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Abstract. Fitting the observational data of the twin peak kHz quasiperiodic oscillations (QPO)
from low mass X-ray binaries (LMXBs) by the relativistic precession model gives a substantially
higher neutron star mass estimate,M ∼ 2 M⊙, than the "canonical value",M ∼ 1.4 M⊙. Using a fully
general relativistic approach we discuss the non-geodesiccorrections to the orbital and epicyclic
frequencies of slightly charged circularly orbiting test particles caused by the presence of a neutron
star magnetic field. We show that consideration of such non-geodesic corrections can bring down the
neutron star mass estimate and improve the quality of twin peak QPO data fits based on relativistic
precession frequency relations.
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INTRODUCTION

X-ray timing measurements provided by the RXTE satellite have revealed existence of
nearly periodic modulation of X-ray flux detected from several low-mass X-ray binaries
(LMXBs), so called quasi-periodic oscillations (QPOs).

Particular, so called high frequency (kHz) QPOs often come in pairs consisting of the
so called lower and upper QPO mode with frequenciesνL, νU . Notably, the frequencies
νL, νU roughly correspond to Keplerian periods in the close vicinity of the binary
compact object; see [1] for a review. Miscellaneous orbitalQPO models have been
proposed [see, e.g., 2–4]. In particular, relativistic precession (in next RP) model relates
the upper and lower kHz QPOs to the Keplerian and periastron precession frequency
on an orbit located in the inner part of the accretion disc1. Generally, for neutron star
sources correlation betweenνU(νL) is qualitatively well fitted by the RP model prediction
[see, e.g., 5–7].

Nevertheless, there are difficulties when modelling QPO frequency relations from
the RP model for individual sources. The mass and angular momentum relevant to
the best fits are questionably high (M ∼ 2−3M⊙, j ∼ 0.2−0.4); [see, e.g., 5, 7–9].
Also the quality of the fits is not satisfactory with chi-square indicating a systematic
deviation between the expected and empirical trend. It has been discussed that the

1 The same model relates another particular so called low frequency QPOs to the “Lense–Thirring” orbit
precession.



above mentioned discrepancies could be connected to non-geodesic corrections to the
orbital and epicyclic frequencies, most likely originating in the presence of a neutron
star magnetic field [6, 7, 9].

In the present paper we discuss in detail non-geodesic perturbative corrections im-
plied by a Lorentz force acting on a slightly charged circularly orbiting matter in the
approximation of a spherically symmetric spacetime and intrinsic dipole magnetic field
of the neutron star2.

CIRCULAR ORBITAL MOTION IN A DIPOLE MAGNETIC
FIELD ON THE SCHWARZSCHILD BACKGROUND

The line element in the Schwarzschild spacetime using geometric units,c = G = 1, has
the familiar form

ds2 = −η(r)2dt2 +
dr2

η(r)2 + r2(dθ 2 +sin2θ dφ2) , η(r) ≡
(

1−
2M
r

)1/2

. (1)

Solving the vacuum Maxwell equations on the background of the spacetime geometry
(1) for a static magnetic dipole momentµ, parallel to the rotational axis of the star, one
obtains formula for an exterior (r > R, whereR is the neutron star radius) four-potential
Aµ [e.g., 10, 11],

Aµ = −δ φ
µ f (r)

µ sin2θ
r

, f (r) =
3r3

8M3

[

logη(r)2 +
2M
r

(

1+
M
r

)]

. (2)

In case of potential (2), the Maxwell tensorFµν has only two independent nonvanishing
components,

Frφ = Bθ =
µ sin2θ ( f (r)− r f ′(r))

r2 , −Fθφ = Br =
µ f (r)sin2θ

r
. (3)

Throughout this paper we confine ourselves to studying only circular equatorial motion
with appropriate four-velocityUµ = (U t ,0,0,Uφ )3. Solving the radial component of
equation of motion (̃q≡ q/m is the specific charge of the particle)

dUµ

dτ
+Γµ

αβUαUβ = q̃Fµ
ν Uν (4)

together with the normalization conditionUµUµ = −1 for metric (1) and potential (2)
we obtain the nonzero components ofUµ in the form

U t =

√

r − q̃µ Φ(r)Uφ

(r −3M)
, Uφ =

ϒ(r , q̃,µ)

2r3(r −3M)
, (5)

2 We restrict here ourselves to the following assumptions:
the frame-dragging effects are not considered; the neutronstar magnetic field is fully dominant over the
magnetic field generated by the currents in the disc.
3 See [12] for a discussion of the existence of nonequatorial,so called "halo", orbits.



and the angular velocity defined asΩ = Uφ/U t then reads

Ω =
ϒ(r , q̃,µ)

r3/2
√

4r4(r −3M)−2q̃µΦ(r)ϒ(r , q̃,µ)
. (6)

HereΦ(r), χ(r), Ψ(r) andϒ(r , q̃,µ) are given by

Φ(r) ≡ f (r)− r f ′(r) , χ(r) ≡ (r −2M) Φ(r) ,

Ψ(r) ≡
√

4Mr4(r −3M)+(q̃µ χ(r))2 , ϒ(r , q̃,µ) ≡ Ψ(r)− q̃µ χ (r) .

One may obtain the formulae for epicyclic frequencies by perturbing the particle’s
position around the stable circular orbit(r,θ) = (r0,π/2), i.e., by presuming that
xµ(τ) = zµ(τ)+ ξ µ(τ) whereξ µ(τ) is a small perturbation [13, 14]. In the spacetime
geometry (1) and magnetic field (2) the appropriate explicitexpressions are given by

ω2
r = r−7(

U t)−2
{

(

Uφ
)2

r6(3r −8M)+2M(M− r)r3(

U t)2

+ q̃µ
[

Φ(r)
(

2Uφ r3(3r −7M)+ q̃µ χ(r)
)

+Uφ r5(r −2M) f ′′(r)
]}

, (7)

ω2
θ =

Uφ (

Uφ r3−2q̃µ f (r)
)

(U t)2 r3
. (8)

MAGNETIC FIELD CORRECTIONS TO ORBITAL AND
EPICYCLIC FREQUENCIES

We restrict our consideration to the approach of slowly rotating neutron star that posseses
a dipole magnetic field and a thin accretion disc that is assumed to consist of test particles
moving along nearly circular geodesics in the equatorial plane. As the Maxwell tensor
projected into an orthonormal basis of observer located at the equator on the surface of
the star with radiusRhas onlyFr̂ φ̂ non-zero component, one may write

µ =
4M3R3/2

√
R−2M

6M(R−M)+3R(R−2M) logη (R)2 Bsur f ace. (9)

For a neutron star with a rather weak magnetic field strength,Bsur f ace= 107 G =

2.875x10−16m−1, massM = 1.5 M⊙ and radiusR= 4M, we haveµ = 1.06x10−4m−2.
We present here the resulted frequencies for the above valueof µ and two different

values ofq̃, q̃= 5.555x1010 andq̃= 1.111x1012. Both of these values are still very low
in comparison with the valuẽq= 1.111x1018 corresponding to matter purely consisting
of ions of hydrogen. The left panel of Fig. 1, made forq̃ = 5.555x1010, shows a high
sensitivity of the radial epicyclic frequency keeping qualitatively the same profile that is
however shifted to lower values and away from the central object.

The presence of the dipole magnetic field also violates theνK = νθ equality corre-
sponding to spherical symmetry of the background Schwarzschild geometry. However
this corrections are much less significant.



FIGURE 1. Left: An illustration of the radial epicyclic,ν0
r = ω0

r /(2π), vertical epicyclic,ν0
θ =

ω0
θ /(2π), and orbital,ν0

K = ΩK/(2π) = ν0
θ , frequency behaviour in the Schwarzschild geometry in a pure

geodesic case compared to case with a presence of an intrinsic external dipole magnetic fieldB = 107 G
on the surface of the star withM = 1.5 M⊙ andR= 4M (quantitiesνK, νθ andνr without a superscript).
Right: The same comparison but for a higher value of the specific charge ˜q.

Effective innermost stable circular orbit (EISCO)

The Lorentz force naturally alters the location of a chargedtest particle’s effective
innermost stable circular orbit (in next EISCO) given by the conditionωr(rEISCO) = 0.
With growing values of̃q it rapidly draws apart from the well-known radius of ISCO
in the Schwarzschild geometry,rISCO = 6M. In case ofµ = 1.06x10−4m−2 corre-
sponding to Fig. 1 we find that for̃q = 5.555x1010 there isrEISCO = 7.39M, while
for q̃ = 1.111x1012 we obtainrEISCO= 22.16M. For the extremal specific chargeq̃ =
1.111x1018 the location of EISCO orbit flies away ontorEISCO= 177864.76M.

IMPLICATIONS FOR THE RELATIVISTIC PRECESSION QPO
MODEL AND DISCUSSION

The widely discussed RP QPO model identifies the frequencies of the lower and upper
QPO peaks (νL andνU , respectively ) as

νL(r) = νK(r)−νr(r), νU(r) = νK(r), (10)

whereνK(r) andνr(r) are the orbital and radial epicyclic frequencies [15]4. It has been
shown by [5] that these relations qualitatively well describe the trends presented in the
observational data, but the characteristic mass of neutronstars in LMXBs obtained by
such fits,M ∼ 2 M⊙, is high in comparison with the canonical value. Consideringin
the RP model the the corrected frequencies introduced above,the new fits can provide

4 The orbital and epicyclic frequencies also play a significant role in the QPO models dealing with warped
disc [e.g., 16] and tori [e.g., 17] oscillations. Our conclusion is therefore touching directly not only the hot
spot kinematic QPO models, like the RP model, but also the "disc or torus oscillation - like" QPO models.



FIGURE 2. Inspired by [5]. The RP model rough fits of the observational twin peak kHz QPO data for a
wide set of LMXBs. The thick solid curve refers to the case with M = 1.4 M⊙ and the orbital and epicyclic
frequencies being corrected by the presence of the Lorentz force induced by the specific charge of orbiting
matter,q̃ = 5x1010, and the star intrinsic magnetic dipole moment,µ = 1.06x10−4 m−2. We also present
fits corresponding to a pure geodesic case (thin dashed curves) for M = 2 M⊙ that was discussed by [5]
including data from [5, 8, 18, 19].

the characteristic neutron star mass close to the canonicalvalue, M ∼ 1.4 M⊙. We
illustrate this finding in Fig. 2 for the intrinsic magnetic dipole moment of the star,
µ = 1.06x10−4m−2, and the specific charge of the orbiting matter,q̃ = 5x1010, when
the effective innermost stable circular orbit is shifted torEISCO∼ 7M. Such a rough
fit for a wide set of LMXBs is shown together with the fits for a pure Schwarzschild
geodesic cases withM = 2 M⊙ [5] andM = 1.4 M⊙.

A natural implication of the RP model (and several other models) identifies the highest
observed frequency of a particular source with the orbital frequency at ISCO. It is then
possible to derive the mass of source using this direct identification [see, e.g, 3, 20]. Even
here straightforward replacing the geodesic ISCO orbital frequency by the corrected
EISCO one provides a significant decrease of the estimated mass. Moreover, it was
shown by [9] that the lowering of the radial epicyclic frequency corresponding above
discussed corections may in general significantly improve the quality of the fits based
on the RP model.

It is widely expected [e.g, 1, 21] that magnetic field of the central compact objects
in LMXBs should be given by an intrinsic exterior magnetic field, B ∼ 106 − 109 G.
There are also several indices supporting evidence of matter being accreted in the region
with r ≤ 10M [see, e.g., 1]. Our results then imply that the specific charge related to the
accreted plasma should not exceedq̃ ∼ 1.86x1012 (1.87x1011,1.90x1010,1.91x109)
for B = 106 G (107,108,109 G).

Discussed values of the specific charge are small in comparison to the charge of a
fully ionized matter. Here we do not touch a problem of the (considerable) magnetic
field induced by such a rotating charge. The full discussion of its role exceeds the



framework of the paper. We however note that in principle itsexternal exposure can
be supressed by an influence of a corotating charge in a coronaif the total assumed
charge is approximately zero.

Finally we stress that also the diamagnetic effects should be considered in order
to obtain coherent formulae describing approximately motion of a slightly charged
accreted matter. We plan to include relevant corrections within a fully general relativistic
approach in our consequent work.
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