 and dy,5, = 2.0 are the time uncertainty from a super-
nova respective a quasar. Since eq. (90) gives smaller o5 when &, > d;,,
source a is a supernova and source b is a quasar in all nova-quasar sub-
simulations.

In the sub-simulation supernova, two supernovae are lensed in a DOL-
system with the uncertainties

0t 0.15 [days]. (97)

{5& = 0.01 [arcsec]

In the sub-simulation extreme-supernova, two supernovae are lensed in
a DOL-system with the uncertainties
dp, = 0.002 [arcsec]
: 98
{ 0 = 0.15 [days]. (98)

Since the uncertainty J;, dominates in the summing X2-estimations, the
uncertainties from dp, and J; becomes less important. Instead, I make one
sub-simulation where 1 = 2.0 and another where n = 1.5, in both cases we
have dy, = 0.01 and 6; = 2.0.
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5 Results

I simulate five DOL-systems with different observables for calculating time
delays which then are used to estimate s, 7 and Hy with different types
of x%-tests. The observed image angles are calculated by eq. (78), and the
observed time delays are calculated by using eq. (65) with the assumed
values for Qs and Hy from eq. (71). Since the time delays are very sensitive
to the mass of the lens, the velocity dispersions are chosen not to make up
too long time delays. In all simulations I assume a flat universe, i.e. k£ =0,
thus the angular distances are given by eq. (35).

In the five sections below, the results from each simulation are given in
figures and tables, which contents are more explained in detail in section 5.1.

All my computer programs are made in C++, but in a ordinary C++ pack-
age there are no codes for making nice plots and more advanced calculations
(as far as I know...). However, by using the C++ package ROOT which con-
tains lots of mathematically tools, almost everything can be programed in
C++. ROOT has been developed in Cern and was first publicly released in the
end of 1995'2.

5.1 Simulation A

In simulation A, a DOL-system is simulated with the observables

4 = 055 + 0.001
ze = 1.0 £ 0.001
» = 2.0 + 0.001 (99)
oy, = 375 [km s~!]
Using eq. (76) the image angles becomes
0., = 2.29 [arcsec]
0., = 0.79 [arcsec] 0p, = 1.54 [arcsec] (100)
0y, = 3.65 [arcsec] 0p, = 2.45 [arcsec]
Op, = 1.25 [arcsec]

Using these -values and Qj; = 0.30 & 0.04, the SIS time delay for each
source (eq. (65)) and the quotient between them becomes

0.628 + 0.004 quasar
At, 351 [days] o ’
{ Aty = 559 [days] = @sim = § 0.628 £+ 0.002 ,nova-quasar

0.628 £ 0.0003 ,supernova
(101)

where the quotient uncertainties are the error propagations in At, /At for

each sub-simulation?!3.

12More information can be found at http://root.cern.ch/root.
13The same uncertainty is given in the sub-simulation supernova and extreme-supernova
since the d:’s are the same
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5.1.1 Simulation A - Time Delay Quotient

In simulation A the y2-tests from the time delay quotients and the flux ratios
estimates the contour regions as Fig. (8) and (9), which gives the following
values for Qj; and 7

‘ Estimation ‘ Probability ‘ Qur ‘ n ‘ Oth ‘
68.3 % — 2.0015:25
Flux 95 % — 2.0019:52 —
99 % — 2.0010-64
68.3 % 0.3070-%* | 2.0073:35
quasar 95 % — 2.00%795% | gy = 300ps
99 % — 2.0070-64
nova- 68.3 % 0.307%-57 | 2,009
quasar 95 % — 2.00790% | o4 = 10 00ps
99 % — 2.0010-64
super- 68.3 % 0.30%0-55 | 200198
nova, 95 % — 2.0079:5% | a4 = 500 0ops
99 % — 2.0010-64
extreme 68.3 % 0.3015:95 | 2.0015:23
super- 95 % 0.307915 | 2.007952 | gyp = 20 00ps
nova, 99 % 0.3070-19 | 2.0010-64

The Flux Ratio-row is the results from the flux ratio estimation alone,
which becomes the same in all sub-simulations. The quasar-row is the com-
bined results from the flux ratio and the time delay quotient estimations
in the quasar sub-simulation, the nova-quasar-row is the combined results
from nova-quasar the sub-simulation, the supernova-row is the combined re-
sults from the supernova sub-simulation and the extreme-supernova-row is
the combined results from the extreme supernova sub-simulation. The oy-
column gives the relations between the uncertainties oy, and oy, in each
sub-simulation.

Since the estimations with a Qp7_prior give the same 7 values as the
other estimations and since {257 never is estimated when using a Qar—prior,
the parameter values from these estimations are not given in the table.

The lines in the table marks where no estimation could be obtained, and
in some estimations no lower confidence interval could be estimated.

Due to the degeneracy that appears from the extreme-supernova time
delay quotient estimation, the £, value for 68.3 % corresponds to the right
confidence region in fig. (9).
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Figure 8: quasar and nova-quasar time delay quotient estimations from simulation A.
The upper row shows the estimations from the flux ratio, the second row shows the time
delay quotient estimations, the third row shows the combined estimations and the lowest
row shows the combined estimations using a prior on Q7. The 68.3 % confidence interval
is within the white area, the 95 % is within the white-grey area and the 99 % is within

the grey-black area.
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Figure 9: supernova and extreme-supernova time delay quotient estimations from simu-
lation A. The upper row shows the estimations from the flux ratio, the second row shows
the time delay quotient estimations, the third row shows the combined estimations and
the lowest row shows the combined estimation using a prior on Qas. The 68.3 % confidence
interval is within the white area, the 95 % is within the white-grey area and the 99 % is

within the grey-black area.
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5.1.2 Simulation A -Summing x? in Hy-Q,; Space

In simulation A the summing x? in Hy-Q;, space gives the contour regions
as Fig. (10), where the two figure columns shows how dominant the value of
7 becomes. In the left column 7 = 2.0 and in right column n = 1.5. When
using dg = 0.01”, é; = 2.0 [days] and &, = 0.1 the uncertainty from (%—%t 5n)
becomes about 100 times larger than o, eq. (93).

Figure (10) shows that the summing y?-estimations gives no information
of Qys and only Hy can be estimated. The estimated values of Hy are

A | Probability | Source A | Source B | Sum of x? | Qarprior
68.3 % 6715 66117 6977, 70+8

H, 95 % 6724 66721 69712 70%15
99 % 67121 66725 69718 70113

where Source A-column are the results from source A alone, Source B-
column is source B alone, Sum of y2-column are the combined results, and
the Qp/—prior-column are the combined results when using a prior Q3 =
0.30 £ 0.04.
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Figure 10: Summing x? from simulation A. The left column shows estimations for
17 = 2.0 and the right shows estimations for 7 = 1.5, in both cases are s = 0.01” and
d¢ = 2.0 [days]. From above, the first row shows estimations for source A alone, the second
row shows estimations for source B alone, the third row shows estimations of the sum of
x? and the lowest row shows estimations of the sum of x> with a Qar—prior = 0.30 £ 0.04.
The 68.3 % confidence interval is within the white area, the 95 % is within the white-grey
area and the 99 % is within the grey-black area.
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5.2 Simulation B

In simulation B, a DOL-system is simulated with the observables

4 = 04 + 0.001
ze = 075 £ 0.001
» = 1.0 + 0.001 (102)
oy, = 375 [km s~!]
Using eq. (76) the image angles becomes

0., = 2.50 [arcsec]

0., = 0.86 [arcsec] 0, = 1.68 [arcsec] (103)

Oy, = 3.21 [arcsec] 0g, = 2.15 [arcsec]

Oy, = 1.10 [arcsec]

Using these 6-values and Q;; = 0.30 & 0.04, the SIS time delay for each
source (eq. (65)) and the quotient between them becomes

_ 0.781 £ 0.007 ,quasar
At, = 290 [days] = Qgm = 0.781 £ 0.004 ,nova-quasar
Aty 371 [days]

0.781 =+ 0.0005 ,supernova
(104)

5.2.1 Simulation B - Time Delay Quotient

In simulation B the y2-tests from the time delay quotients and the flux ra-
tios gives the contour regions as Fig. (11) and (12), which gives the following
values for Q5 and 7

‘ Estimation ‘ Probability ‘ Qur ‘ n ‘ Oih ‘
68.3 % — 2.0015:35
Flux 95 % — 2.0019-:52 —
99 % — 2.0010-64
68.3 % — 2.0015:33
quasar 95 % — 2.00M958 | Gyh = 200ps
99 % — 2.0010-64
nova- 68.3 % — 2.0019:33
quasar 95 % — 2.00%95% | gy = doons
9 % — 2.0070-%4
super- 68.3 % — 2.0019-33
nova 95 % — 2.0079-5% | otn = 300 0obs
99 % — 2.0010-64
extreme 68.3 % 0.301%-38 | 2,003
super- 95 % 0.3010-61 | 2.00795% | 4, = 10 Gops
nova 99 % — 2.0070-6
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Figure 11: quasar and nova-quasar time delay quotient estimations from simulation B.
The upper row shows the estimations from the flux ratio, the second row shows the time
delay quotient estimations, the third row shows the combined estimations and the lowest
row shows the combined estimations using a prior on Q7. The 68.3 % confidence interval
is within the white area, the 95 % is within the white-grey area and the 99 % is within
the grey-black area.
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Figure 12: supernova and extreme-supernova time delay quotient estimations from sim-
ulation B. The upper row shows the estimations from the flux ratio, the second row shows
the time delay quotient estimations, the third row shows the combined estimations and the
lowest row shows the combined estimations using a prior on Qas. The 68.3 % confidence
interval is within the white area, the 95 % is within the white-grey area and the 99 % is
within the grey-black area.
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5.2.2 Simulation B -Summing x? in Hy-Q),; Space

In simulation B the summing x? in Hy-Q5, space gives the contour regions
as Fig. (13), where the two figure columns shows how dominant the value
of n becomes. In the left column n = 2.0 and in right column n = 1.5.
When using d§y = 0.01”, 6, = 2.0 [days] and d,, = 0.1 in this simulation the
uncertainty from (aa—%f 577) becomes about 100 times larger than o ;-

Figure (13) shows that the summing y?-estimations gives no information
of Qs and only Hy can be estimated. The estimated values of Hy are

B | Probability | Source A | Source B | Sum of x? | Qu—prior
68.3 % 69112 (O 7018 7013
Hy 95 % 69115 7018 70113 70113
99 % 69753 7073, 70713 70713
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Figure 13: Summing x? from simulation B. The left column shows estimations for 1 = 2.0
and the right shows estimations for n = 1.5, in both cases aredy = 0.01” and §; = 2.0
[days]. From above, the first row shows estimations for source A alone, the second row
shows estimations for source B alone, the third row shows estimations of the sum of x>
and the lowest row shows estimations of the sum of x? with a Qar—prior = 0.30 & 0.04.
The 68.3 % confidence interval is within the white area, the 95 % is within the white-grey
area and the 99 % is within the grey-black area.
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5.3 Simulation C

In simulation C, a DOL-system is simulated with the observables

z = 085 =+ 0.001
e = 25 4+ 0.001
zy = 3.0 £ 0.001 (105)
oy = 375 [km s 1]
Using eq. (76) the image angles becomes
0., = 3.01 [arcsec]
0., = 1.03 [arcsec] Og, = 2.02 [arcsec] (106)
0, = 3.26 [arcsec] 0, = 2.19 [arcsec]
0, = 1.12 [arcsec]

Using these #-values and Q23 = 0.30 £ 0.04, the SIS time delay for each
source (eq. (65)) and the quotient between them becomes

. 0.923 £+ 0.004 ,quasar
{2:” B g?g E:yz% = @uim =4 0.923 £ 0.003 ,nova-quasar
b= Y 0.923 £ 0.0003 ,supernova
(107)

5.3.1 Simulation C - Time Delay Quotient

Like simulation B, simulation C only gives useful time delay quotients- and
flux ratios estimations in the extreme-supernova sub-simulation. There-
fore, from simulation C no plots are shown from the quasar- and the nova-
quasar sub-simulations, the estimated contour regions from the other two
sub-simulations are shown in Fig. (14). Simulation C gives the following
values for Q3 and 7
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‘ Estimation ‘ Probability ‘ Qunr ‘ ] Oth ‘
68.3 % — 2.0019-33
Flux 95 % — 2.0019:53 —
99 % — 2.00+0-64
68.3 % — 2.0015:25
quasar 95 % — 2.0019-52 Oih = 6 0obs
99 % — 2.0070-64
nova- 68.3 % — 2.0019:33
quasar 95 % — 2.00190% | gy = 10 00bs
99 % — 2.0010-64
super- 68.3 % — 2.0015:23
nova 95 % — 2.0019:5% | o4 = 1000 Gops
99 % — 2.00+0-64
extreme 68.3 % 0.3073:2% | 2.0013:35
super- 95 % 0.307%47 | 2.001%52 | oyp = 200 00ps
nova 99 % 0.3010-65 | 2007064

Due to the degeneracy that appears from the extreme-supernova time
delay quotient estimation, the £, value for 68.3 % corresponds to the right
confidence region in fig. (14).

5.3.2 Simulation C -Summing x? in Hy-Q;; Space

In simulation C the summing x? in Hy-Q; space gives the contour regions
as Fig. (15), where the two figure columns shows how dominant the value
of n becomes. In the left column n = 2.0 and in right column n = 1.5.
When using dp = 0.01”, 6; = 2.0 [days] and &, = 0.1 in this simulation the
uncertainty from (aa—Ant (5,7) becomes about 100 times larger than o ;.

Figure (15) shows that the summing x2-estimations gives no information
of Qs and only Hy can be estimated. The estimated values of Hy are

C | Probability | Source A | Source B | Sum of x? | Q M—prior
68.3 % 66115 64118 7018, 7018
H, 95 % 66172 64121 70758 70113
99 % 661325 64129 70138 7018
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Figure 14: supernova and extreme-supernova time delay quotient estimations from sim-
ulation C. The upper row shows the estimations from the flux ratio, the second row shows
the time delay quotient estimations, the third row shows the combined estimations and the
lowest row shows the combined estimations using a prior on Q7. The 68.3 % confidence
interval is within the white area, the 95 % is within the white-grey area and the 99 % is
within the grey-black area.
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Figure 15: Summing x? from simulation C. The left column shows estimations for
n = 2.0 and the right shows estimations for n = 1.5, in both cases are g = 0.01” and
d¢ = 2.0 [days]. From above, the first row shows estimations for source A alone, the second
row shows estimations for source B alone, the third row shows estimations of the sum of
x> and the lowest row shows estimations of the sum of x? with a Qs —prior = 0.30 £0.04.
The 68.3 % confidence interval is within the white area, the 95 % is within the white-grey
area and the 99 % is within the grey-black area.
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5.4 Simulation D

In simulation D, a DOL-system is simulated with the observables

zz = 04 £ 0.001
za = 075 + 0.001
zy = 3.0 £ 0.001 (108)
oy = 375 [km s 1]
Using eq. (76) the image angles becomes
0., = 2.50 [arcsec]
0., = 0.86 [arcsec] 0p, = 1.68 [arcsec] (109)
Oy, = 4.57 [arcsec] 0r, = 3.07 [arcsec]
0p, = 1.56 [arcsec]

Using these #-values and Q23 = 0.30 £ 0.04, the SIS time delay for each
source (eq. (65)) and the quotient between them becomes

0.548 + 0.004 quasar
At, = 290 [days] B ;
{ Aty 529 [days]  &im T 0.548 + 0.002 ,nova-quasar

0.548 + 0.0003 ,supernova
(110)

5.4.1 Simulation D - Time Delay Quotient

In simulation D the y?-tests from the time delay quotients and the flux ratios
gives the contour regions as Fig. (16) and (17), which gives the following
values for Q5 and 7

‘ Estimation ‘ Probability ‘ Qunr ‘ n ‘ Oth ‘
68.3 % — 2.0015:35
Flux 95 % — 2.0019-52 —
99 % — 2.0010-64
68.3 % 0.30+0-3% | 2,00%9:2
quasar 95 % 0.3079-%6 | 2007952 | v = 200bs
99 % — 2.0010-64
nova- 68.3 % 0.3070-3" | 2.0073:35
quasar 95 % 0.30%0-55 | 2.00%%52 | gy = 90ops
99 % — 2.0010-64
super- 68.3 % 0.3070-30 | 2.0073-25
nova 95 % 0.3079-5% | 2.0079:0% | o4 = 300 0obs
99 % 0.3010-68 | 2.00*0-64
extreme 68.3 % 0.30+5:%¢ | 2.00X3%
super- 95 % 0.3015:19 | 2.001932 | ayn = 10 0ops
nova 99 % 0.307932 | 2.0070-64
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Figure 16: quasar and nova-quasar time delay quotient estimations from simulation D.
The upper row shows the estimations from the flux ratio, the second row shows the time
delay quotient estimations, the third row shows the combined estimations and the lowest
row shows the combined estimations using a prior on Q7. The 68.3 % confidence interval
is within the white area, the 95 % is within the white-grey area and the 99 % is within

the grey-black area.
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Figure 17: supernova and extreme-supernova time delay quotient estimations from sim-
ulation D. The upper row shows the estimations from the flux ratio, the second row shows
the time delay quotient estimations, the third row shows the combined estimations and the
lowest row shows the combined estimations using a prior on Q7. The 68.3 % confidence
interval is within the white area, the 95 % is within the white-grey area and the 99 % is

within the grey-black area.
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Due to the degeneracy that appears in the extreme-supernova time delay
quotient estimation, the Q;; values for 68.3 % and 95 % corresponds to the
right confidence region in fig. (17).

5.4.2 Simulation D -Summing x? in Hy-Q;; Space

In simulation D the summing x? in Hy-Qjs space gives the contour regions
as Fig. (18), where the two figure columns shows how dominant the value
of n becomes. In the left column n = 2.0 and in right column n = 1.5.
When using dp = 0.01”, 6; = 2.0 [days] and &, = 0.1 in this simulation the
uncertainty from (%—%ﬁ 6n) becomes about 100 times larger than ;.

Figure (18) shows that the summing x?-estimations gives no information
of Qs and only Hy can be estimated. The estimated values of Hy are

D | Probability | Source A | Source B | Sum of X2 Qnr—prior
68.3 % 69717 69712 6979 7078
H, 95 % 69112 69115 69713 70t15
99 % 69733 69723 69718 70713
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Figure 18: Summing x? from simulation D. The left column shows estimations for
17 = 2.0 and the right shows estimations for 7 = 1.5, in both cases are s = 0.01” and
d¢ = 2.0 [days]. From above, the first row shows estimations for source A alone, the second
row shows estimations for source B alone, the third row shows estimations of the sum of
x? and the lowest row shows estimations of the sum of x> with a Qar—prior = 0.30 £ 0.04.
The 68.3 % confidence interval is within the white area, the 95 % is within the white-grey
area and the 99 % is within the grey-black area.
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5.5 Simulation E

In simulation E, a DOL-system is simulated with the observables

zz = 04 <+ 0.001
zg = 075 £ 0.001
z = 3.0 <+ 0.001 (111)
o, = 475 [km s~ !]
Using eq. (76) the image angles becomes
0., = 4.02 [arcsec]
0., = 1.37 [arcsec] 0p, = 2.70 [arcsec] (112)
Oy, = 7.33 [arcsec] 0p, = 4.92 [arcsec]
O, = 2.51 [arcsec]

Using these #-values and Qs = 0.30 £ 0.04, the SIS time delay for each
source (eq. (65)) and the quotient between them becomes

_ 0.548 + 0.002 ,quasar
{22“ - E(?ss Ezyg — goim =4 0.548 + 0.0008 ,nova-quasar
b= Y 0.548 + 0.0001 ,supernova

(113)

5.5.1 Simulation E - Time Delay Quotient

In simulation E the y?-tests from the time delay quotients and the flux ra-
tios gives the contour regions as Fig. (19) and (20), which gives the following
values for Q;; and 7

‘ Estimation ‘ Probability ‘ Qs 7 Oith
68.3 % — 2.0015:23
Flux 95 % — 2.0019:53
99 % — 2.0010-54
68.3 % 0.3019-20 | 2,00%9:%
quasar 95 % 0.301023 | 2.0079:02 | &y = 400bs
99 % 0.3010-42 | 2,00+0-6
nova- 68.3 % 0.3010-19 | 2.0019-23
quasar 95 % 0.307%31 | 2.00%95% | 44, = 200055
99 % 0.3010-3% | 2,00+0-6
super- 68.3 % 0.307018 | 2007935
nova 95 % 0.3010-30 | 2.0079:5% | o4n = 1000 ops
99 % 0.3010-38 | 2001064
extreme 68.3 % 0.3075:9% | 2.00%5:53
super- 95 % 0.307398 | 2.007952 | Gy = 3000ss
nova 99 % 0.3079:57 | 2.0070-5
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Due to the degeneracy that appears in the extreme-supernova time de-

lay quotient estimation, the s values corresponds to the right confidence
region in fig. (19).

5.5.2 Simulation E -Summing x? in Hy-Q,; Space

In simulation E the summing x? in Hy-Qs space gives the contour regions
as Fig. (21), where the two figure columns shows how dominant the value
of n becomes. In the left column n = 2.0 and in right column n = 1.5.
When using §y = 0.01”, §; = 2.0 [days] and d,) = 0.1 in this simulation the

uncertainty from 94t 5 ) becomes about 100-1000 times larger than ops.
on 1

Figure (21) shows that the summing y?-estimations gives no information
of Qs and only Hj can be estimated. The estimated values of Hy are

E | Probability | Source A | Source B | Sum of x? | Q M—prior
68.3 % 69113 69113 6919 70%3
H, 95 % 69715 69715 69714 70715
99 % 69153 69123 69117 70*18
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Figure 19: quasar and nova-quasar time delay quotient estimations from simulation E.
The upper row shows the estimations from the flux ratio, the second row shows the time
delay quotient estimations, the third row shows the combined estimations and the lowest
row shows the combined estimations using a prior on Q7. The 68.3 % confidence interval
is within the white area, the 95 % is within the white-grey area and the 99 % is within

the grey-black area.
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Figure 20: supernova and extreme-supernova time delay quotient estimations from sim-
ulation E. The upper row shows the estimations from the flux ratio, the second row shows
the time delay quotient estimations, the third row shows the combined estimations and the
lowest row shows the combined estimations using a prior on Q7. The 68.3 % confidence
interval is within the white area, the 95 % is within the white-grey area and the 99 % is
within the grey-black area.
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Figure 21: Summing x? from simulation E. The left column shows estimations for
n = 2.0 and the right shows estimations for n = 1.5, in both cases are g = 0.01” and
d¢ = 2.0 [days]. From above, the first row shows estimations for source A alone, the second
row shows estimations for source B alone, the third row shows estimations of the sum of
x> and the lowest row shows estimations of the sum of x? with a Qs —prior = 0.30 £0.04.
The 68.3 % confidence interval is within the white area, the 95 % is within the white-grey
area and the 99 % is within the grey-black area.
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6 Discussion

This discussion part is split into four sections where the first section discusses
the quotient estimations, the second discusses the summing x? estimations,
the third discusses how the estimations can be improved and the fourth gives
a summary.

6.1 Quotient Estimations

Since the proportions between the image angles are the same, the estimated
flux ratio becomes the same in all simulations, and since the time delay
quotient estimations does not give any information of 7, the flux ratio esti-
mation estimates 1 alone. Even when using smaller §; and dy and a prior on
Qur, the combined estimation does not improve the flux ratio estimation,
and as the image angles g—; — 1 the estimation of  becomes worse, eq. (84).

Thus, the estimation of 1 depends on the observed uncertainty in the
flux ratio and on the fraction between the image angles, and larger angle
differences improves the estimation.

When simulating my DOL-systems, four factors becomes important for
the estimations of Qjs; the separation between the sources, the image sepa-
rations, the velocity dispersion in the lens and the uncertainty in the image
angles.

That larger separations between the sources gives better estimations can
be seen when comparing a simulation with sources close to each other with
a simulation where the sources are more separated, e.g. simulation B and
D. The important factor here is the angular separation ratio % which
increases with increasing angular separations, when b is the most distant
source. Hence, with increasing angular separation ratio the contour regions
Narrows.

Thus, due to larger source separations better estimations are given in
simulation D than in B, where as in simulation C useful results are given
first when using dg, = 0.002” and d; = 0.15 [days].

Relative to simulation B the sources in C are at higher redshifts, and
since z; and D; are larger the time delays becomes larger. Regardless of
the high redshifts in simulation C the image angles from source b becomes
almost the same as in B, which means that the factors %’: in eq. (62) are
almost the same. This is due to the fact that the angular distance decreases
after a certain redshift. For instance, the angular distance to source b is
greater in simulation B than in C.

Since the image angles are proportional to %l:, egs. (62) and (63), the
image separation for source a becomes larger in C, which then increases the
time delay quotient, eq. (85). Thus, due to larger image separations the
estimations becomes better in simulation C than in B.

The different results from the simulations D and E also confirms that
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larger image separations improves the estimation. The value for o, is the
only difference in these simulations and according to eq. (62) higher o, gives
larger image separations, which then increases the time delay quotient.

When simulating with smaller uncertainties in the observed time delays,
the estimation of €23, improves very little compared with the improvements
that smaller image angle uncertainties gives. Even when using the small
uncertainties in the extreme-supernova sub-simulations, all estimations are
dominated by the image angle uncertainty. For instance in simulation D, the
differences in Q;’s confidence intervals from the sub-simulations with dg, =
0.01" are very small compared with the difference when using dg, = 0.002"”
from the extreme-supernova sub-simulation. Also, the farther the lens is the
more the uncertainty from the image angle dominates the estimations, e.g.
the domination is bigger in simulation A and C than in B and D where in
all simulations the velocity dispersions are the same.

Therefore, the observed uncertainties used in the sub-simulations shows
that the estimations of €25, are sensitive to errors from the image angle
measurements.

Thus, to obtain a good estimation of ;s by using time delays from
gravitational lensing with multiple sources one has to find a system with
supernovae at very different angular distances, which have accurately mea-
sured image angles that are significantly separated by a not so far away
lens.

6.2 Summing y? Estimations

No matter how large object- and image separations one simulates, the im-
provement in the parameter estimations from summing x? is marginal. All
my simulated DOL-systems gives that Hy can be estimated while Qs can
not and that the error in 7 dominates the total error. Even when simulating
systems with source separations of a few redshifts, the contour curves have
the same band-shape.

Equation (70) shows that the power law time delay is proportional to 7
as

Atoc(n—1)(1—(2—-n)%...) (114)

so changing n with 25 % from 7 = 2.0 to n = 1.5, makes a change in At about
42 %. When simulating DOL-systems with 7 = 1.5 the estimated value for
Hy becomes 42-53 % lower than in a system with n = 2.0. Therefore, the
result depends on the value chosen for 7.

In all simulations, when summing the y? from both sources the estima-
tion of Hy improves around 25 % compared with the x? estimations from
each object alone.

The simulations also shows that the farther the lens is the worser the
estimations of Hy becomes, independent of the lens mass and object- and
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image separations. For instance, due to the higher lens redshift in simulation
A and C the estimation of Hy becomes worse than in the other simulations.

Thus, to obtain a good estimation of Hy by using time delays from
gravitational lensing with multiple sources one has to find a system with
sources lensed by a not so far away lens. With better knowledge of the
lens properties and by summing each sources y?-tested time delays, the
estimation of Hy improves.

6.3 Improvements

I believe the future of using time delays from a DOL-system to investigate
the values of n, Qs and Hy depends on improvements in many fields.

First, of course, a DOL-system with measurable time delays has to be
found. The Cosmic Lens All-Sky Survey (CLASS), an international program
to create the largest and best studied statistical sample of radio-loud grav-
itationally lensed systems, has observed 13783 radio sources where 16 were
found to be gravitational lensed system with multiple images [16], which
gives a probability of 1073 to find a gravitational lensed system in every
survey. Thus, the probability to find a radio source DOL-system becomes
107S.

According to Goobar et al. 2002 [11], with the future instruments as
the SNAP and NGST satellites it will become possible to observe several
hundred lensed core-collapse supernovae with multiple images. Therefore, it
may be possible to observe DOL-systems with well measurable time delays
in these future surveys.

When estimating 3, by using supernova time delays, it can be difficult
to get small uncertainties in the image angles and not too long time delays.
For instance, from the observed four multiple images system Abell 2218,
Soucail, Kneib and Golse (2004) [26] reports a velocity dispersion of o, =
1370 [km s~!] which means that if Abell 2218 had been lensing supernovae
the measured time delays may have been too long, see Fig. (7). Time delays
about several years may be hard or impossible to measure.

Another important factor when estimating Qs with time delay quotients
is the angular separation between the objects. For instance, the more distant
the lens, the longer time delays, which the time delays from the same source
b in the simulations C and D shows. Therefore, to estimate ;s the satellite
observations mentioned above has to find well angular separated supernovae
lensed by a not too distant and massive object.

Since the summing x? estimation is so dependent on 5 and not on the
angular separation between the objects, the summing x? estimation could be
extended to sum x? from several lensed supernovae and thereby improve the
estimation of Hy. However, the probability that the satellite observations
finds several supernovae lensed by the same lens is very small. From the
CLASS survey one finds that the probability to find three sources lensed by
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the same lens is 10~ and for four sources the probability becomes 10712,
etc.

6.4 Summary

Time delays and flux ratios from gravitational lensing with multiple sources
can be used to estimate the logarithmic slope of the density parameter 7, the
matter energy density parameter (25, and the Hubble constant Hy. However,
each parameter estimation requires different properties of the gravitationally
lensed system.

7 can be estimated by using the flux ratios, and improves with larger
differences between the image angles and with smaller uncertainty in the
observed flux ratio.

Qr can be estimated by using the quotient between the time delays, the
estimation improves with larger sources- and image angle separations and
with smaller uncertainties in the image angles and in the time delays.

Hj can be estimated by combining the results from the individual time
delays, this estimation improves with better knowledge of the lens properties,
i.e. 7, and when using a lens that is not too far away.
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A The Geometric Time Delay

By geometry ¢ =7 — 8 = cos ¢ = —cos S. Using the law of cosines gives
d?> = a® +b% —2ab cos ¢ = a® + b2 + 2ab cos .

From the figure above, the time delay for a perturbed ray compared with an unperturbed ray is
(c denotes the speed of the light)

1
c-At=a+b—d=a+b—+/a%+b2+2abcosf ~ [cosﬁ:1—5ﬂ2+--- (Taylor expansion)] I~

N ab
T 2(a+b)

Using eq. (5) the distances can be rewritten as

b
B2~ [a +brd (B is very small)] ~ ;—d B2.

a=D;(1+z) DD D
b= Dy (1 + zs) ic-Atz#(sz)ﬂZ:[ﬂ:Ds (61 —0s)] =
d=Ds(1+z) s Is

_Dle 2

= 2D, (1+2)(0r —0s)

where 07 and 05 are the angles between the image and optical axis respective the source and the
optical axis and z; and 2z, are the redshifts to the lens respective to the source.
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B SIS Surface-Mass Density

This figure shows a SIS lens with density p(r). Using eq. (43) to integrate p(r) for every mass
sheet along z gives the surface-mass density in the lens plane as

0 (e [eS]
%(€) :/ p(r) dw—|—/ p(r)dx = 2/ p(r) dz.
oo 0 0

Equation (59) and the figure above gives

r2 2 4 £2 2 [ 2 1 oo 2
o2 E = %(€) = Ty / % = v - [arctan (E)] = v -,
p(r) = G T TG o % + & TG € ¢/ 1o 2G ¢
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C SIS Time Delay

The total time delay for an image is

142
[

D;Dsg

1 2
At; = i, ] [E(eiﬂ) —%(8;)

where the lens potential (6;) is related to the deflection angle a by eq. (64).

Consider now a SIS-lens which is producing two images at the angles 84, respective §,, from
the lens center. According to the lens equation for a SIS-lens (eq. (63)) the images occurs at the
radial distances
+ _ bay + 0ay

Hi:|ﬂ|:|:a:>{9+ — a

0_

Qe

_eaz

The time delay difference between the images is then

1 D;D
AtA2_AtA1:[ tzz][ 1Ds

1 2 1 2 _
Dia :| |:5 (Baz — B) aaaz] - [5 (fay —B)° — abay =

9 +0 1 l—I—Zl DlD
= [a— %] = [ - ] [ Dl: (62, — 02,) = Atsis.
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D SIS Magnifications

Equation (49) gives the magnification for a circular symmetric lens as
. 0 do
B dp’
Assume that 8 > 0 and a SIS-lens producing two images at 84, and 64,, appendix C show that
the lens equation can be written as

B=04, —0r — dB=db,,
B=0g—04, = dB=—dbs,.

The absolute magnitude for each image takes then the form

_ a1 |
M1 = 0o, —0g |’

=
K2 = O —0ay |’
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E Expressions for the Flux Ratios

In a power law lens the gravitational potential is given by

02 0.\ gt
0;) = E il =_E (9"?"7".
v (3-m) <0E) B=m "

Equation (56) gives Vg9 = . Combining this with the expression for the gravitational potential
and putting it into the lens equation gives

2— -1 1— -1
B=0—-—a=0-0; "0% = df=[1-(2—n)b, "021 1db;.
By approximating that the gravitational potential of the lens affects the images in the same way,

and that the condition 8 < « from eq. (63) holds, the lens equation gives for two images ¢; and
02

PR —n = - 01 + 02
|Bl=01—0,7"60 " =—62+06, "0 = 0=
077"+ 0,
Now, the magnification is given by
‘0 dé
L=1Z -
B dp

and for one image from one source the magnification becomes

6; do;
(12— n)6; "% " 1do;

_‘ 0i
i@ -melTment

h=|
Since the flux ratio is the ratio between the magnifications, r = p1/|u2|, the flux ratio for a power

law lens becomes

01
02

Tpow =

‘ 1—(2-n)8,"" (01 +62) /(677" +0657")
1= (2—n) 01" (6 +62) / (627 + 6277

In the case of a SIS-lens, 7 = 2 which reduce the expression above to

01
02

Tsis =
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F Quotient Error Propagation

Without any covariance among the observables the uncertainty becomes
o)+ (aaso0e) + (g o) + (o 0)
= — 46, 40 40 — 46
qin [(aaal a1 | + 904, oo | + 0y, by ) + a0, by | t

1/2

ome) + (on) + (ghon)
— 4 —3 — .

+ (aza Za, + o2 2b + o2 2

F.1 The Partial Derivative 62‘1
ay

Let

a=p 02 —021 s @—m? (1= 2% )]
1= q[bl_bz] —(2-n) _9b1+0b2

which simplifies eq. (85) as

20, 2
=A[62 -2 ]|3-(2- 2(1—¢) )
dth 1 [ a1 ag] |: ( 7)) 00y + Oas

The partial derivative can then be calculated as

262 04, —263
%4 _ a4, [36a1—(2—n)2 (1—720“2 )(0a1 200102y | 201 “2)] =

86a, 8ay + by 0oy + 00z (Bay +0as)?
e 2 90a, (300, — (2= )2 (0a, + 28 )(M)Q
aaal - 1 aq n aq ag eal +0a2 .

F.2 The Partial Derivative 6‘3—‘1
ag

Using the same expression for A; and ¢;, as above, the partial derivative can be calculated as

aq 5 ( 264, ) ( 202, 203 — 20a1032)
=2A — 3604, +(2— l1—- —= O, — + <=
300, ! az + (2= 1) B2 + 005/ \ 2 Bar 102y ' (0a, + 0ay)?

Jq

a2

<~

=2A1 .

0oy — Oas \2
2-n)2(20 0 (u) —30
( 1)” (20a; + 0ay) 9a; + Oas a2

F.3 The Partial Derivative (,;30—:

Let

20, ?
— 2 2 2 a
A = Dg [0a1 70(12] [3 - (2 777) (1 - 00.1 _|_29a2) :|
which simplifies eq. (85) as
-1

2 2 17! 2 200, \?
an=As [0}, -0%] |3-(2-n) 1—m

Let O denote the outer derivative as

-2

O=—A,[62 —621 " [3-(2 21720"22
= — 2[(,1*1,2] *( *71) 79b1+0b2
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The partial derivative can then be calculated as

p) 20 20,0 20
1 :20[30,,1(27;)2 (177"2 )(0,,1— By b2 E (031632))] =

00y, Oy, + 6, Op, +0p, (0ay + 0ay
%9 _ 50 |36, — (2= n)? (8, +20s,) (My
301,1 b1 b1 bo ebl +0b2 °

F.4 The Partial Derivative 8‘2—3
2

Using the same expression for O and ¢;;, as above, the partial derivative can be calculated as

o 20 26; 20 .
a :20[391,24-(271)2 (1*i) (91;2* 2+ v B (951*952)) =

89(,2 9()1 + 01)2 0()1 + 9(72 (0111 + 052
% _90|@-n2@6, +0 )(M)t:’,a
6052 = n by bo 0[;1 T 01)2 bo | -

F.5 The Partial Derivative %

Equation (87) gives that angular distance quotient can be written as

Dq _ da (db _dl)
dy (do — dy)
where
4= /z’ dz
1 .
o [Qar(@+29-1)+1]"°
Let

26 2
3-(2-n)? (1 - ¢)
R R il G
021 - 022 3 2 2 (1 20b2 :
—@2-n T O, 06,
Taking the partial derivative for every redshift gives then

dq d,, dy (dy — dp)
9 _ y el =)
0zq db (da - dl)2

dq d;] dq d;

8z 2 (da—dp)

g _ , dida(dy— da)
82 dy (da —d1)?
where

¢ =[ou((1+2° -1 +1]""
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F.6 The Uncertainty oy,

The uncertainty can now be written as

-1
otn =2 Dq [6F, — 0}, ] [3— (2—n)? (1

Oa; + 0y

22
)] 862, +

204, \°
Fay Hap

Oy + O,

(2= 1)? (200, +605) (

2
N 62, —62,
9131 B 022

9 2
o)
1

Oy, + 0py

l3(2n)2 (1—

26,
0p, +0b,

3—(2—n)? (1

) [3 —(2—n)? (1 2a,

R

(d’b da dy ) ?
zp
dy

300, —2-)? (O, +2055) (

ol
(¢

by

1

Oay — Bas

fay + Oas

9 —052)2 ?
Opy + Opy

9 2
) - 3ea2] 802, +

dg (da - dl)2

da (db - da)

(da - dl)

|6

ol

2
d; (d — dp)
02q +
(da - dl) )

1/2

92 — 2
6022] + [7‘“2 an2

2] l[3061(2n)2(0b1+20b2)"'

71

- )2]_ { [36(11 —(2—n)* (bay +26a5) -
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G Summing x? Error Propagation

Without any covariance, eq. (70) gives the uncertainties propagating as

AAL 2 AL 2 AAL 2 AAL 2 AAL
Oiy = [(aau o) -+ (55, 002) + (5, 0=) +<6_5 ) +(6_6P)

G.1 The Partial Derivative %

1 1—|—zl] I:DlDle
A= | —= | [=/—= 1
1 2[ . Dr (n—1)

1/2

Let

which simplifies eq. (70) as

_ 2 2 2-n? 202 \*
At = A (9i1 - 01’2) [1 - 3 1= 051 + ;2 .

The partial derivative can then be calculated as

AL (2—mn)? ( 20> ) [ 20;10;2 202 5 5 ]
=2A1 |0;1 — 1— 0.1 — + 02, _ ¢ —
00i1 ! [ & 3 0;1 + ;2 1T 0 + 612 (0“ 4 9i2)2 ( i1 12)

AL (2- 7])2 (9,’1 — 97;2)2
<= =2A; [0;1 — 61 +26; _
69“ 1 |: il 3 ( il 12) 0i1 0i2

G.2 The Partial Derivative %

Using the same expression for A; and At as above, the partial derivative can be calculated as

OAt (2—n)? ( 20;2 ) [ 202, 20,1 s o ]
=2A; [—60;x+ 1— 0.0 — 2 02 _ g7 —
002 ' [ 2 3 01+ 02 ) L 631 + 02 (9i1 +9i2)2 ( i 12)

oAt (2-n)? (9“ —9i2)2
=2A; |[———(29; 0; ——= ) —6;2].
— 1 { 3 ( i1+ q,z) 91+ 0:a i2

G.3 The Partial Derivatives 2! and %—flt

Let

1 2 g2 (2—n)? ( 20> )2 DiDi
_ 2 —92) [1- - b=
Ay %¢ (n—1) (911 012) |: 3 0i1 + 0i2 »and

which simplifies eq. (70) as
At = Ay (1 —+ Zl) D.

Equation (35) gives

c le dz . c fzz dZ
_ HolO+zy Jzo [Qa((144)3-1)+1]1/2  Ho (42 J2o [Qa((14£)3-1)+1]/2

c [le dz 7th dz ]
Ho (s L2g (00 (1423 -1)F1172 ~ Jog [0 ((+2)3—1)+17172

21
s At— A, & N e el M LT

H, Z dz _ d
0 Uzo [QM((I‘FZ)SZ 1)+1]1/2 fzo [QM((1+Z);—1)+1]1/2:|
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By setting

d:/ [Q ((1+,)Cié 1)+1]1/2 , and d':[QM((1+5)3_1)+1]—1/2,
%0 M 2)° —

the partial derivatives can then be calculated as

Ao

0At c d; d?
9z; B Hp ( ’

oAt c d) d?
dz * Ho 2|

G.4 The Partial Derivative aa—Ant

Let

71 1+ 2 D; D; 2 9
A4—5[ c ][—D“ ](ail_em)

which simplifies eq. (70) as

(2-mn)? ( 20:2 )2
At=A —-1)|1— 1- .
@ )[ 3 6i1 + ;2

The partial derivative can then be calculated as

1+ 050 (1‘9“2%2.2)2@(”—1)—(2—”)

At (2-n) ( 200 )2(
<— — =A 1 1- 3n—4)|.
on 4[ * 3 0i1 + 0;2 K )

0= Ay

SN——

=

G.5 The Uncertainty o;,,

The uncertainty can now be written as

2
1 2 22 (2-n)? 20i2 \? 1 ro2 s \2
Tin =51~ 1){ (65 - 62) [1 5 Unaa) | ma e LEdeE)
2
2 4 dld' ? (2—7])2 0;1 — 0;2 2 2
d/ d26 ] = 1 9., — =1 (p. 20, ( 0 0 ) 5
( 1 d3 zl) + "2 | d i1 3 ( i1+ 12) 91 1 0ia 6,0 T

2 1/2
(2—n)? (204 +0,)(9i1*012)2_0' 52 :
3 il 12 70“ T 00 12 9;0 .




