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Abstract. Accretion discs around black holes in X-ray binary stars arewarped if the spin axis of the
black hole is not perpendicular to the binary orbital plane.They can also become eccentric through
an instability involving a resonance with the binary orbit.Depending on the thickness of the disc
and the efficiency of dissipative processes, these global deformations may be able to propagate into
the innermost part of the disc in the form of stationary bending or density waves. We describe the
solutions in the linear regime and discuss the conditions under which a warp or eccentricity is likely
to produce significant activity in the inner region, which may include the excitation of quasi-periodic
oscillations.
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INTRODUCTION

Accretion discs involve approximately Keplerian motion around a massive central ob-
ject, and the general solution allows for nested orbits withsmoothly varying inclination
and eccentricity. The shape of a warped or eccentric disc evolves slowly under the ac-
tion of stresses in the disc and external forces that deviatefrom that of a Newtonian point
mass. Coherent precession of discs is usually possible in binary stars.

Warped and eccentric discs may be relevant to a wide variety of phenomena in X-ray
binaries. Long-period modulations such as superhumps and superorbital variability may
be attributable to the precession of global warping or eccentric modes that are not forced
but are excited by various instabilities. Sufficiently large discs encounter a resonance at
the location where the angular velocity of the disc is three times that of the binary orbit
and may become eccentric as a result [1, 2]. This effect is well known in cataclysmic
variable stars of mass ratioq . 0.3 [e.g. 3] where, as well as giving rise to superhumps,
the eccentricity enhances the viscous dissipation and significantly affects the outburst
dynamics. Similar processes should occur in most X-ray binaries with black hole pri-
maries, and indeed superhumps are reported in an increasingnumber of such systems
[4–8]. A warping instability involving radiation forces [9] is more likely to occur with
neutron star primaries [10] but may also be seen in GRS 1915+105, which has a very
large disc [11]. Stationary warped discs also arise whenever there is a misalignment
between the orbital angular momentum of the binary and the spin angular momentum
of the central object [12], a knowledge of which is communicated to the disc through
general relativistic (gravitomagnetic) or magnetic torques [13, 14].

The innermost parts of discs around black holes and neutron stars depart significantly
from Keplerian motion. Indeed, the rapid relativistic precession of elliptical or inclined
orbits has often been discussed in connection with quasi-periodic oscillations (QPOs)



in X-ray binaries, and may best be studied within the contextof eccentric or warped
discs. There is an apparent conflict between the descriptionof the outer part of the disc,
which supports slowly precessing global deformations, andthat of the non-Keplerian
inner region. In this paper we attempt to make this connection and to describe how a
global deformation of the disc in the form of a stationary or slowly precessing warp
or eccentricity may be able to propagate inwards under some conditions, activating the
inner region and possibly exciting trapped oscillations that may explain high-frequency
QPOs in accreting black holes. The excitation mechanism itself has been studied by
Kato [15, 16] and by Ferreira and Ogilvie [17, see also this volume].

LOCAL ANALYSIS

A small warp or eccentricity can be considered as a perturbation of a standard (circular
and coplanar) disc. Such a disc supports a variety of wave modes, having a dependence
on time and azimuth of the form exp(imφ − iωt). In the simplest case of a strictly
isothermal disc, a local dispersion relation
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can be derived [18], which relates the Doppler-shifted wavefrequencyω̂ = ω −mΩ to
the radial wavenumberk. The integersm andn≥ 0 are the azimuthal and vertical mode
numbers, whileH is the vertical scaleheight of the disc andΩ, κ andΩz are the orbital,
epicyclic and vertical oscillation frequencies characteristic of circular orbits in the given
potential or metric. All of these quantities depend on the radiusRat which the dispersion
relation is evaluated. The local dispersion relation of a more general disc model can be
calculated numerically. For this description to be accurate, the wavelengthλ = 2π/k
should be much less thanR.

Within this context, a warp corresponds to(m,n) = (1,1) (vertical motion indepen-
dent ofz) and an eccentricity to(m,n) = (1,0) (horizontal motion independent ofz). The
dispersion relation shows that the warp takes the form of a propagating bending wave
(k2 > 0) when(ω −Ω)2 > max(κ2,Ω2

z) or < min(κ2,Ω2
z), while the eccentricity takes

the form of a propagating density wave when(ω −Ω)2 > κ2.

SECULAR THEORIES

A complementary description is provided by theories that consider a warp or eccentricity
that varies on a length-scale much longer thanH and on a time-scale much longer than
Ω−1. Small-amplitude warps are governed by the equations
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FIGURE 1. Local wavelength of a stationary warp (left) or eccentricity (right), in units of the local
vertical scaleheightH, plotted versus the radius in gravitational units, for black holes with spin parameters
a = 0.1, 0.2, 0.4 and 0.8. The disc is terminated at the marginally stable orbit in each case.

[e.g. 19], whereW describes the amplitude and phase of the inclination of the disc at
radiusRand timet, G refers to a horizontal torque communicated by Reynolds stresses,
Σ is the surface density andP = ΣH2Ω2

z is the vertically integrated pressure. These
equations describe propagating bending waves with essentially the same local dispersion
relation as in the previous section. (The theories overlap when H ≪ λ ≪ R, which
is possible in a thin disc.) They also allow for viscous (i.e.turbulent) damping of the
warp, parametrized using a dimensionless numberαW, which is equivalent to the usual
Shakura–Sunyaev parameter [20] if the disc has an isotropiceffective viscosity.

The simplest equation describing a small eccentricity is
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[e.g. 21], whereE describes the amplitude and phase of the eccentricity of thedisc
at radiusR and timet, γ is the adiabatic exponent andαE parametrizes the viscous
damping. For short wavelengths, this equation also agrees with the local dispersion
relation of the isothermal disc whenγ = 1 andαE = 0. This equation is based on a two-
dimensional approximation and neglects many of the complications of a shear viscosity
such as viscous overstability [22]. More sophisticated theories, including nonlinearity
and all viscous or viscoelastic effects, are available in the literature [23, 24].

STATIONARY DEFORMATIONS

A global warp or eccentricity precesses at only a fraction ofthe binary orbital frequency,
so the wave frequencyω is completely negligible compared toΩ, κ andΩz in the inner



FIGURE 2. Stationary warp in a disc around a black hole witha= 0.5, ε = 0.02 and withαW = 0 (top)
and 0.05 (bottom). Real and imaginary parts ofW are plotted as solid and dotted lines. The amplitude is
scaled such thatW → 1 at larger.

part of the disc. Settingω = 0, we find the local radial wavenumber to be given by
k2H2 = (Ω2−κ2)(Ω2−Ω2

z)/Ω2Ω2
z in the case of a warp andk2H2 = (Ω2−κ2)/γΩ2

z
for an eccentricity. Using the expressions forΩ, κ andΩz for the Kerr metric [25] and
takingγ = 5/3, we findλ/H as a function of the dimensionless radiusr = Rc2/GM and
the spin parametera (see Fig. 1). Fora > 0, bothW andE propagate at all radii, with
wavelengths everywhere significantly longer thanH. Of all the wave modes described
by the local dispersion relation, these are the most credible in a turbulent disc because
of their relatively long wavelengths.

It is also possible to predict how the amplitudes of the deformations scale with radius.
In the absence of viscous damping, a WKB analysis of the secular theories shows
that |W| ∝ R1/8(ΣH)−1/2 and |E| ∝ R1/4(ΣH)−1/2. We apply these results to a steady
accretion disc in the regime dominated by gas pressure and Thomson opacity, in which
(assumingα = constant)Σ ∝ f 3/5R−3/5 andH ∝ f 1/5R21/20, where f = 1− (Rin/R)1/2

[20]. Then|W| ∝ f−2/5R−1/10 and|E| ∝ f−2/5R1/40, implying a very mild dependence
of the amplitude on radius. However, the gradientsdW/dR and dE/dR do increase
sharply at smallR, because of the rapidly decreasing wavelength.

When dissipation is taken into account, these solutions are modified by viscous
attenuation. Our interest is in whether a deformation of theouter part of the disc can
propagate into the inner region with non-negligible amplitude. Noting thatH/R is
almost independent ofR in the above model, we define the constant parameterε by
H/R= ε f 1/5r1/20. Then the logarithm of the attenuation factor for a completecrossing
of the disc scales approximately withαW/ε or αE/ε.



FIGURE 3. Stationary eccentricity in a disc around a black hole witha= 0.5,ε = 0.02 and withαE = 0
(top) and 0.05 (bottom). Real and imaginary parts ofE are plotted as solid and dotted lines.

The numerical solutions in Fig. 2 confirm this behaviour. In the absence of dissipation,
the bending wave reflects perfectly from the stress-free inner boundary and sets up
a standing wave. Significant attenuation is found whenαW exceedsε, in which case
only a wave with inward group velocity is seen. IfαW is increased much further, the
oscillations are no longer apparent. Only in this case does the inner part of the disc lie
in the equatorial plane of the black hole as suggested by Bardeen and Petterson [13].
Note thatW tends to a constant at larger, which corresponds to the inclination of the
outer part of the disc with respect to the black hole’s equator. The oscillatory structure
of the warp has been noted before [19, 26]. Traces of it may already have been detected
in numerical simulations [27].

The behaviour of the eccentricity is similar (Fig. 3) exceptfor the shorter wavelength
(still everywhere much longer thanH). Again, unlessαE is several times greater thanε,
the eccentricity can reach the inner region.

Several caveats accompany these solutions. Radiation pressure, which is more impor-
tant at higher accretion rates, thickens the inner part of the disc, increases the wave-
length, and reduces the attenuation. Viscous overstability may cause the eccentricity to
grow, rather than decay, as it propagates inwards. Nonlinearity may be very important.
The relevant damping coefficientsαW andαE are not generally equal toα and remain
relatively poorly understood. In addition, the time for thewarp or eccentricity to propa-
gate into the inner region and to establish the steady solutions shown here can be long.



CONCLUSIONS

Accretion discs around black holes in X-ray binary stars maycommonly be warped
or eccentric. Depending on the thickness of the disc and the efficiency of dissipative
processes, these global deformations may be able to propagate into the innermost part of
the disc in the form of stationary bending or density waves. This is most likely to occur
when the disc is hotter and thicker, when the wavelengths arelonger and the viscous
attenuation is less severe. Under these conditions the inner region may be activated and
trapped oscillations may be excited through nonlinear modecouplings [15–17].
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