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1 What is high energy astrophysics?

High energy astrophysics has many different interpretations. In the most
narrow sense this is the type of observations involving high energy photons,
primarily X-rays and gamma-rays. From a more physical point of view one
usually means the study of objects which involve either extreme conditions,
like high energies, temperature or densities, or photons and particles with
high energies. Therefore, one includes such objects as cosmic rays, which
traditionally was the first area of high energy astrophysics, high energy neu-
trinos, X-rays, gamma-rays, from the ’detector’ point of view. From a more
astrophysical point of view this includes supernovae, supernova remnants,
neutron stars, black holes, binary X-ray sources, gamma-ray bursts, active
galactic nuclei, radio jets, clusters of galaxies. In addition to these fairly ex-
otic objects also more ordinary objects like ordinary stars and galaxies are
also emitters of non-thermal radio emission and X-rays. Also the neutrinos
from the sun are usually included. Some areas like high energy neutrino
astronomy and gravitational waves are not mature enough to be useful as
diagnostics of these objects, but will probably be extremely useful in a few
years. This also applies to different types of dark matter detection, where
e.g., the GLAST gamma-ray satellite will be extremely interesting for de-
tection of gamma-rays resulting from e.g. dark matter annihilation in the
Galaxy or from discrete sources like the sun or the galactic center.

Classes of objects: Stellar remnants, active galactic nuclei, clusters of
galaxies,

Supplement to Longair Chap. 13 and 14

2 Equations of stellar structure

See e.g., Kippenhan and Weigert
Mass conservation

dM

dr
= 4πr2ρ(r) (2.1)

Hydrostatic equilibrium

dF = 4πr2[p(r + dr) − p(r)] = −4πr2ρ(r)
GM(r)

r2
(2.2)

or
dp

dr
= −GM(r)ρ(r)

r2
(2.3)
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Energy conservation
dL

dr
= −4πr2ε(r) (2.4)

where L is the luminosity (total energy loss per unit time) and ε is the energy
generation rate per volume.

Finally we need an equation describing the transport of energy from the
center to the surface. Suppose first that the energy transport is by diffusion
of the photons. In the interior the gas is so optically thick that the mean free
path, λ, is small compared to the dimensions of the system (e.g., the star).
The photon will then perform a random walk, or diffusion. The radiation
field will therefore be almost, but not completely, isotropic. We will now
derive a diffusion equation describing the flow of radiation as a result of the
small, but finite temperature gradient.

Consider an almost isotropic radiation field, as is the case in the interior
of a star, and let us calculate the energy flowing through a surface area
dA from a direction θ to the radial direction. The projected area is then
cos θdA. The photons will on the average come from a distance λ equal to
the mean free path. The fraction of photons coming from this direction is
2π sin θdθ/4π. The total energy through dA will then be

dE = 1/2 sin θdθu(r + dr) cos θdAcdt = 1/2 sin θdθu(r − λ cos θ) cos θdAcdt
(2.5)

Averaging over all directions

dE = c/2

∫ π

0
sin θ cos θu(r − λ cos θ)dθ dAdt (2.6)

or making a Taylor expansion

dE = c/2

∫ π

0
sin θ cos θu(r)dθ dAdt−c/2λ

∫ π

0
sin θ cos2 θ

du

dr
dθ dAdt . (2.7)

Since u(r) is nearly isotropic (diffusion approximation!), the first term is
zero and

dE = −cλ

3

du

dr
dAdt . (2.8)

In terms of the flux, F = dE/dAdt, we have

F = −cλ

3

du

dr
(2.9)

The mean free path is λ = 1/ρκ where κ is the opacity and ρ the density.
The radiation density in an optically thick atmosphere is u = aT 4, so

F = −4acT 3

3κρ

dT

dr
(2.10)
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The luminosity is given by L = 4πr2F , so

dT

dr
= − 3κρL(r)

16πacr2T 3
(2.11)

Equations (2.1),(2.3),(2.4),and (2.11) define the structure of a star dom-
inated by radiation transport. Under certain conditions (especially high
temperature sensitivity of the energy generation or low temperature (high
opacity)), resulting in very steep temperature gradients if the transport oc-
curs only by radiation, the energy transport instead occurs by convection.
A nearly adiabatic temperature gradient is then set up,

dT

dr
= −Γ2 − 1

Γ2

T

p

dp

dr
(2.12)

where Γ2 is an effective adiabatic index.
Most of the physics of the star and its evolution is determined by the

opacity, κ(ρ, T ), the energy generation, ε(T ), and the equation of state,
p(ρ, T ).

3 The equation of state

The pressure, P , of a non-degenerate, perfect gas with temperature T is
given by

P = knT (3.1)

where n is the number of particles per volume and k is Boltzmann’s constant,
k = 1.38 × 10−16 ergs K−1. In terms of the density this can be written as

P =
k

muµ
ρT (3.2)

where µ is the mean mass per particle and mu the atomic mass unit, 1.667×
10−24 g.

For a gas of fermions the number density of particles is

n =
8π

h3

∫

∞

0
f(p)p2dp (3.3)

where p is the momentum, f(p) = 1/[exp(E−µ)/kT +1] is the Fermi-Dirac
distribution, and µ is the chemical potential. The factor 4πp2dp/h3 is the
phase space factor, and another factor of two comes from the spin of the
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electrons. For a fully degenerate gas f(p) = 1 for p < pF and f(p) = 0 for
p > pF , allowing us to solve for pF

pF =

(

3h3ne

8π

)1/3

(3.4)

This can be written in terms of the Fermi energy using EF =
√

p2
F c2 + m2

ec
4.

For a non-relativistic gas EF = p2
F /2me, while for a relativistic gas EF =

pF c.
The pressure, P , is given by

P =
1

3

∫

∞

0
v(p)p

dn(p)

dp
dp (3.5)

where dn/dp = 8πf(p)p2/h3. For a fully degenerate gas we get

P =
8π

3h3

∫ pF

0
v(p)p3dp . (3.6)

Now p = mev/
√

1 − v2/c2, or

P =
8π

3h3

∫ pF

0

p4

√

m2 + p2/c2
dp . (3.7)

For simplicity we consider the non-relativistic and ultra-relativistic limits
separately. The transition occurs when pF ≈ mec. Using ρ = µempne this
occurs at

ρr = 9.7 × 105µe g cm−3 (3.8)

For a non-relativistic gas p � mc and Eq. (3.7) shows that

P =
8π

15mh3
p5

F . (3.9)

With pF from Eq. (3.4) we finally get

P =
1

20

(

3

π

)2/3 h2

m
n5/3 , (3.10)

which is the equation of state for a non-relativistic, completely degenerate
gas. In terms of the density we get in cgs units

P = 1.00 × 1013µ−5/3
e ρ5/3 . (3.11)
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In the opposite limit of an ultra-relativistic gas we obtain in the same
way from Eq. (3.7)

P =
2πc

3h3
p4

F . (3.12)

and

P =
1

8

(

3

π

)1/3

hc n4/3 , (3.13)

which is the equation of state for an ultra-relativistic, completely degenerate
gas. Note that the adiabatic index in this case is 4/3, while in the non-
relativistic case it is 5/3. In cgs units

P = 1.24 × 1015µ−4/3
e ρ4/3 . (3.14)

For a non-relativistic gas the boundary between degeneracy and perfect
gas equations of state is obtained by setting the non-degenerate pressure
(Eq. (3.2)) equal to the degenerate, given by Eq. (3.10)

T

ρ2/3
= 1.2 × 105 µ

µ
5/3
e

(3.15)

Similarly, if the gas is relativistic one finds that the boundary between
degeneracy and perfect gas equations of state is given by

T

ρ1/3
= 1.5 × 107 µ

µ
4/3
e

. (3.16)

The density when degeneracy sets in depends on the mass of the particle and
temperature as ndeg ∝ m3/2T 3/2 in the non-relativistic case and ndeg ∝ m3

in the relativistic. Therefore, even if the electrons are degenerate, the ions
are usually non-degenerate. The total pressure is then given by

P = Pe + Pion (3.17)

where Pe is given by either Eq. (3.10) or Eq. (3.13) and Pion by Eq. (3.1).
In the strongly degenerate case the ion pressure is much smaller than that
of the degenerate electrons, and can usually be neglected.

Finally, the boundary between an ideal gas pressure and that of radiation
dominated pressure is given by

RTρ

µ
=

aT 4

3
(3.18)

or
T

ρ1/3
= 3.2 × 107µ−1/3 (3.19)

In Fig. 1 we show the different regions defined by Eqns. (3.8), and (3.15)
– (3.19) in the ρ – T plane.
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Figure 1: Regions of different equations of state in the ρ – T plane.

4 The Chandrasekhar mass

In Longair a derivation of the Chandrasekhar mass is given in a rigorous
way. Because of its importance it may be of interest also to derive it in a
’quick and dirty’ way, without loosing too much of the physics.

Let us consider the structure of a completely degenerate core. The equa-
tion of hydrostatic equilibrium gives

dP

dr
= −Gm(r)ρ

r2
(4.1)

or approximately

P ≈ GMρ

r
(4.2)

Now ρ ≈ 3M/(4πR3), so
P ≈ GM2/3ρ4/3 (4.3)

Here we can use the expression for the equation of state derived above.
Alternatively, we note that the pressure is given approximately by

P ≈ 1

3
nepv (4.4)

where p is the ’typical’ momentum of the electrons, and ne the electron
density and v the velocity. An estimate of p can be obtained from the
uncertainty relation ∆p∆x ≈ h̄, or since ne ≈ 1/∆x3,

P ≈ 1

3
h̄n4/3

e v (4.5)
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If the electrons are relativistic then v = c, and we have

P ≈ 1

3
h̄n4/3

e c (4.6)

which is apart from a numerical factor Eq. (3.13).

If the electrons are non-relativistic v ≈ h̄n
1/3
e /me, again using the un-

certainty relation. Therefore,

P ≈ 1

3

h̄2

me
n5/3

e c (4.7)

To convert from electron density to total mass density we use ne = Zρ/Amp ≈
1/2ρ/mp for a gas dominated by heavy elements. This together with Eq.
(4.7) in Eq. (4.3) gives in the non-relativistic case

R ≈ h̄2

GmeM1/3

(

Z

Amp

)5/3

(4.8)

This shows that as the mass of the star increases the radius decreases. There-
fore, as the mass increases the density will increase as ρ ∝ R−6, and the
electrons will therefore become relativistic at ∼ 106 g cm−3.

The mass – radius above can be tested directly if masses and radii can be
determined from e.g. binary motions and spectroscopy, including the grav-
itational redshift. In Figure 2 we show a comparison between observations
of a sample of white dwarfs and the theoretical mass - radius relation for
different interior compositions.

When the electrons are relativistic the equation of state is given by Eq.
(4.6) which together with Eq. (4.3) gives an expression independent of
radius,

MCh ≈
(

ch̄

G

)3/2( Z

Amp

)2

(4.9)

This is the Chandrasekhar mass apart from numerical factors. A more
accurate value is

MCh = 2.018
(3π)3/2

2

(

ch̄

G

)3/2( Z

Amp

)2

= 5.836

(

Z

A

)2

M� (4.10)

For Z/A = 0.5 we get MCh = 1.46 M�.
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Figure 2: Comparison between observations and the theoretical mass - radius
relation for different interior composition. (Provencal et al.(1998)
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5 Solar neutrinos

5.1 Predicted fluxes

In the Sun nuclear hydrogen burning takes place at ∼ 1.5×107 K. The most
important chain of reactions is the PP I chain

1H + 1H → 2H + e+ + νe

2H + 1H → 3He + γ
3He + 3He → 4He + 21H

Summarizing

41H → 4He + 2e+ + 2νe + 2γ

which takes place in 69 % of the cases. In half as many cases, 33 %, the last
step is replaced by the so called PP II reaction

3He + 4He → 7Be + γ
7Be + e− → 7Li + νe

7Li + 1H → 24He

Finally, one very rare, but important reaction, PP III, takes place roughly
once every thousand reactions,

7Be + 1H → 8B + γ
8B → 8Be + e+ + νe

8Be → 24He

The total reaction rate is moderately sensitive to the temperature, ε ∝ T 6.
In several of these steps neutrinos are emitted with different energies.

Using standard assumptions about the solar structure, the fluxes of these
can be calculated in what is known as the ’standard’ solar model, which
was pioneered by the late John Bahcall. In Fig. 3 the expected fluxes from
this model are shown. An important feature is here the different energies
of these. In particular, the easiest neutrinos to detect are the ones with
the highest energies. This was the reason that historically the first solar
neutrinos detected were from the PP III chain, in the reaction 8B → 8Be +
e+ + νe, in spite of the rare occurrence of this reaction.

We will now discuss the different experiments one by one. It is in this
context especially important to note the different threshold energies in Fig.
3 of the different experiments.
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Figure 3: Predicted neutrino spectrum from the sun (Bahcall 2004)

5.2 Neutrino experiments

Chloride experiments: Homestake Gold Mine

This was the first neutrino experiment started in 1965 by Ray Davies. To
protect it against cosmic rays it was located 1500 m underground in an
old gold mine. As detector element it contained 615 tons of cleaning fluid,
C2Cl4. The important reaction was here

νe + 37Cl → 37Ar + e (5.1)

with a threshold of 0.8 MeV. Davies then detected the radioactive decay of
37Ar. Approximately 15 reactions were seen per month!

After several years of running the average measured rate of the Homes-
take experiment was 2.56+/- 0.25 SNU. The big surprise was now that this
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Figure 4: The Homestake neutrino detector.

was a factor of roughly three lower than that predicted by the standard
model, 8.1 ± 1.2. This was known as the ’solar neutrino problem’. An im-
portant question is now if we can trust the ’standard model’. To make a
long story short (see Longair for more details), in particular solar seismology
models, which use the frequencies and amplitudes of different oscillations of
the sun, can probe the structure of the sun, or more precisely the variation
of the sound velocity as function of the radius. This in turn depends on
the composition and temperature of the sun and therefore provides a probe
of the solar interior, and a test of the solar model. The fact that one has
a good agreement with the predicted and observed sound velocity provides
good confidence in the solar models.

Water Cherenkov experiments: Superkamiokande

The most important of this class of experiments is the SuperKamiokande
experiment, 1000 m underground. It contains 50,000 ton of pure water as
detector element, and the reaction is the elastic scattering

νe + e− → νe + e− (5.2)

with a threshold of 5 MeV. The Cherenkov light from the scattered electrons
are detected by thousands of PMTs. The measured rate with this detector
is ∼ 15 events/day, i.e. a factor 30 larger than Davies experiment. A
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Figure 5: The pioneers of solar neutrino physics Ray Davies and John Bah-
call.

most important property with this experiment is that since it is a scattering
reaction it contains directional information about the neutrino. In fact, a
neutrino image of the sun has been produced by this instrument!

Gallium detectors

An obvious drawback with the previous experiments is that they are only
sensitive to the rare PP III cycle. In order to decrease the threshold to
include the dominant PP I reaction one uses gallium in the reaction

νe + 71Ga → 71Ge + e (5.3)

The threshold of this is as low as 0.233 MeV.
There are two experiments of this type, the SAGE experiment with 50

tons of gallium, and the GALLEX experiment in the Gran Sasso laboratory
in Italy with 30 tons of gallium. The former found a rate of 70.8 (+5.3, -5.2)
(+3.7, -3.2) SNU, and the latter 77.5 +/- 8 SNU. This should be compared
to the predicted rate of 129 +8/-6 SNU from the standard model, which is
still a large factor above the measured.

This discrepancy is especially important since the neutrino rate of this
reaction is directly proportional to the solar luminosity, and therefore less
sensitive to details of the solar model.
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Figure 6: Neutrino flux as function of time for the Homestake chloride ex-
periment

The SNO experiment

Since the book of Longair was published there has been considerable progress
in terms of new experiments on solar neutrinos. The most spectacular of
these is the SNO experiment (Sudbury Neutrino Observatory). While all
the previous experiments are sensitive only to the electron neutrino, this is
sensitive to all three types of neutrinos.

This experiment is based on a detector containing 1000 tons of heavy
water, 2H2O, nearly 2000 m underground close to Sudbury, Ontario. The
incoming neutrinos can react in two different ways with the deuterium nuclei.

In the first reaction the νe can disintegrate the deuteron, resulting in a
change of the charge of the nucleons

νe + 2H → p + p + e (5.4)

The electron can be detected from its Cherenkov radiation. This reaction
only occurs for the electron neutrino.

The most interesting reaction is

νx + 2H → p + n + νx (5.5)
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Figure 7: Reaction rates for the Gallex experiment.

which occurs by neutral currents. Here x stands for either e, µ or τ . This
reaction, which only disintegrates the deuteron without any changes of the
charges, occurs with all three neutrino types. Furthermore, the probability
is the same for all three types. The neutrons liberated are captured by 35Cl
nuclei, which converts it to 36Cl, with emission of gamma-rays.

The amazing result from this detector is that while the charged current
reaction gave a similar result as the other neutrino experiments, ∼ 30% of
the expected rate, the neutral current reaction gave nearly exactly the rate
predicted by the standard solar model! The situation is summarized in Fig.
9.

This result clearly demonstrated that the electron neutrinos changed
flavor into the other two types on the way from the sun to us. Of the
original electron neutrinos only about a third oscillated back to electron
neutrinos, while the rest were converted to µ and τ neutrinos. Because the
other experiments are not sensitive to these this explains the more than four
decade long puzzle.

KamLAND

Besides the SNO experiment this is the most interesting. Here a detector in
Kamioka, containing 1000 tons of liquid scintillator, detects neutrinos from
nuclear reactors at different distances, 80–350 km, in Korea and Japan.
The neutrino flux from these reactors passes through a long column density
of mass. During this passage the neutrinos will mix by the MSW effect
and only a fraction of the original emitted electron anti-neutrinos will be
detected as such, the rest being in the tau- and mu- flavor states. The
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Figure 8: Neutrino flux as function of distance from the reactor. The line
gives the expected rate, assuming that the neutrino oscillations have the
mixing angles and mass differences derived from the solar observations.

neutrinos collide in the detector with protons, converting them to neutrons,
which are inducing radioactive isotopes, which decay.

ν̄e + p → n + e+ (5.6)

The experiment therefore checks the survival probability as function of dis-
tance from the reactor.

As shown in Fig. 8 the flux is indeed suppressed relative experiments
done at short distances. The full line shows the predicted rate for mixing
parameters determined from solar observations.

The fact that there is excellent agreement between the prediction and the
experiment shows that neutrino oscillations are confirmed as an explanation
of the ’neutrino problem’.

Summary

The neutrino fluxes corrected for neutrino mixing for the different reactions
are summarized below relative to the predicted rates from the standard solar
model:
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Figure 9: Neutrino fluxes as measured by different experiments. Note the
agreement with the neutral current SNO measurements and the predicted
value (Bahcall 2004)

Flux(pp) = 1.02 ± 0.02 ± 0.01× theory
Flux(8B) = 0.88 ± 0.04 ± 0.23× theory
Flux(7Be) = 0.91+0.24

−0.62 ± 0.11× theory

The neutrino oscillations therefore explains the more than four
decade long puzzle, and shows that we indeed understand why
the sun shines!
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6 Pre-supernova Evolution of Massive Stars

6.1 Helium burning

When the hydrogen in the core of a star has been consumed, two options
are possible. Either hydrogen burning continues in a shell surrounding the
helium core or the helium in the core itself is ignited. This occurs by the
triple alpha process at a temperature of ∼ 108 K. In detail the different
steps are

4He + 4He → 8Be
8Be + 4He → 12C + γ

The last step takes place by the famous Hoyle resonance reaction, which was
predicted to take place by Hoyle before its experimental verification. The
temperature sensitivity of this reaction is much higher than for hydrogen
burning, ε ∝ T 41.

From the carbon produced further alpha captures may take place,

12C + 4He → 16O + γ
16O + 4He → 20Ne + γ

After helium burning a core of mainly carbon and oxygen therefore re-
sults. This is the endpoint of the evolution of low mass stars, like our sun.
After the outer hydrogen rich layers have been expelled the result will then
be a degenerate white dwarf consisting of roughly equal amounts of carbon
and oxygen. Higher mass stars may, however, continue their nuclear burning
to heavier elements.

6.2 Low mass versus high mass evolution

The evolution of the star is mainly the evolution of the core. This is in
turn determined by the temperature and density. In particular, the final
stages depend on whether or not the core becomes reaches a temperature
high enough for carbon to ignite.

We can separate two qualitatively different behaviors, depending on the
value of the core mass Mc. Core masses below MCh never reach a temper-
ature larger than Tc,max, while those above can increase their temperature
as the core contracts and ignite new fuels. For Mc > MCh the temperature

rises monotonically as Tc ∝ ρ
1/3
c . The division of these two cases occur for

8 − 10 M�, Stars with mass smaller than this only evolves to the helium
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burning stage, when they become red giants. At this point they lose a large
fraction of their hydrogen envelope in a superwind lasting a few ×104 years,
forming a planetary nebula. The core, forming a white dwarf with a mass
of less than the Chandrasekhar mass 1.46 M�, consists of mainly oxygen
and carbon. Stars with larger mass than 8−10 M�, however, continue their
evolution into the more advanced burning stages, and end their lives in a
supernova explosion, and finally a neutron star or black hole.

In Fig. 10 this is shown in more detail from evolutionary calculations
for stars of different masses. The 1 M� and 2 M� stars become degenerate
before He-ignition, while the 7 M� model ignites helium non-degenerately
but then evolves into the degenerate regime. In all three cases does the
cores not reach a temperature high enough for carbon burning to start.
The 15 M� model on the other hand continues to evolve in the partially
degenerate regime and the temperature increases monotonically, and passes
through all the nuclear burning stages.

Figure 10: Evolution of the central density and temperature for stars of
different masses. (Iben 1974)

In Fig. 11 a more recent calculation of the evolution of a 15 M� and
25 M� star is shown through all evolutionary stages up to silicon burning.
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Figure 11: Evolution of the central density and temperature for a 15 M�

and 25 M� star. (WHW02)

6.3 Advanced nuclear burning stages

In this section we include a brief discussion of the advanced burning stages.
For a more complete account of the nuclear physics, as well as the hydrogen
and helium stages, see especially Clayton (1967) or Arnett (1996).

6.3.1 Carbon burning

Carbon burning occurs at (0.6− 1.2)× 109 K. The principal reactions occur
through the compound nucleus 24Mg?, which decays as

12C + 12C → 24Mg? → 24Mg + n − 2.6 MeV (6.1)

→ 20Ne + α + 4.6 MeV (∼ 50%) (6.2)

→ 23Na + p + 2.2 MeV (∼ 50%) (6.3)

In the interesting temperature range the reaction rate depends on the tem-
perature as q ∝ T 29.

6.3.2 Neon burning

Neon burning occurs in a narrow range at ∼ 1.5 × 109 K. The first step is
photo-disintegration

20Ne + γ → 16O + α (6.4)
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The next step is that the α particles are partly captured by 16O to form
20Ne, and partly by 20Ne to produce 24Mg, i.e., 20Ne + α → 24Mg. The net
result of each of these reactions can be summarized as

2 20Ne → 16O + 24Mg + 4.6 MeV (6.5)

Note, however, that this is only symbolic, and is not a binary heavy ion
reaction, like carbon burning. Because of the sensitivity of the α particle
abundance to the temperature the reaction rate depends extremely sensi-
tively on the temperature, as q ∝ T 50.

One may ask why neon burning occurs before oxygen burning. The rea-
son is that 16O is a doubly magic nucleus, and has consequently a larger
binding separation energy for α particles than neon, 7.2 and 4.7 MeV, re-
spectively.

6.3.3 Oxygen burning

Oxygen can burn either as photo-disintegration, 16O(γ, α)12C, or as a fu-
sion reaction, producing Si – S. During hydrostatic burning at ∼ 2 × 109 K
the fusion reaction dominates, while in explosive oxygen burning in connec-
tion to the supernova explosion, photo-disintegration and fusion are equally
important. The most important fusion reactions are

16O + 16O → 32S? → 31S + n − 1.5 MeV (5%) (6.6)

→ 31P + p + 7.7 MeV (56%) (6.7)

→ 30P + d − 2.4 MeV (5%) (6.8)

→ 28Si + α + 9.6 MeV (34%) (6.9)

The main products of oxygen burning are 28Si and 32S. At ∼ 2× 109 K the
reaction rate depends on the temperature as q ∝ T 33.

6.3.4 Silicon burning

Silicon does not fuse as a heavy ion reaction to 56Ni, but instead melts
at ∼ 3.5 × 109 K by photo-disintegration, due to the extremely energetic
radiation density. The resulting nuclei in turn photo-disintegrates to lighter
nuclei, etc. In summary,

28Si(γ, α)24Mg(γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α (6.10)

The result is, however, not only lighter nuclei. The α particles produced
by the melting will also be captured by the 28Si to form 32S, which may in
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turn capture new α particles, etc. The result will be a quasi-equilibrium
with successively heavier nuclei. The end result of this depends on the
neutron excess η. For small values of η <∼ 6 × 10−3, which is needed to
produce the right abundances of the isotopes around the iron peak, the
most abundant nucleus is also the most tightly bound nucleus 56Ni (see
next section). This radioactive isotope subsequently decays into 56Fe. The
fact that this radioactive isotope is main result of the silicon burning is
important not only for the nucleosynthesis, but also for the observational
properties of all kinds of supernovae.

The reaction rate at ∼ 3.5 × 109 K goes as q ∝ T 49. The energy release
is only one half of that of oxygen burning.

6.4 Nuclear statistical equilibrium

Because of the importance of nuclear statistical equilibrium (NSE) in the
Si burning phase, as well as in several other contexts, we discuss it in some
detail here.

The Saha equation, relating the number densities of two neighboring
ionization stages in ionization balance through

ni + γ ↔ ni+1 + e−, (6.11)

is
ni+1ne

ni
=

Gi+1ge

Gi

(2πmekT )3/2

h3
e−χi/kT (6.12)

where Gi is the partition function of the ion i, ge the statistical weight of
the electron and χi the ionization potential.

In exact analogy with this, one can relate the equilibrium densities of
two different isotopes in photodissociation balance

nZ,A + γ ↔ nZ,A−1 + n (6.13)

by
nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(2πmZ,A−1mnkT )3/2

h3m
3/2
Z,A

e−Qn/kT (6.14)

where we have used the fact that the statistical weight of the neutron is
gn = 2. Qn is the binding energy of the neutron in the nucleus (Z,A),
Qn = (mZ,A−1 +mn−mZ,A)c2. In more compact notation we can write this
as

nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(

A − 1

A

)3/2

θ e−Qn/kT (6.15)
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where θ ≡ (2πmnkT )3/2/h3.
Similarly, we can remove one proton from the nucleus we produced in

reaction (6.13) by photodissociation according to

nZ,A−1 + γ ↔ nZ−1,A−2 + p (6.16)

producing the next lighter element Z-1. As above we get for this balance

nZ−1,A−2np

nZ,A−1
=

2GZ−1,A−2

GZ,A−1

(

A − 2

A − 1

)3/2

θ e−Qp/kT (6.17)

where Qp = (mZ−1,A−2 + mp − mZ,A−1)c
2.

This procedure can now be repeated until we have only protons and
neutrons left. Putting these steps together we obtain

nZ,A = GZ,A

A3/2nZ
p nA−Z

n

2A
θ1−A eQZ,A/kT (6.18)

where now QZ,A = (Zmp+(A−Z)MN −mZ,A)c2 is the total binding energy
of the nucleus.

A particular composition is then characterized by a given value of Ye or
η. Once this is specified all other abundances can then be calculated from
the NSE relation Eq. (6.18).

Which nucleus is most abundant in NSE depends on the value of η. In
general, for T <∼ 1010 K the most tightly bound nucleus for a given value of
η is favored. Consequently, for small neutron excesses one finds that 56Ni,
which is an even-even nucleus with η = 0, is the most abundant nucleus,
while at η ∼ 0.07 56Fe, with η = (30 − 26)/56 = 0.071, is most abundant.
In Fig. 12 we show the isotopic abundances for a few different temperatures
as function of η. We see that the abundances do not change appreciably as
function of temperature, except for a general decrease in the iron peak abun-
dances, reflecting the shift to 4He, as photo-disintegration of 56Fe becomes
important.

6.5 Neutrino cooling

In the advanced burning stages cooling by neutrinos play an increasingly
important role. At temperatures of the order of mec

2/k ∼ 5×109 K electron
pair production by energetic photons becomes possible. In most cases these
pairs annihilate into photons, but because the electrons and neutrinos couple
through the weak interaction, occasionally a neutrino - anti-neutrino pair
may be produced,

e− + e+ → ν + ν̄ (6.19)
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Figure 12: Abundances of iron peak elements at 3.5 × 109 K as function of
the neutron excess. From left to right the isotopes are 56Ni, 54Fe, 56Fe, 58Fe.
(Hartman, Woosley qnd el Eid 1985)

The typical neutrino cross section is

σ ≈ 10−44

(

E

mec2

)2

cm−2. (6.20)

The electron-positron annihilation cross section is of the order of the Thomp-
son cross section, σT = 0.665 × 10−24cm2 (or rather Klein-Nishina at these
energies). Therefore the probability for neutrino pair production is ∼ 10−20

of the electron pair annihilation rate.
The neutrino energy loss rate at T < 109 K is given by

εν ≈ 4.9 × 1018T 3
9 exp−11.86/T9 erg cm−3 (6.21)

and at T > 3 × 109 K

εν ≈ 4.5 × 1015T 9
9 erg cm−3 (6.22)

This clearly illustrates the sensitivity of the neutrino losses to the tempera-
ture.

Except for pair production, also other neutrino cooling processes may be
important. In particular, the plasma neutrino cooling process and photo-
neutrino process are important in many circumstances.
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Table 1: Burning stages for a 15 M� star (WHW02)
Fuel Ashes T ρ M L R τ

108 K g cm−3 M� 103 L� R� yrs

H He, N 0.35 5.8 14.9 28.0 6.75 1.1 × 107

He C,O 1.8 1.4 × 103 14.3 41.3 461. 2.0 × 106

C Ne, Mg, O 8.3 2.4 × 105 12.6 83.3 803. 2.0 × 103

Ne O, Mg, Si 16.3 7.2 × 106 12.6 86.5 821. 0.73
O Si, S 19.4 6.7 × 106 12.6 86.6 821. 2.6
Si Ni 33.4 4.3 × 107 12.6 86.5 821. 18 days

The photo-neutrino process is just pair production of a neutro-antneutrino
pair

γ + e− → e− + ν + ν̄, (6.23)

For most massive stars it is the pair annihilation cooling which accounts
for most of the cooling, although plasma neutrino cooling is important in
especially stars of lower mass.

6.6 Duration of the burning stages

Because of the increasing importance of neutrino losses as the temperature
increases because of core contraction, and also the decreasing energy gener-
ation per mass, the durations of the burning stages decrease rapidly from
thousands of years for carbon burning to days or less for silicon burning. In
Tables 1 and 2 we give the duration, as well as the ignition temperature and
other parameters, for a 15 M� and a 25 M� ZAMS star, including mass loss
(from WHW02). These models include mass loss (see below), explaining the
low masses in the table.

Note in this table the dramatic decrease in the duration of the advanced
burning stages, because of increasing neutrino losses in the carbon burning
stage and beyond. Also note, while there is only a small decrease in the
total mass of the 15 M� star, the 25 M� star ends up with only half of the
original ZAMS mass. We will discuss this further later.

After the carbon burning stage the neutrinos dominate the cooling of
the core, as Fig. 13 clearly shows.

After carbon burning the diffusion time for the photons is much longer
than the duration of these stages, and the core evolves independently from
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Table 2: Same as above for a 25 M� star
Fuel Ashes T ρ M L R τ

108 K g cm−3 M� 103 L� R� yrs

H He 0.38 3.8 24.5 110. 9.2 6.7 × 106

He C,O 2.0 7.6 × 102 19.6 182. 1030. 8.4 × 105

C Ne, Mg 8.4 1.3 × 105 12.5 245. 1390. 5.2 × 102

Ne O, Mg 15.7 4.0 × 106 12.5 246. 1400. 0.89
O Si, S 20.9 3.6 × 106 12.5 246. 1400. 0.40
Si Ni 36.5 3.0 × 107 12.5 246. 1400. 0.73 days

the envelope. Unless some kind of shell flash or similar occurs, the envelope
is essentially decoupled from the core.

6.7 Mass loss

Most massive stars experience mass loss to a varying degree. The properties
of these winds, however, vary dramatically between the different evolution-
ary stages. In particular, the wind velocity scales roughly with the escape
velocity of the star, which varies by a factor of about a hundred between
the blue supergiant, red supergiant, and Wolf-Rayet phases.

In the blue supergiant (BSG) MS phase the winds are radiatively driven
through momentum deposition from absorption of the photospheric radia-
tion by the many resonance lines in especially the UV and far-UV. This is a
fairly well understood process both theoretically and observationally. Typi-
cal mass loss rates are of the order of 10−6 M� yr−1 and the wind velocities
are 1, 000 − 3, 000 km s−1.

In the red supergiant (RSG) phase the winds are much less understood.
Dust driving is believed to account for most of the momentum input. What
initiates the wind (e.g., photospheric shocks connected to pulsations) is, how-
ever, not known. Further, it is likely that the star experiences a superwind
phase, lasting ∼ 104 years in the very last phases of the red supergiant stage.
What drives this superwind is somewhat unclear, but pulsational instabil-
ities may be particularly important (see e.g., Heger et al. 1997). Typical
mass loss rates are in the general RSG phase of the order of 10−6 M� yr−1

and the wind velocities are 10 − 50 km s−1. In the superwind phase mass
loss rates as high as 10−4 − 10−3 M� yr−1 may occur. The duration of this
phase must obviously be only of the order of a few times 104 years.

A useful formula which summarizes the mass loss rates on the main
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Figure 13: Neutrino luminosity of stars with mass 13 − 25 M� compared
to the nuclear energy generation and the photon luminosity (Limongi et al.
2002).

sequence and in the red supergiant stage is given by Nieuwenhuijzen & de
Jager (1990),

Ṁ = 9.6 × 10−15

(

L

L�

)1.42( M

M�

)0.16( R

R�

)0.81

M� yr−1 (6.24)

Finally, in the Wolf-Rayet (WR) phase the wind velocities increase to
2, 000 − 5, 000 km s−1, while the mass loss rate is ∼ 10−5 M� yr−1. The
driving of the wind is here to a large extent by radiation on resonance lines,
as in the OB star case. The initiation of the wind is, however, not clear,
and pulsations may be important for this. Observationally, clumping of the
wind is important, with a typical clumping factor of about two. Once this
has been corrected for, the mass loss rates are fairly well determined.

The fact that the RSG phase last for ∼ 105 years and the WR phase
for a comparable period, and that the mass loss rates in these phases are
10−5 − 10−4 M� yr−1, means that stellar winds will have a major influence
on the evolution.
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6.8 Evolution in the HR diagram

Mass loss is crucial both for the observational properties the appearance of
the star and for the internal structure. Because mass loss is increasingly
important with mass, the effects increase strongly with mass. In Fig. 14 we
show the evolution in the HR diagram of a 60 M� star with and without
mass loss. While both stars evolve to the RSG phase, the star without mass
loss end its life in this phase. The star with mass loss, however, evolves back
to the blue and becomes a hot star, now without any hydrogen envelope.
It has become a helium star, or better known as a Wolf-Rayet star. This

Figure 14: Evolution of a 60 M� star with (dashed line) and without (solid
line) mass loss (Maeder 1981)

evolutionary scenario is a general feature for massive stars above some limit-
ing mass, MWR, which is uncertain, but probably in the range 20− 40 M�,
depending on mass loss rates, rotation, metallicity etc. (see below). We
therefore have the evolutionary sequence

O → BSG → RSG → WR (6.25)

The most massive stars may lose mass so fast that they never evolve to the
RSG stage, but instead evolve as luminous blue variable (LBVs) and then
directly to the WR stage.

O → LBV → WR (6.26)
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Because mass loss increases with luminosity and mass, Ṁ ∝ L ∝ M2−3,
the effects are most important for the most massive stars. The result is
that the final mass before the star collapses is nearly independent of the
initial mass! When rotation is taken into account one finds a final mass of
10 − 15 M� for all masses >∼ 20 M�, as shown in Fig. 15.

Figure 15: The effects of rotation and mass loss on the final mass of massive
stars. The solid line gives the final mass for a ZAMS rotational velocity
of 300 km s−1, while the dashed line gives the zero velocity result, only
including mass loss (Meynet & Maeder 2003)

6.9 Structure before explosion

The structure of the star just before collapse is extremely important for the
outcome of the subsequent phases, including the supernova explosion. In
Fig. 16 we show the abundance structure of a 15 M� and a 25 M� star
shortly before core collapse. Because of mass loss on the MS and in the RSG
phase, ∼ 3 M� were lost before the explosion for the 15 M� model, while
the 25 M� had lost ∼ 12 M�, illustrating the increasing importance of mass
loss for the massive stars. Except for this, the general structure of the two
models are similar.

The first thing to note is the pronounced onion shell structure with
a number of distinct zones, reflecting the different burning stages at the
time of core collapse. Concentrating first on the 25 M� model, from the
surface inwards to ∼ 8.2 M� we have the unprocessed hydrogen envelope.
We here note that the He mass fraction is roughly twice the original, and is
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actually higher than that of H. Consistent with this is the high N abundance,
depressed O abundance and nearly zero C abundance. This is a typical
signature of CNO burning products, which have been brought to the surface
by convective mixing of the envelope during the RSG phase. In the 15 M�

model this mixing is negligible, but this conclusion is sensitive to factors like
rotation and convective treatment.

Inside the hydrogen envelope, the helium mantle has almost the same
thickness in mass in both stars. The total mass of He produced is, however,
different, because a large fraction of the He from the shell-burning has been
mixed with the hydrogen envelope (see above). Besides He, the most im-
portant elements are Ne and C. Most of these are the result of He-burning,
mixed throughout the He shell.

In terms of nucleosynthesis the most important region is the oxygen
zone. The mass of the oxygen core varies strongly with ZAMS mass. For
the 15 M� model it is 3.1 M�, while it is 7.2 M� for the 25 M� model.
The most abundant elements are O (∼ 80%) and Ne (∼ 20%). Also Mg
has a substantial abundance in this region. The inner O zone has a large
abundance of nuclei resulting from Ne and O burning, in particular Si, S, Ar,
as a result of convective mixing from the O burning shell. These dominate
completely in a thin region inside the O zone. The central ∼ 1.6 M� consists
of iron group elements from Si-burning. Between the iron core and oxygen
core are products of oxygen burning and incomplete Si-burning.

The density structure before core collapse is important for the properties
of the supernova explosion. Fig. 17 shows the density as function of mass
from the center for stars of different masses. No mass loss has been included
in these models, but the general structure including this is quite similar.

One can roughly distinguish three regions. Most of the volume consist of
a very extended hydrogen envelope, with radius >∼ 3 × 1013 cm containing
most of the mass. The mass of this is, not very surprising, sensitive to mass
loss. The radius is, however, characteristic of a red supergiant as long, as
there is at least ∼ 1 M� of hydrogen left.

Next comes the helium mantle with radius ∼ 1011 cm and density ∼
102 g cm−3. Inside this there is a gradual increase in the density in the
oxygen core. Finally, in the inner ∼ 1.5 M� we have the iron core with a
radius of only ∼ 3 × 108 cm and a density 107 − 109 g cm−3.

When we compare the structure of the different models, the most ap-
parent differences are the mass of the helium core, and the density gradient
outside the iron core. In general the latter becomes less steep as the mass of
the star increases. This will be important when we discuss the propagation
of the shock wave after the bounce.
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Figure 16: Abundance structure of a 15 M� and 25 M� star shortly before
core collapse. (WHW02)

The mass of the Fe-core is crucial for whether the explosion will be
successful or not. While this mass is only weakly dependent on the ZAMS
mass in this interval, 13−25 M�, the small difference between 1.29 M� and
1.53 M� for the 13 M� and 25 M� models, respectively, may, however, be
crucial for the outcome.

6.10 Triggering of collapse

A self-gravitating body is stable to perturbations as long as its adiabatic
index is larger than 4/3 As soon as γ < 4/3 the star (or core) will collapse.

There are several reasons why the core collapses. Photo-disintegration
of Fe into α particles, or even nucleons, require ∼ 8.8 MeV per nucleon.
This takes away thermal energy from the core, and thus pressure support.
A further reason for instability comes from electron capture on free protons
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Figure 17: Density structure of four stars with ZAMS 13 − 25 M� star.
(Limongi et al. 2002)

and on bound protons in nuclei,

e− + p → νe + n (6.27)

The removal of electrons again decreases the pressure in the core.
Once the core becomes unstable it will collapse on roughly a dynamical

time scale, tdyn ∼ R/v, Assuming that the core collapses with the free-fall
velocity, Vff , we get

tdyn =
R

Vff
=

(

R3

2GM

)1/2

(6.28)

In terms of the density this is

tdyn =

(

3

8πGρ

)1/2

(6.29)

At the edge of the iron core the density is ∼ 108 g cm−3 when core collapse
sets in, and at the center it is ∼ 3 × 109 g cm−3. Therefore,

tdyn = 0.13 ρ
−1/2
8 s (6.30)
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and the collapse time scale is therefore of the order of milliseconds. Hy-
drodynamical models show that in reality the velocity is only 0.5 − 0.8 of
the free-fall velocity, but as an order of magnitude estimate Eq. (6.30) is
sufficient.

6.11 Neutrino trapping

During core collapse neutrinos produced in the core are absorbed and scat-
tered by the nucleons. The most important elastic scattering processes are
scattering by free neutrons and protons, and coherent scattering against
bound neutrons and protons in nuclei,

ν + n → ν + n (6.31)

and
ν + p → ν + p (6.32)

and
ν + (Z,A) → ν + (Z,A). (6.33)

All three processes are mediated by neutral currents, and were before the
Weinberg-Salam-Glashow electro-weak theory not considered. In fact, they
make a crucial difference for the neutrino trapping, as we will see. Because
of the coherence, the cross section of the last process is not only proportional
to A, but to A2.

In addition to the scattering against the nucleons, inelastic scattering
against electrons also take place,

ν + e− → ν + e− . (6.34)

The cross section of this is, however, only ∼ 1/600 of that of the elastic
nucleon scattering. Elastic scattering against the nucleons therefore domi-
nate the inelastic scattering against the electrons by a large factor. When
we estimate the mean free path to the scattering, we can therefore neglect
the electrons. The inelastic scattering may nevertheless be important for
thermalizing the neutrinos to the same temperature as the electrons.

For neutrino energies much less than mnc2 ∼ 1 GeV the cross section
for the nucleon scattering is

σν =
1

4
σ0

(

Eν

mec2

)2

(6.35)
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where

σ0 =
4G2

F m2
e

h̄4 = 1.76 × 10−44cm2. (6.36)

The mean free path for scattering is λν = 1/ < nσν >, which is an aver-
age over the cross sections for these processes. An approximate expression
for the mean free path is given by

λν ≈ 2 × 105

(

Eν

10 MeV

)−2

ρ−1
12 cm (6.37)

The typical neutrino energy is ∼ 20 MeV, so the mean free path is only
∼ 0.5 ρ−1

12 km.
Scattering is a diffusion process, and from the diffusion equation in spher-

ical geometry one finds that the time for a neutrino to diffuse a radial dis-
tance R is

tdiff =
R2

3λνc
(6.38)

If we assume a uniform density sphere of mass 1.4 M� and estimate the

neutrino energy as the Fermi energy we get Eν ≈ EF = 36.8 ρ
1/3
12 MeV, and

tdiff = 5.2 × 10−2 ρ12 s (6.39)

The diffusion time scale should be compared to the dynamical time scale,
tdyn, from Eq. (6.30),

tdiff

tdyn
= 40 ρ

3/2
12 (6.40)

Therefore, we find that above a density of ∼ 1011 g cm−3 the neutrinos

become completely trapped in the core. This has the consequence that the
lepton number will be conserved in the core. If neutrino trapping would not
set in, the lepton number would have decreased to a very low level because of
beta decay and inverse beta decay (K-capture). This now instead happens
after the collapse in the explosion phase when the density is low enough.

6.12 Collapse

Because of neutrino trapping, the collapse proceeds almost adiabatically.
In Fig. 18 we show the velocity profile of the infalling core at different
epochs during the collapse and the formation of the shock. The first curve,
(a), corresponds to the final stages of the infall. The central density is
∼ 4.8 × 1013 g cm−3. At the next epoch the central density is ∼ 2.6 ×
1014 g cm−3. The compression at the center generates sound waves which
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propagate outwards. Curve (c) corresponds to maximum density, ∼ 9.7 ×
1014 g cm−3. The inner 10 km is now at rest, and from the discontinuity in
the velocity curve, it can be seen that the shock has just formed. In (d) the
outgoing shock is very obvious. The central density is ∼ 6.9× 1014 g cm−3,
and the core is adjusting to its final density ∼ 4 × 1014 g cm−3. As we will

Figure 18: Velocity profile in the core at four epochs during collapse and
explosion. Curve a) corresponds to the last epochs of the infall. b) The
density at center is close to nuclear. The matter outside is falling in with
increasing velocity. c) The infalling mass at the center has been brought
to rest, while the accretion is occurring outside. d) The shock has been
launched. (Cooperstein & Baron 1990)

see in next section, an important point for the survival of the shock is that
it is not formed at the center of the star, but close to the outer edge of the
core, at a mass of ∼ 0.5 M� from the center, or ∼ 20 km.

6.13 Energy losses in the shock

The total energy of the shock, as it is launched outside the core, is roughly
the binding energy of this, ∼ 5 × 1051 ergs. While the initial energy of
the shock is large enough to overcome gravity, the problem is that there
are severe energy losses behind the shock, which takes away energy from
it. These are mainly due to photo-disintegration of iron by the shock and
due to neutrino losses in the hot gas behind the shock. Depending on the
temperature, the photo-disintegration may proceed all the way to nucleons,
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or for lower temperature to α particles. Total disintegration of an Fe nucleus
to nucleons requires 8.8 MeV per nucleon. Therefore, for each 0.1 M� of
iron outside the core ∼ 1.5 × 1051 ergs is lost by this process.

Success or failure depends on several factors. The mass of the iron
core is crucial, to avoid disintegration losses. The smaller, the better. The
maximum mass for an explosion is ∼ 1.2 M�. This is sensitive to factors
like the 12C(α, γ)16O reaction rate and the treatment of convection. Another
important factor is the stiffness of the equation of state. A soft equation of
state above nuclear density favors explosion. Unfortunately, this is the most
uncertain regime of the equation of state.

Summarizing the current situation, the prevailing view is that this prompt
explosion mechanism will probably not work without some additional energy
input, or other ingredient, except possibly for stars of mass <∼ 12 M�.

6.14 Neutrino heating

In a now classical computer run, Jim Wilson let one of his apparently unsuc-
cessful simulations run for a much longer time than before. When he looked
at the result he saw, to his surprise, that the stalled shock had now become
a successful one due to the late energy input from the neutrinos from the
explosion and the newly formed hot proto-neutron star.

In Fig. 19 we show the resulting mass locations as function of time for
this simulation. As we see, the collapse occurs on a time scale of a few
tens of milliseconds. The shock forms at a distance of ∼ 100 km from the
center. This expands, but because of energy losses it loses speed, and after
∼ 0.1 s it is almost stalled. Accretion continues, and normally one would
consider this a failed explosion. However, because of the longer than normal
simulation, we see that at ∼ 0.5 s the shock suddenly gets new energy and
rapidly expands out of the core. At that point the density at the shock is
low enough for losses to be negligible, and a the result is a healthy explosion.

Although successful, these simulations were based on an unrealistic equa-
tion of state above nuclear density, as well as other deficiences. Nevertheless,
what was most important was that they pointed out the importance of neu-
trino heating and the consequences of this on a long time scale. We will now
discuss the details of this mechanism in more detail.

The proto-neutron star formed by the collapse cools by an enormous flux
of neutrinos on a time scale given by the neutrino diffusion time scale tdiff ,
given by Eq. (6.39), but now with ρ ∼ 2 × 1014 g cm−3. Finally, as the
density decreases at the boundary of the iron core, the density will be low
enough for the neutrinos to escape freely. One can therefore, in analogy with
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Figure 19: Trajectories of different mass shells for Jim Wilson’s successful
explosion model. The upper dashed line gives the position of the shock,
while the lower is that of the neutrino photosphere. The dotted line marks
the region where the abundance of He is 50%. Note the revival of the shock
at 0.55 s due to neutrino heating (Bethe & Wilson 1985).
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the photosphere, define a neutrino-sphere. As these propagate out through
the shocked gas, they will scatter and be absorbed by the nucleons.

The most important heating processes are

ν̄ + p → e+ + n (6.41)

and
ν + n → e− + p (6.42)

The temperature behind the shock is set by the dis-integration of Fe.
For each nucleon this costs a binding energy Ebind. Because the cooling
decreases faster than the heating, there will be a radius where heating and
cooling balance, often referred to as the gain radius. Inside of this there is
a net cooling by the neutrinos, while outside there is a net heating. This is
summarized in Fig. 20.

Figure 20: Schematic picture of the different regions close to the neutron
star (Janka 2001)

The neutrino heat input is probably crucial for the outcome of the explo-
sion. Just outside the gain radius the matter is heated to a high temperature,
decreasing outwards. This therefore induces a strong entropy gradient out-
wards, leading to convection. The large scale convective motions transport
entropy (hot gas) to the region close to the shock and can therefore re-
energize the shock (see Fig. 19 and Fig. 21). At the same time low entropy
(cool) gas sinks inward, inside the gain radius. There it will be heated by the
neutrinos. This compensates the iron dis-integration losses, and if efficient
enough, can cause the shock to survive through the whole iron core.

The efficiency of the late heat input mechanism depends naturally on the
neutrino luminosity from the proto-neutron star. The neutrino emission is a
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consequence of the de-leptonization of the proto-neutron star. The νe and ν̄e

are produced by e−+p → ν+n and e+ +n → ν̄e +p, while e+ +e− → ν̄i +νi

are responsible for the production of µ and τ neutrinos, by roughly equal
numbers.

Taking all these ingredients together, the increased neutrino luminosity
from the proto-neutron star, the neutrino heating of the gas of the matter
outside the neutron star and the convective motions behind the shock one
has in some simulations been able to obtain an explosion. However, several
of these successful attempts have weaknesses in the form of the treatment
of the neutron star cooling, the radiative transfer of the neutrinos or the
equation of state. It is therefore to early to make any conclusions of the
success of this mechanism. In addition, there are other ingredient. like
magnetic fields and rotation, which have only been included in simplified
models. They may, however, be crucial for the outcome. In particular, the
gamma-ray bursts may indicate the necessity to include these effects.

6.15 Explosive nucleosynthesis

If the shock has managed to escape the iron core, the density decreases
rapidly, and with that the dis-integration and neutrino losses. There will
still be some explosive nucleosynthesis in the silicon and inner parts of the
oxygen shell, but this only adds a small amount of energy to the shock. After
this the shock will propagate through the whole star and disrupt this. As the
shock reaches the surface the hot photons behind the shock are released and
one observes the explosion. This is however several hours after the collapse
of the core.

As the shock wave propagates through the silicon and oxygen rich gas
close to the iron core, the temperature behind the shock will be high enough
for explosive nucleosynthesis to take place in these regions. This burns most
of the Si and S into nuclear statistical equilibrium, (see Fig. 22).

During the first seconds after the core bounce some from the observa-
tional point of view most important isotopes are formed. Close to the border
between the neutron star and the ejecta the explosive nucleosynthesis occurs
in conditions close to NSE. As we saw in §6.4, it is therefore not surprising
that the most abundant nucleus is 56Ni. The exact mass of 56Ni, which will
be ejected, depends sensitively on where the split is between the the matter
falling into the neutron star and that expanding out. This is usually known
as the ’mass cut’. Typically, the 56Ni mass is ∼ 0.1 M�, but this can vary
by a large factor, both upwards and downwards.

In addition to 56Ni, substantial amounts of 57Ni and 44Ti are created.

42



Figure 21: Two-dimensional simulation of the explosion at 0.38 s after core
bounce. The contours show the entropy distribution. The shock is at 3800
km. Note the bubbles of neutrino heated gas, and the down drafts of sinking
cooler gas. (Janka & Müller 1996)
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Figure 22: Explosive nucleosynthesis in the central region (Kifonidis et al.
2003).

The exact abundances of the three radioactive isotopes depend on the den-
sity, temperature and neutron excess. Therefore, a determination of these
abundances provides a useful probe of the conditions at the time of the
explosive nucleosynthesis, during the first seconds of the explosion.

Outside the silicon core, in the inner oxygen shell, the shock velocity
and density are still high enough for the inner parts of the oxygen core to
be transformed into Si/S. At this point the density becomes too low for
any significant nucleosynthesis to take place. Outside of the inner oxygen
shell, the composition just before core collapse is almost unaffected by the
explosion. Summarizing the explosive nucleosynthesis, the most important
elements affected by this is oxygen and elements heavier than this.

In addition to these elements, which account for most of the newly cre-
ated elements in terms of mass, there is also a further process, which is
extremely important for the elements beyond the iron peak. This relays on
the fact that close to the mass cut, where the density and temperature is
high, the abundance of free neutrons is also high. This high neutron flux
can be absorbed by the different abundant iron group nuclei in this region,
which leads to the build up of heavier, neutron-rich isotopes. These are usu-
ally unstable to especially beta decay, which creates more stable isotopes of
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the same mass, but higher charge. This process is known as the r-process, r
for rapid.
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Figure 23: Energy versus arrival time for the detected neutrinos in the
Kamiokande II and IMB detectors. (Burrows 1988).

7 Observables of core collapse supernovae

7.1 Neutrinos from SN 1987A

The most unique observation of SN 1987A is the first observation of neutri-
nos from outside of the solar system. Although already Chiu and Colgate &
White in the 1960’s had predicted that most of the gravitational energy in
the collapse would emerge as neutrinos, the flux from supernovae at ’normal’
distances is too low for the current (and probably next) generation of neu-
trino detectors. However, the small distance to SN 1987A, 50 kpc, meant
the the flux was >∼ 104 larger than from a supernova in even the closest
galaxies outside the Local Group.

As soon as the news of the discovery of SN 1987A came, the different
teams looked at the registration journals of the most sensitive detectors,
Kamiokande II in Japan and IMB (Irwine – Brookhaven – Michigan) in
Ohio. To their satisfaction they saw a clear signal at exactly the same time,
February 23 at 07:35:41 UT. Fig. 23 shows the energies of the individual
electrons produced by the neutrinos, which approximately corresponds to a
neutrino energy given by Eν ≈ Ee + 2 MeV.

The total energy in the form of neutrinos is straightforward to calculate,
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and was predicted long before SN 1987A. Because the kinetic energy of the
shock is less than a percent of the total energy, what is emitted is just the
binding energy of the neutron star formed. For a uniform density this is

Eb =
3

5

GM2

R
= 3.1 × 1053

(

M

1.4 M�

)(

R

10km

)−1

ergs (7.1)

Note that we here should use the radius of the cool neutron star 10−20 km.
A more accurate calculation, taking the non-uniform density distribution
into account, gives a similar result.

The duration of the burst is set by the diffusion time scale of the neu-
trinos as the proto-neutron star is deleptonized and is cooling down. The
mean free path from Eq. (6.37) is therefore ∼ 106ρ−1

14 (Eν/1 MeV)−2 cm.
Using a constant density for the proto-neutron star with mass ∼ 1.4 M�, we
have ρ ≈ 2.5 × 1013(R/30 km)−3. Using these expressions in the equation
for the diffusion time, Eq. (6.38), we get

tdiff ≈ 0.2

(

R

30 km

)−1( Eν

100 MeV

)2

s. (7.2)

Typically, the neutrino energies are of the order of 100-200 MeV in the inner
core.

In reality, the density in the center is higher than the mean density used
above, and the neutrino energies also vary by a large factor, so this number
should only be taken as indicative. The fact that it is much larger than
the dynamical time scale, however, shows the importance of the neutrino
diffusion. More accurate calculations show that the neutrinos diffuse out on
a time scale of ∼ 2 s.

Despite the high interior temperature the neutrinos which escape have
a temperature of only Tν ∼ 4 − 5 MeV, corresponding to a mean energy
< Eν >∼ 3 Tν ∼ 10−15 MeV. Because of the high temperature and trapping
an approximately equal number of all six neutrino species, νe, ν̄e, νµ, ν̄µ, ντ ,
and ν̄τ are produced by pair annihilation, the plasmon process and nucleon
bremsstrahlung. The energy in each of the neutrinos is therefore ∼ 6× 1052

ergs.
The Kamiokande II and IMB detectors are both water Cherenkov de-

tectors, shielded by several 1000’nds of meter of rock. The total amount
of water in these are 2140 tons for Kamiokande II and 6800 tons for IMB.
Only electron neutrinos are detected with these water detectors. This occurs
through absorption on the protons in the water

ν̄e + p → e+ + n (7.3)
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Figure 24: Approximate neutrino luminosities of the different neutron
species. Note the logarithmic time scale. (Burrows 1984).

and elastic scattering including all neutrino species, i = e, µ, τ ,

νi + e− → νi + e−i (7.4)

The second reaction has a cross section which is only ∼ 5% of that of
the first reaction, which therefore dominates. The neutrino detectors are not
sensitive to neutrinos below ∼ 7 MeV for Kamiokande II and below ∼ 19
MeV for IMB.

To compare the detected signal with the predicted one has to convolve
the detector sensitivity with the calculated spectrum. Because of the small
numbers (19 neutrinos in total) one compares the predicted curves with the
cumulative number of neutrinos detected.

The average observed temperature of the neutrinos is 3 − 5 MeV, and
agrees well with that estimated before the explosion. A recent calculation
of the mean energy, < Eν >∼ 3 Tν . The shorter duration of the IMB signal,
which has a higher threshold, actually gives some indication that the source
is cooling.

7.2 Supernova classification

The classification of supernovae into different types and subtypes is basically
an empirical scheme, based on spectral features and light curves. However,
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it turns out that this classification also corresponds to important physical
differences between them.

Most SNe are discovered shortly after explosion when they are near max-
imum luminosity. It is therefore important to be able to distinguish the
different types from the early spectrum. In Fig. 25 we show a collection of
spectra representing the most important types.

The observationally most obvious difference between various SNe is whether
or not they have any hydrogen features in their spectra. Type I SNe are de-
fined as those without and Type II as those with Hα. A closer examination,
however, shows that there are important differences within both of these
classes. The most important are between the extremely heterogenous Type
I’s. These are shown as the top and lower two spectra in Fig. 25. While
neither of them have any trace of Hα, the observational distinction is that
the Type Ia’s have a strong Si II λ6150 line, while the Type Ib’s and Ic’s
lack a strong feature at this wavelength. The distinguishing feature between
the Ib’s and Ic’s is the presence of He I lines in the former, while the Ic’s
lack any trace of helium.

While the differences between the Ia’s and Ib/c’s seem marginal, it turns
out that they originate from completely different explosion mechanisms. The
Ia’s are thermonuclear explosions of white dwarfs, completely disrupting the
star, while the I b/c SNe and the Type II’s are core collapse explosions of
massive stars, leaving a neutron star or black hole.

This distinction can somewhat better be understood from an examina-
tion of the spectra at late epochs. Fig. 26 shows a collection of spectra taken
5 months after explosion. Unfortunately, however, no Type Ib is included,
but they are qualitatively similar to the Type Ib’s. Now the difference be-
tween the Ia’s and Ib/c SNe become very large. While the Ia spectra are
dominated by [Fe II], [Fe III] and [Co III] features, the most prominent fea-
tures in the Ic spectrum are due to [O I], [Mg I] and [Ca II], with only weak
iron lines. Also the Type II’s have late spectra where the same lines are
strong, although they tend to appear later than for the Ib/c’s.

One can now start to appreciate the physical difference between these
classes. The presence of substantial amounts of oxygen, magnesium and cal-
cium is characteristic of the processed regions of a massive star, The Type Ia
spectra with only weak features of lines from these elements and strong lines
of iron are more typical of matter which has undergone complete burning to
nuclear statistical equilibrium. The reason that the Type Ib/c’s lack hydro-
gen is most likely because they have lost their hydrogen envelopes, either as
a result of mass loss or binary mass exchange. The progenitors are there-
fore believed to be Wolf-Rayet stars. A more quantitative confirmation of
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Figure 25: Spectra of different supernova types one week after explosion
(Filippenko 1997).

50



Figure 26: Spectra of different supernova types 5 months after explosion
(Filippenko 1997).
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Figure 27: Light curves of different supernova types (Filippenko 1997).

this, requires a much more detailed analysis of their spectra. This, however,
completely confirms these conclusions.

While the previous classification has only been discussed from the spec-
tra, there are also important differences with regard to the light curves of
the different SN types. In Fig. 27 we show light curves representative of
the different types. Here the Type Ia and Type Ib/c curves mainly differ in
terms of absolute luminosity. For the first two months they are character-
ized by a bell shaped peak, occurring 2-3 weeks after explosion. They then
have a nearly linear decline in a time - magnitude plot for the rest of the
evolution. However, while the Type Ias are highly standardized, there is a
large dispersion within the Type Ib/c curves, both in absolute luminosity
and in the shape. In particular, the rate of decline after ∼ 50 days differ
considerably.

While the Type IIs have a fairly large range of light curves, one can
distinguish two main types. The IIPs which are the most frequent, are
characterized by a fairly fast rise to a peak. After a decline by a magnitude
or so, they then stay at nearly constant magnitude for ∼ 100 days. This is
the reason for the P = plateau. After this there is a drop by a magnitude
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Figure 28: Classification scheme based on spectra and light curves of differ-
ent kinds of supernovae (Turatto, 2003).

or more, and then they decline with a fairly uniform rate of ∼ 1 magnitude
per 100 days.

A less frequent class are the Type IILs, where the L stands for linear. The
plateau is here lacking and the linear decline sets in shortly after the peak.
Usually, the Type IILs are considerably brighter in absolute luminosity than
the Type IIPs. Spectroscopically, the Type IILs have already at early epochs
a strong Hα line in emission, while Hα has usually a classical P-Cygni profile
in the Type IIPs.

In addition to theses main classes, there are several other subtypes, with
more or less distinct properties. This is usually connected to interacting
with a dense circumstellar medium. In Fig. 28 we summarize the whole SN
classification scheme, and we will now discuss the physical interpretation of
these characteristics, and the differences between the various types.

7.3 Radioactivity

As we saw in §6.15, the explosive nucleosynthesis in the silicon core resulted
in several radioactive isotopes, the most important being 56Ni, 57Ni and
44Ti. All of these have comparatively short half-lives, and the decays of
these elements can therefore be directly observed, and are in fact crucial for
the observability of the supernova. The decays are characterized by either
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the half-life, t1/2, or the exponential decay time scale, τ . It is easy to see
that τ = t1/2/ ln 2.

56Ni decays on a time scale of τ = 8.8 days by electron capture as

56Ni → 56Co + γ . (7.5)

In this process it emits gamma-rays with energies 0.158 – 0.812 MeV (see
Fig. 29). The 56Co isotope resulting from this decay is, however, not stable
either, but decays by electron capture or by positron decay according to

56Co → 56Fe + γ (7.6)

→ 56Fe + e+ (7.7)

The first decay occurs in 81% of the cases and the second in the remaining
19%. In terms of energy going into gamma-rays and positrons these numbers
are 96.4% and 3.6%, respectively. The strongest gamma-ray lines are at
0.847 MeV and 1.238 MeV. The average positron energy is 0.658 MeV.
Similarly, 57Ni decays by electron capture as

57Ni → 57Co + γ (7.8)

with a very short decay time τ = 52 hours. The more interesting decay is

57Co → 57Fe + γ (7.9)

with τ = 390 days.
Finally, 44Ti decays first to 44Sc on a time scale of ∼ 89 years.

44Ti → 44Sc + γ (7.10)

and then rapidly (τ = 5.4 hours) to

44Sc → 44Ca + γ (7.11)

→ 44Ca + e+ (7.12)

(see Fig. 30).
The result of these radioactive decays are either gamma-rays or positrons.

The gamma-rays are scattered by the electrons in the ejecta through Comp-
ton scattering. In each scattering they lose roughly half of their energy to
the electrons. Because the energy of the gamma-rays are initially in the
MeV range, much higher than the binding energies of the bound electrons
in the atoms, both free and bound electrons contribute to the scattering.
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Figure 29: Transitions in the 56Ni and 57Ni decays (Diehl & Timmes 1998).

Figure 30: Transitions involved in the 44Ti and 44Sc decays (Diehl & Timmes
1998).
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This down-scattering of the gamma-rays continues until the cross section
for photoelectric absorption is larger than the Compton cross section, which
occurs at an energy of ∼ 10− 100 keV, depending on the composition. The
most important element for the photoelectric absorption is iron.

The total gamma-ray luminosity from the various decays is given by

Lγ = 1.27 × 1042

(

M(56Ni)

0.1 M�

)

e−t/111.3d
+ (7.13)

6.9 × 1038

(

M(57Co)

5. × 10−3 M�

)

e−t/390.d + (7.14)

4.1 × 1036

(

M(44Ti)

10−4 M�

)

e−t/89.yrs
erg s−1, (7.15)

and the positron input by

L+ = 4.44 × 1040

(

M(56Ni)

0.1 M�

)

e−t/111.3d
+ (7.16)

1.3 × 1036

(

M(44Ti)

10−4 M�

)

e−t/89.yrs
erg s−1 (7.17)

7.4 Light curves

7.4.1 The diffusion phase of the light curve

After shock breakout the radiation will leak out on a diffusion time scale.
We have already estimated this in Eq. (6.38), which we write as

tdiff =
3R2ρκ

π2c
(7.18)

This should be compared to the expansion time scale t = R/V . Taking the
opacity to be that of Thompson scattering, κ = 0.4 cm2g−1, and assuming
a uniform density for the envelope we get

tdiff

texp
= 1.9

(

M

M�

)(

V

104 km s−1

)(

R

1015cm

)−2

(7.19)

For a typical mass of 10 M� we therefore find that not until the supernova
has expanded to Rpeak ∼ 4× 1015 cm, after tpeak = R/V ∼ 40 days, can the
radiation leak out faster than the ejecta expand. This is analogous to the
neutrino trapping discussed in §6.11, although in this case it is expansion,
rather than collapse.
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Before tpeak the expansion is nearly adiabatic. Because the ejecta is
radiation dominated it behaves as a γ = 4/3 gas, and the total thermal
energy behaves like

Eint = (γ − 1)−1pV = 3Kρ4/3V ∝ ρ1/3 ∝ R−1 (7.20)

Therefore, if the progenitor has a radius R0, the internal energy has de-
creased by a factor Rpeak/R0 once the photons can leak out. A small initial
radius therefore means that almost all the internal energy produced by the
shock has been lost into adiabatic expansion, i.e., to kinetic energy. If the
thermal, shock energy was the only source of energy, supernovae coming
from this kind of stars would be very faint. A red supergiant, on the other
hand, could be bright for weeks just from the thermal shock energy.

Besides the thermal energy from the shock, there is one more important
source for the light curve. As we saw in §7.3, the radioactive isotopes created
in the explosion give rise to gamma-rays and positrons as they decay. These
are loosing their energy in the ejecta, thermalizing their energy into UV and
soft X-ray photons, and therefore acts like an additional energy source. In
the same way as the thermal energy from the shock, the photons undergo
scatterings in the ejecta and only leak out when the diffusion time scale
becomes comparable to the expansion time scale. The difference compared
to the shock energy is, however, that this source is not affected by adiabatic
expansion. The number of radioactive nuclei, of course, remain the same
independent of the expansion. Therefore, even if nearly all the internal heat
has been lost in the expansion, radioactivity provides a source for the light
curve even at late times.

7.4.2 The late light curve and radioactive isotopes

After the peak diffusion plays a steadily decreasing role, and the light curve
becomes simpler. This is in particular the case if we consider the bolo-
metric light curve, i.e., the frequency integrated light curve. In this case
the emitted luminosity is just the instantaneous gamma-ray and positron
energy absorbed by the ejecta.

If we neglect the scattering in space and energy of the gamma-rays and
just consider it as an absorption process, which is a reasonable approxima-
tion, although not very accurate, we can calculate the bolometric light curve
just from the absorbed energy. As an averaged opacity one can for 56Ni and
56Co use κγ = 0.06Z/A cm2g−1, where Z/A is the average charge to mass
ratio of the ejecta. The positrons have a considerably smaller mean free
path, and they can be considered to be stopped and annihilate on the same
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spot as the radioactive decay. Further, since we neglect diffusion we are
only considering epochs later than ∼ 100 days. At these epochs all 56Ni has
decayed into 56Co, and we can therefore neglect the first step in this chain.

For t � τ(56Ni) = 8.8 days we need only consider the 56Co decay.
Further, we assume that a fraction (1 − e−τγ ) of the gamma-ray energy is
trapped in the ejecta. Here τγ is an average optical depth to the gamma-rays.
Adding the gamma-ray and positron contributions we get

Lbol = 1.27× 1042

(

M(56Ni)

0.1 M�

)

e−t/111.3d

[(1− e−τγ ) + 0.035] erg s−1. (7.21)

The first term in the square bracket represents the gamma-ray input and the
second the positron input. As an estimate of the gamma-ray optical depth
we take

τγ = κγρR = κγ
3

4π

M

V 2t2
(7.22)

= 0.38
Z

A

(

M

M�

)(

V

104 km s−1

)−2( t

100 days

)−2

(7.23)

We therefore see that the gamma-ray trapping is sensitive to both the mass
and the expansion velocity. As an example we take SN 1987A, where most
of the gamma-rays were trapped in the core. For the mass we therefore take
M ∼ 4 M� and for the expansion velocity of the core ∼ 2000 km s−1. We
than get τγ ∼ 40(t/100 days)−2. The gamma-rays are therefore in this case
trapped up to ∼ 600 days. As another extreme case we can take a Type
Ia supernova, with M ∼ 1.4 M�, Z/A ∼ 0.5 and an expansion velocity
∼ 10, 000 km s−1. In this case we get τγ ∼ 0.25(t/100 days)−2, and the
ejecta is therefore transparent already at ∼ 50 days, or earlier for higher
ejecta velocities.

Eq. (7.21) shows that for τγ
>∼ 1 the bolometric light curve follows the

radioactive decay time scale closely, Lbol ∝ e−t/111.3d
. For 0.035 � τγ � 1

the decay is, however, steeper with Lbol ∝ e−t/111.3d
/t2. This dependence

explains the steeper late light curves of the Type Ia, Ib, and Ic supernovae
(§7.2).

From Eq. (7.21) we also see that the positrons become important when
τγ ∼ 0.035. For slowly expanding ejecta, as for SN 1987A, the positron
contribution does not become important before the next abundant radioac-
tive isotope, 57Ni, dominates the 56Ni contribution. For rapidly expanding
supernovae, like Type Ib/c supernovae or Type Ia supernovae, the positron
contribution, however, becomes dominant for t >∼ 300−500 days. The bolo-
metric luminosity then again follows the radioactive decay.

58



Figure 31: Bolometric light curve from ESO data for SN 1987A during the
first 1000 days. The solid line gives the bolometric light curve from Eq.
(7.21) with M(56Ni) = 0.07 M� and τγ = 30(t/100d)−2. The dashed line
shows the total radioactive energy, including that escaping the ejecta. (Data
from Bouchet et al. 1990).

7.4.3 The bolometric light curve of SN 1987A

As an example of the usefulness of the bolometric light curve we take SN
1987A. In Fig. 31 we show this during the first 1000 days. After the diffusion
phase, which ends by day ∼ 130, and up to day ∼ 400, the light curve
closely follows the predicted linear relation expected for full trapping, Mbol =
−t2.5 log e/111.3d + const = −t/102.5d + const. After day 400 there is an
increasing deviation from the full trapping case, well fit by Eq. (7.21) with
τγ = 30(t/100d)−2, showing that some of the gamma-rays now escape the
ejecta. Optical depth unity is reached after ∼ 550 days. Most important,
from the normalization of the curve one can determine the total nickel mass
to M(56Ni) = 0.07 M�. The error in this mass is not more than 10%.

By day 600 the bolometric light curve starts to deviate from that pre-
dicted by the pure 56Ni decay. This is a clear indication that the next most
abundant radioactive isotope 57Ni comes into play. Analysis shows that one
finds a good agreement with M(57Ni) = 3.3 × 10−3 M� (Fig. 32).

Thanks to its very long decay time scale, 89 years, 44Ti takes over as
the dominant source of energy to the ejecta at ∼ 1700 days. Although only
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Figure 32: Bolometric light curve for SN 1987A compared to theoretical
light curves from different isotopes. (Diehl & Timmes 1998).

∼ 25% of the energy in the decay is in the form of positrons, these dominate
the energy input. The reason is that the positrons are most likely trapped
by collisions and even a weak magnetic field, while most of the gamma-rays
escape, since τγ

<∼ 0.1. The trapping in combination with the long decay
time scale means that the light curve will be essentially flat after this epoch.
Careful modeling by Cecila Kozma shows that a mass of (1− 2)× 10−4 M�

of 44Ti was formed in the explosion. As we discussed in §7.3, this provides
us with a very useful diagnostic of the explosion conditions.

SN 1987A is not the only supernova for which the decays of 44Ti has
been observed. For Cas A (age ∼ 330 years) COMPTEL on the Compton
Gamma Ray Observatory detected the strongest gamma-ray line from the
44Sc at 1.157 MeV (Fig. 33). The strength of the line corresponds to
M(44Ti) ∼ 1.7 × 10−4 M�, close to that inferred for SN 1987A.

8 Type Ia supernovae

Observationally there are two types of SN explosions, Type I and Type II.
The Type I SNe are mainly characterized by the complete lack of hydrogen
in their spectra. As we have seen the Type Is can be divided into Type Ia
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Figure 33: Gamma-ray spectrum of Cas A obtained with COMPTEL on
the Compton Gamma Ray Observatory. (Iyudin et al. 1994).

and Type Ib/c. The latter are physically similar to the Type IIs, originating
from the collapse of massive stars. The Type Ia SNe have, however, a very
different origin, often occurring in elliptical galaxies with a very old stellar
population. Observationally they are very similar to each other, both their
light curves and spectra. Fig. 34 shows a compilation of three different
spectra of Type Ia supernovae and it is clear that they show very similar
spectral features.

In addition, the absolute luminosities are also similar within a few tenths
of a magnitude. This is particularily true if these are corrected for an ob-
served correlation of the absolute luminosity and decline rate after maxi-
mum. This is usually characterized by a quantity known as ∆m15, which is
the decrease in magnitudes from maximum until 15 days after maximum. It
is then found that a nearly linear relation between the absolute magnitude
at the peak and ∆m15. This is usually known as the Philips relation. Using
this the dispersion in absolute magnitude is only ∼ 0.1 magnitudes. They
have therefore become the most useful ’standard candle’ for determining
distances in cosmology.

The extreme uniformity of the Type Ia SNe show that they must come
from very similar types of stars. These in addition have to be very old, of the
order of billions of years, and can therefore not originate from massive stars,
like the core collapse SNe. The standard picture is therefore the explosion
of a white dwarf, with mass close to the Chandrasekhar mass. If this is in a
close binary system mass transfer from the ’normal’ star to the white dwarf
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Figure 34: Compilation of three different Type Ia spectra at an age of about
one week (Filippenko 1997).

may take place. Because of the angular momentum this will spiral in and
form a disc around the white dwarf, and later be accreted onto the white
dwarf. The accreted gas will then accumulate and normally will after some
time explode in explosive nuclear hydrogen burning. This will give rise to
an ordinary nova, occurring frequently every year in our Galaxy. In a fairly
restrictive range of mass accretion rates, 10−7 − 10−6 M� yr−1, the mass
of the white dwarf will, however, increase steadily. As the mass increases
the radius of the WD will decrease, R ∝ M−3 (Sect. 4), and the density
will therefore increase. This will heat up the degenerate core and when the
density reaches 1.5 × 109 g cm−3 and the temperature ∼ 8 × 108 K the
nuclear burning will become explosive.

The ignition of the explosion is still not well understood and may oc-
cur in two different modes. Either the nuclear burning will propagate from
the ignition site subsonically, with velocity less than the sound velocity, or
supersonically, with velocity larger than the sound velocity. In the former
case, known as a deflagration, the WD will have time to expand as a result
of the increased temperature and pressure, resulting in a decreasing density
as the deflagration wave propagates to the surface of the star. (Fig. 36)The
nuclear burning will at the center go all the way to nuclear statistical equi-
librium, mainly M56Ni. As the explosion proceeds and the WD expands the
nuclear burning will occur at lower densities and only a partial burning will
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Figure 35: Hubble diagram based on Type Ia supernovae. The distance
module µ is the difference in apparent and absolute magnitude, µ = m−M ,
and z is the redshift. Note the small scatter illustrating the usefulness of the
lightcurve as a distance measure. The dispersion is σ = 0.2 magn. (From
Prieto et al 2006).
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take place, leading to intermediate mass elements, like Si, S and Ca. In the
outer parts of the exploding WD remains of the original carbon and oxygen
may be present (Fig. 37).

Figure 36: The development of the deflagration flame seen at (A) 1.26, (B)
1.49, (C) 1.57, (D) 1.65, (E) 1.76, and (F) 1.90 s after ignition. The color
code shows the velocity. (Gamezo et al. 2003)

In the supersonic case the pressure of the star does not have time to
adjust and the explosion takes place at the density of the original WD.
This is known as a detonation. The result of this is that the whole WD,
consisting originally of ∼ 50% of carbon and ∼ 50% of oxygen , will be burnt
into nuclear statistical equilibrium. This will therefore result in a SN with
only iron peak elements.

Observationally one finds that the spectra of Type Ia SNe show clear lines
of both oxygen and intermediate mass elements at high velocities, close to
the surface (see Fig. 37). This strongly argues against a pure detonation.
Hydrodynamic simulations of pure deflagrations, however, show that in these
a substantial amount of unburnt carbon and oxygen occurs also in the center
of the supernova. This is in contradiction to observations of Type Ia SNe
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at late epochs, when the central regions dominate the light. Therefore, a
popular model is that of a ’delayed detonation’, where the burning stars
as a deflagration, expanding the WD. After a few seconds the deflagration
will turn into a detonation, transforming the unburnt fuel in the center to
higher mass elements. Because the expansion during the deflagration phase
leads to a lower density the burning will, however, during the detonation
now not go all the way to nuclear statistical equilibrium. A substantial
mass of intermediate mass elements will therefore be found at especially
high velocities, and even unburned material at the surface.

What causes the transition from deflagration to detonation is however,
not understood, and much work remains to be done. Also other aspects of
the Type Ia explosions are not well understood. In particular the nature of
the progenitor systems are unknown. Only in one case, that of Tychos SN
1572, has a binary companion probably been detected. The mass transfer
process and the accretion is also ill-understood. Most important, the in-
fluence of different initial metallicities in the progenitor star, and its effect
on especially the C/O ratio is also unknown. This will influence the total
nuclear energy available, and therefore the total luminosity of the SN. This
is especially serious for the use of Type Ia SNe as cosmological standard can-
dles. The fact that they seem to work so well for this purpose is therefore
somewhat surprising and needs to be better understood.
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9 Pulsars

9.1 What are the pulsars?

Some basic facts: ∼ 1000 pulsars detected. Of these ∼ 30 millisecond
pulsars, most of these in binary systems. The periods are in the range
0.00156 - 8.5 secs. The pulse periods are stable to the same level as atomic
clocks, approximately one part in 1012 or better. A fact that is important
for the formation process of the pulsars is that they in general have very
high space velocities, 100 − 1000 km s−1. It is likely that this was either
caused by an asymmetric explosion in connection to the supernova collapse
and explosion, or because the supernova occurred in a binary system, which
was disrupted by the explosion. Currently, the former explanation is the
most popular.

Today we know that pulsars are rapidly rotating neutron stars. It is,
however, instructive to review some of the arguments in favor of this. Let
us first calculate the maximum velocity before break-up by requiring that the
centrifugal force should be less than the gravitational force on the surface,

V 2

r
<

GM

R2
(9.1)

But P = 2πR/V , and M ≈ 4πR3ρ/3, so

ρ >
5.6 × 108

P 2
g cm−3. (9.2)

The maximum density of a white dwarf is ∼ 1010 g cm−3. The fact that
pulsars with as short periods as a few milli-seconds have been observed
clearly rules out white dwarfs. Instead, these periods indicate densities
close to nuclear, >∼ 1014 g cm−3. This is what is expected for a neutron
star. Also pulsations of a white dwarf is excluded, based on both the short
period and the stability of the pulses.

9.2 Pulsar slowing down (Longair p. 100-104)

Far from the pulsar the magnetic field can be approximated by a dipole
field with magnetic moment pm. If this dipole field has an angle α with the
rotation axis (defined to be the z-axis), the magnetic moment will vary as

p = p0(cos αez + sin α cos Ωtex + sin α sinΩtey) (9.3)
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The total energy loss is

dE

dt
= −2p̈2

3c3
(9.4)

which is the same as the energy loss from an electric dipole (see e.g., Jackson
or Landau-Lifshitz Eq. 71.5). Using Eq. (9.3) for p̈ we get

dE

dt
= −2p2

0Ω
4 sin2 α

3c3
(9.5)

Note that there is no energy loss if the dipole is aligned to the rotational
axis.

The energy loss by radiation is taken from the loss of rotational, kinetic
energy, given by Ek = IΩ2/2, where I is the moment of inertia. For a
uniform sphere this is given by

I =
2

5
MR2 (9.6)

Therefore, setting dEk/dt = dE/dt we get

d

dt

IΩ2

2
= IΩ

dΩ

dt
= −2p2

0 sin2 α

3c3
Ω4 (9.7)

The dipole field is given by

B =
p0

r3
(2 cos θer + sin θeθ) (9.8)

(see e.g., Jackson 1962, Eq. 5.41). Here θ is the polar angle, now from the
magnetic axis, and r the radial direction. For a current I in a circle with
radius a we have p0 = πa2I/c.

Let us know assume that we can estimate the mass and radius of the
neutron star, as M ≈ 1 M� and R ≈ 12 km. We can then, if we can measure
Ω and dΩ/dt, from Eq. (9.7) estimate p0. Because B ≈ p0/R

3 at the surface,
we can then estimate the magnetic field at the surface,

B ≈
(

3c3IP Ṗ

8π2R6
s

)1/2

. (9.9)

or using I ≈ 1.6 × 1045 g cm2

B ≈ 4 × 1019(PṖ )1/2 G (9.10)
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As an example we take the Crab where P = 0.033 s (i.e., Ω = 190 Hz)
and Ṗ = 4.2×10−13 s/s. With the above numbers we get I = 1.6×1045g cm2.
The energy loss rate is therefore dE/dt = IΩΩ̇ = 7×1038 erg s−1. Therefore,
p0 sinα ≈ 5 × 1038 and B ≈ 3 × 1012 G, if we set sinα ∼ 1.

There are from this two interesting observations. The first is, of course,
the extremely high magnetic field at the surface. The second is the fact that
the amount of energy lost due to the spin-down is very close to the total
amount of energy emitted in the Crab nebula. This is dominated by syn-
chrotron emission in the X-rays, and this shows that the energy needed from
this is likely to originate from the pulsar. Fig. 39 shows the central region
of the Crab with the pulsar. The blue is X-ray emission from synchrotron
emitting electrons, which clearly shows a flow of relativistic particles from
the neutron star, as well as a torus like structure. Variations in both in the
optical and X-ray structure is seen on time scales of days to months.

9.3 Electrodynamics of the pulsar

The structure of a rotating, strongly magnetized star is an interesting ex-
ercise in electrodynamics, and more important, gives some crucial insight
in the peculiar conditions around these objects. This is the basis of a now
famous analysis by Goldreich & Julian from 1969.

Consider a rotating perfectly conducting sphere with a magnetic field B.
In the interior Ohms law gives

J = σE′ (9.11)

where E′ is the electric field in the rotating frame of the conductor. The
relation between the rest frame field and that of the conductor is E′ =
E + v × B. If the conductivity is perfect (infinite) then we must have E +
v × B/c = 0, or

E = −v × B/c = −Ωr× B/c (9.12)

With the exterior B-field given by Eq (9.8) the field just inside the surface
is

B =
p0

R3
(2 cos θer + sin θeθ) = Bs(cos θer +

1

2
sin θeθ) (9.13)

and

E =
RΩBs sin θ

2
(
1

2
sin θer − cos θeθ) (9.14)

At the surface the θ component of the electric field is continuous, and the
outside (vacuum) θ component of this field at the surface is therefore equal
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to

Eθ = −RΩBs sin θ cos θ

2
eθ (9.15)

In the vacuum outside the star one can define a potential E = ∇φ, with
φ given by

∇2φ = 0 (9.16)

With the boundary condition Eq. (9.15) one finds that

φ = −BsΩR5

6cr3
(3 cos2 θ − 1) (9.17)

The potential is therefore that of a quadrapole.
From the equations above we finally find that

E · B = −B2
sΩR8

cr7
cos3 θ (9.18)

A direct conclusion of this is that the magnitude of the surface electric field
along the magnetic field lines therefore is

E ≈ −BsΩR

c
≈ 2 × 108

(

B

1012G

)

P−1 V cm−1 (9.19)

The ratio between the electrical force and the gravitational therefore is

FE

FG
= − eBsΩR/c

GMm/R2
≈ 109 (9.20)

Therefore, even if there was a vacuum outside of the pulsar, the electric
force would be so strong that electrons and protons would most likely escape
from the surface and flow into the surrounding magnetosphere. The region
outside the neutron star will therefore become filled with charged particles
which will neutralize the electric field here.

Exercise: Show and motivate the different steps leading up to Eq. (9.20).

9.4 The magnetosphere. Longair p. 107-108

Because the magnetic field is rotating with the neutron star, there will be a
radius for which the corotation velocity is equal to the speed of light. This is
given by Rl.c. = c/Ω = 5×104P km. For radii larger than this the field lines
would rotate faster than the speed of light. Field lines outside this radius
must therefore lag behind rigid rotation, and get a toroidal component, even
if this was absent at the surface.

69



For the case of a dipole field this is given by Eq. (9.8). It is not difficult
to show that the magnetic field lines in this case are given by

r = K sin2 θ (9.21)

where K is the parameter which defines the line. Of special interest is the
last field line which is closed within the light cylinder. At the surface of the
neutron star the azimuthal angle of this line is given by

sin θl.c. = (RΩ/c)1/2. (9.22)

For the parameters of the Crab pulsar θl.c. ∼ 5 deg. For θ > θl.c. the field
lines are closed, while for θ < θl.c. they are open.

The electric force will mainly be parallel to the magnetic field lines.
Particles escaping on field lines which close will mainly accumulate within
this magnetosphere, while those coming from the poles on open field lines
will escape to infinity, and therefore in this way transport energy to the
surrounding medium.

The emission process of the pulsar is still not well understood. An im-
portant ingredient in most models is the enormous potential drop at the
surface. This can lead to pair production of electrons and positrons in the
vacuum. These will then be accelerated by the electric field along the mag-
netic field lines and give rise to radiation similar to synchrotron radiation,
but with the bending of the field lines as the radius of curvature. This is
therefore known as curvature radiation. The gamma-rays produced by this
radiation, can then give rise to new pairs in the strong field and a cascade
may result.
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10 Neutron stars. Longair 15.3.3

The Chandrasekhar mass does not involve the mass of the particle respon-
sible for the degenerate pressure. The maximum mass of a star made of
neutrons should therefore be similar. The structure of the star should, how-
ever, be much more compact, as can be seen from the mas – radius relation,
Eq. (4.8), which shows that the radius should be a factor me/mn ≈ 1800
smaller. Except for this we do, however, expect a similar relation between
mass and radius.

At the next level of approximations there are, however, two effects which
changes these conclusions. The first is that the equation of state is not that
of a pure non-interacting neutron gas. Instead nuclear interacting and other
effects become important as the density is close or above nuclear.

The second effect comes from the fact that the radius of a neutron star,
∼ 10 km, is of the same order as the Schwarzshild radius, ∼ 4 km. General
relativistic effects are therefore important for the structure of neutron stars.
In this case the hydrostatic equation, Eq. (2.3), is replaced by the GR
analogue which is known as the Oppenheimer-Volkoff equation

dP

dr
= −G[m(r) + 4πr3p/c2](ρ + p/c2)

r[r − 2Gm(r)/c2]
(10.1)

The mass conservation equation is the same as before. Compared to the
Newtonian case the pressure here adds to the mass as a source to the grav-
itational force. In addition, the curvature of space changes the r2 term into
r(r−2Gm(r)/c2). All these corrections tend to increase the effect of gravity
and therefore leads to a smaller mass compared to the Newtonian case. The
neutron star analogue to the Chandrasekhar mass for a pure gas of neutrons,
the Oppenheimer-Volkoff mass, is therefore 0.71 M� corresponding to a ra-
dius 9.14 km. In contrast to the white dwarf case the pure neutron star
EOS is, however, not a very good approximation and more realistic cases
result in considerably higher masses, as we will see below. The uncertain-
ties in the structure and the EOS at especially densities larger than nuclear
are unfortunately large. We will now discuss the structure in more detail,
starting from the surface.

10.1 Crust

Close to the surface there is an ’atmosphere’ where the conditions very fast
go from non-degenerate to that of a white dwarf EOS (equation of state).
The thickness of this region is only ∼ 1 cm.

71



The crust extends to a density of ∼ 1014 g cm−3, and the thickness of the
crust is ∼ 1 km, although this may vary by a factor of about two between
different models.

In the interior the density quickly increases, and with that the Fermi
energy, EF = (p2

f − m2
ec

2)1/2 where pF = (3h3ne/8π)1/3 (Eq. (3.4)). For

densities >∼ 106 g cm−3 this energy may become large enough to overcome
the mass difference between the proton and neutron, converting protons in
the nuclei to neutrons, making the matter increasingly neutron rich, referred
to as neutronisation. The matter is therefore changing from ordinary 56Fe
to extremely neutron rich nuclei with A∼ 200 and Z/A∼ 0.1. At this point
the neutron starts to drip out of the nuclei, forming a neutron gas together
with the degenerate electrons and nuclei. This is usually referred to as
the neutron drip and occurs at ∼ 4 × 1011 g cm−3. Most of the neutrons
are, however, contained within the nuclei until a density of ∼ 1014 g cm−3.
The nuclei are located in a lattice whose structure changes from that of a
individual nuclei to distinctly non-spherical (from ’meatballs, to spaghetti,
to lasagna, to o Swiss cheese’). At ∼ 1014 g cm−3 the nuclei begin to break
up and form a gas of free neutrons together with degenerate electrons. This
occurs at about half nuclear density, or ∼ 1014 g cm−3.

Because pairing of free neutrons give a lower energy state the neutrons
will probably form a superfluid.

10.2 Core

Nuclear density corresponds to ρn ∼ 2.8 × 1014 g cm−3.
The core region contains ∼ 99% of the mass of the NS. The density in

the core is rather constant, varying by only a factor of ∼ 2. The outer core
with density <∼ 2ρn is reasonably well understood, and consists of neutrons
with a few percent of protons and electrons, and possibly muons. All are
degenerate. Neutrons and protons form a superfluid.

The extent of the inner core depends sensitive on the EOS and the mass
of the star. Superfluidity of protons also means that the protons are super-
conducting. At very high densities, well above ρn, the pairing may, how-
ever,be suppressed.

The composition of the inner core is to a large extent open. There are
several possibilities discussed. The most conservative is that it has the same
composition as the outer core, i.e., neutrons with a few percent of protons,
electrons and muons. An often discussed possibility is that a Bose-Einstein
condensate of pions may form. A variation of this is a condensate of K-
mesons (kaons). Finally, at high enough density the nucleons may merge
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into a soup of quarks, up, down and strange, and gluons.
The main effect of these different possibilities for the EOS is that the

EOS will be more or less stiff. The creation of pion and kaon condensates,
as well as quarks, will in general make the EOS soft. A soft EOS has in turn
the consequence that the matter can be compressed more, making the radius
of the NS smaller. A measurement of the radius would therefore make it
possible to test these different possibilities.

The radius can be determined from e.g. the thermal emission, if such a
component can be observed (see below). A related effect is that the cooling
of the neutron star is affected by the composition, and therefore the EOS in
the inner core.

Shortly after the collapse and bounce the temperature in the core is
∼ 5 × 1011 K at 15 s, decreasing to ∼ 5 × 109 K at 50 s. Most of the
cooling then occurs by emission of neutrinos, which in turn depends on the
composition. The most effective is the so called URCA process, named after
a casino in Rio de Janeiro by Gamow,

n → p + e− + ν̄e

p + e− → n + νe (10.2)

These two process gives no net change of the number of neutrons or protons,
but produces two neutrinos, which carry away energy. The fact that this
process always results in a loss of energy is the reason for its name. For this
process to occur the proton concentration must be sufficiently high, >∼ 1/9.
To see why this is the case we consider the case when the neutrino carries
away a negligble amount om momentum. Momentum conservation in the
last reaction is then pe + pp = pn. But for completely degenerate gases
p ∝ n1/3 for all fermions. Therefore, momentum conservation becomes
pe + pp = 2pp = pn. The ratio between protons to total number of nucleons
can then be written as

np

np + nn
=

p3
p

p3
p + p3

n

=
1

9
(10.3)

The cooling time can be estimated to ∼ 20T−4
9 s. The high proton ratio re-

quires a high density, 2-3 times that of nuclear density or ∼ 2.7×1014 g cm−3.
This in turn requires a soft EOS, and the cooling time is therefore a diag-
nostic of the EOS.

For lower densities the modified URCA process may still occur

n + (n, p) → p + (n, p) + e− + ν̄e

73



p + (n, p) → n + (n, p) + e+ + νe (10.4)

where (n, p) is an additional nucleon, neutron or proton, which ensures mo-
mentum conservation. This process can occur under more general condi-
tions, but is much slower than the direct URCA process. The cooling there-
fore takes longer time and the interior temperature will be higher. After
∼ 100 years the temperature will be ∼ 3 × 108 K in the former case, and
∼ 1.2× 109 K in the latter. The interior is now isothermal. From 100 years
to ∼ 3 × 105 years the temperature is ∼ 2 × 108 K in the URCA case and
∼ 6 × 108 K in the modified URCA case.

The connection between the interior temperature and the surface tem-
perature depends on the heat conduction at the surface. This is in turn
dependent on magnetic fields and composition. The typical surface tem-
peratures are in the range 3 × 105 to 106 K. Figure 42 shows the expected
temperatures for different assumptions about the cooling, together with ob-
servations of several NSs. Note the rapid cooling for the direct URCA case
at ∼ 15 years, while the surface temperature in modified URCA case remains

>∼ 3 × 105 for 105 − 106 years.
A determination of the surface temperature can therefor be a test on

both which of the URCA processes is operating and indirectly the EOS.
It should, however, be pointed out that the determination of the surface
temperature is difficult because for most pulsars the thermal emission from
the surface is dominated by the non-thermal radiation connected with the
pulsar mechanism in the magnetosphere. Further, most of the emission is
in the UV and in soft X-rays, which are strongly absorbed by interstellar
gas. The observations, however, indicate that cooling occurs mainly by the
modified URCA process, and that the direct is suppressed.

Another effect of the different EOS in the core is the maximum mass
of the NS. A soft EOS gives in general a lower maximum NS mass, while
conversely a stiff EOS results in a high. Fig. 43 shows the radius versus
mass for different EOSs. The maximum mass for the different EOSs ranges
from ∼ 1.4 M� to ∼ 2.7 M�. A very firm upper bound comes from the
requirement that the EOS should be such that the speed of sound is less
than the velocity of light. This mass is ∼ 3.0 M�. A determination of a
larger mass for a compact object is therefore extremely strong evidence for
the presence of a black hole (see below).

The masses of a large number of NSs in binary systems have been de-
termined with different degree of accuracy. The most accurate are those
from NSs in neutron star – neutron star systems, including the famous PSR
1913+16 (the Hulse and Taylor binary pulsar), as well as PSR 1534+12
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and PSR J0737-3039. In these cases the masses are 1.4408 ± 0.0003 M�

and 1.3873± 0.0003 M� (PSR 1913+16), 1.3332 ± 0.0010 M� and 1.3452±
0.0010 M� (PSR 1534+12), and 1.337 M� and 1.250 M� (PSR J0737-3039).
In Fig. 44 we show a compilation of masses for most of the observed neu-
tron star binaries. These are determined either from timing of the pulsar
frequency in different binaries containing at least one pulsar, or from the mo-
tion of the companion star in the case of X-ray binaries. The most accurate
of these methods is obviously those systems containing two neutron stars,
which is a very clean’ case of two point masses. As we see, the maximum
mass of the most accurately determined are ∼ 1.44 M�. There are, however,
several systems which are compatible with considerably higher masses and
neither the stiff EOSs (with large masses) or the soft (with low masses) can
unfortunately be ruled out yet.

It can be noted that there is a tendency for somewhat higher masses for
neutron stars with white dwarf companions.
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Figure 37: Abundances in one pure deflagration model (top) and two delayed
detonation models started at 1.62 s (b) and at 1.51 s (c). Note the absence of
oxygen and carbon in the delayed detonation models (Gamezo et al. 2005)
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Figure 38: An updated version of the Ṗ versus P plot. (Lorimer & Kramer)
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Figure 39: The central region of the Crab nebula as seen by Chandra in
X-rays (blue) and HST in the optical (red).
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Figure 40: Magnetic field structure around the neutron star. (Lorimer &
Kramer)
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Figure 41: Structure of a neutron star with different regions discussed in
the text. (from Lattimer and Prakash)
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Figure 42: Surface temperature as function of age for different cooling pro-
cesses. The boxes show observed temperatures and ages (with errors) (from
Lattimer and Prakash).
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Figure 43: Neutron star mass as function of central density for different
EOSs. (from Lattimer and Prakash)
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Figure 44: Compilation of neutron star masses determined from different
types of neutron star binaries. The vertical dashed line shows a rough aver-
age mass of 1.38 M� (data from Lattimer and Prakash)
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10.3 Binary pulsars

The first discovered binary pulsar was PSR 1913+16, discovered by Hulse
and Taylor. The system contains two neutron stars, one of which is observed
as a pulsar. The pulsar period of this component is 22.7 millisecond and
the orbital period 7.75 hours. From the short pulsing and orbital periods it
was immediately clear that this system could be used as a test of different
effects of General Relativity, which ultimately resulted in the Nobel prize to
Hulse and Taylor in 1993. Furthermore, the eccentricity of the orbit is very
high, e = 0.617, which is important for both the advance of the periastron
and the decay by gravitational radiation.

Usually the relativistic effects are described by the so called Post-Newtonian
parameters, which are given by

ω̇ = 3T
2/3
�

(

Pb

2π

)−5/3 1

1 − e2
(Mp + Mc)

2/3, (10.5)

γ = T
2/3
�

(

Pb

2π

)1/3

e
Mc(Mp + 2Mc)

(Mp + Mc)4/3
, (10.6)

Ṗb = −192π

5
T

5/3
�

(

Pb

2π

)−5/3
(

1 + 73
24e2 + 37

96e4
)

(1 − e2)7/2

MpMc

(Mp + Mc)1/3
,(10.7)

r = T�Mc, (10.8)

s = T
−1/3
�

(

Pb

2π

)−2/3

x
(Mp + Mc)

2/3

Mc
, (10.9)

where Pb is the period and e the eccentricity of the binary orbit. The masses
Mp and Mc of pulsar and companion, respectively, are expressed in solar
masses (M�). The constant T� = GM�/c3 = 4.925490947µs. The first PN
parameter, ω̇, describes the relativistic advance of periastron. According to
Eq. (10.5) it gives a direct measurement of the total mass of the system,
(Mp + Mc). The parameter γ denotes the amplitude of delays in arrival
times caused by the varying effects of the gravitational redshift and time
dilation (second order Doppler) as the pulsar moves in its elliptical orbit at
varying distances from the companion and with varying speeds. The decay
of the orbit due to gravitational wave damping is expressed by the change
in orbital period, Ṗb. The other two parameters, r and s, are related to
the Shapiro delay caused by the gravitational field of the companion. These
parameters are only measurable, depending on timing precision, if the orbit
is seen nearly edge-on.

For PSR 1913+16 the gravitational decay parameter is Ṗb = −2.4184 ×
10−12 s/s (Fig. 45). Based on the gravitational decay the system should
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merge in ∼ 3 × 108 years. The periastron advance is given by ω̇ = 4.22
degrees/yr. The most recent determination of the individual pulsar masses
are 1.4414±0.0002 M� and 1.3867±0.0002 M�. Besides PSR 1913+16, the
binary PSR B1534+14 has provided a similar test of relativity.

Figure 45: The gravitational radiation orbital decay parameter for PSR
1913+16 together with that predicted from gravitational radiation loss.

The most interesting of the binary pulsars discovered after PSR 1913+16
is the double-pulsar PSR J0737-3039. This is unique in the sense that two
pulsars are seen in this system, which gives additional constraints on the
parameters of the system. The individual periods are 22.7 ms and 2.773 s.
Another unique feature is that it is seen nearly edge-on with sin i = 0.9995,
i.e. i = 87 degrees. This makes it possible not only to study the orbital
parameters, but also to probe the pulsar magnetospheres. The orbital period
is 2.4 hours. The periastron advance Ω̇ = 16.90. degrees, which is four times
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larger than for PSR 1913+16. The edge-on nature of the system has also
provided a new observational constraint from the ratio of the masses of
the system, R = M1/M2. The system will be coalescing within 85 million
years, much shorter than for PSR 1913+16. This in connection to the low
luminosity has increased the frequency of merging neutron stars by an order
of magnitude, which is important both for the detection of gravitational
waves and for merging neutron stars as a source of the short gamma-ray
bursts. In Fig. 46 we show the solution for the two masses as function of
the different post-Newtonian parameter, including R. From it is found that
the neutron star masses are 1.3381 ± 0.0007 M� and 1.2489 ± 0.0007 M�.
The ratio of the predicted and observed values of the Shapiro time delay
parameter is 0.9987 ± 0.00050, confirming this effect of the General Theory
of Relativity.

Figure 46: Orbital parameters in the M1,M2 plane for PSR J0737-3039.
(Kramer et al. 2006)
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Figure 47: The Shapiro time delay as function of the phase for PSR J0737-
3039. The solid lines shows that predicted from General Relativity. (Kramer
et al. 2006)

10.4 The binary mass function. (Longair p. 113)

Let a1 and a2 be the distance from the CM, i.e.

a = a1 + a2 (10.10)

and
M1a1 − M2a2 = 0 (10.11)

or

a =
(M1 + M2)

M2
a1 (10.12)

We observe the projected orbital velocity v1, given by

v1 =
2π

P
= a1 sin i (10.13)

where i is the inclination. Keplers law says that

G(M1 + M2)

a3
=

(

2π

P

)2

(10.14)
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Therefore

f(M1,M2, i) =
(M2 sin i)3

(M1 + M2)
=

Pv3
1

2πG
(10.15)

We can observe the RHS of this equation. As shown by this equation, this,
however, only gives the mass function. In addition we need to know the
inclination and the mass ratio.

Figure 48: Effective potential for different values of the angular momentum.
The l = 2

√
3 curve marks the minimum angular momentum before capture.

11 Hydrodynamics

11.1 The equations of fluid dynamics

Consider a volume, V , surrounded by a surface, S, with a flux of particles
flowing in and out of the volume through the surface. . The mass flowing
out through a surface element dS (with normal out from the volume) per
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unit time is ρvdS. This flow integrated over the whole surface is of course
the same as the decrease in mass in the volume, or

−
∫

∂ρ

∂t
dV =

∫

ρvdS (11.1)

With Gauss theorem the surface integral can be converted to a volume
integral,

−
∫

∂ρ

∂t
dV =

∫

∇ · ρvdV (11.2)

Because this should be true for any volume we must have

∂ρ

∂t
= −∇ · ρv (11.3)

which is the continuity equation for the mass.
Next let us consider the force acting on the surface through the pressure,

−pdS (note sign). Again using Gauss theorem we have

−
∫

pdS = −
∫

∇pdV (11.4)

The force on dV as it moves around is therefore −∇pdV , so that

ρ
dv

dt
= −∇p + ρ∇φ (11.5)

where φ is the gravitational potential. This is the Lagrangian (comoving)
derivative, so in Eulerian coordinates we get

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + ρ∇φ (11.6)

This is the Euler equation.
Euler’s equation can also be written as a conservation law of momentum

per unit volume, ρvi, similar to that of mass. Using the mass and momentum
conservation above we have

∂ρvi

∂t
= ρ

∂vi

∂t
+ vi

∂ρ

∂t
= −ρ

∑

j

vj
∂vi

∂xj
− ∂p

∂xi
+ ρ

∂φ

∂xi
− vi

∑

j

∂ρvj

∂xj

= −
∑

j

∂ρvjvi

∂xj
− ∂p

∂xi
+ ρ

∂φ

∂xi
(11.7)

If we write
Tij = pδij + ρvivj (11.8)
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where δij is 0 for i 6= j and 1 for i = j, this can be written as

∂ρvi

∂t
= −

∑

j

∂Tij

∂xj
+ ρ

∂φ

∂xi
(11.9)

The tensor Tij gives the momentum flux of the j momentum component
in direction i, including both the mass flux and the pressure. It is usually
called the energy-momentum tensor.

Finally we consider the energy of the volume. This is the sum of the
kinetic and internal energy ρv2/2 + ρε. Here, ε is the internal energy per
unit mass. Let us consider the evolution of this quantity with time,

∂

∂t
(
1

2
ρv2 + ρε) =

v2

2

∂ρ

∂t
+
∑

i

ρvi
∂vi

∂t
+ ε

∂ρ

∂t
+ ρ

∂ε

∂t
(11.10)

which clearly has the form of a conservation law, and is analogous to the
mass conservation law Eq. (11.6).

The connection between internal energy, pressure, volume and heat loss
(Tds) is given by

dε = −pdV + Tds = −pdV + Tds (11.11)

where V is the specific volume (i.e., volume per unit mass), so V = 1/ρ and
s is the entropy, also per unit mass.

Using this together with mass conservation and momentum conservation
Eqns. (11.3) and (11.6) and writing the heat loss term as

ρT (
∂s

∂t
+
∑

i

vi
∂s

∂xi
) = ρT

ds

dt
= Λ (11.12)

one can now transform Eq. (11.10) to

∂

∂t
(
1

2
ρv2 + ρε) = −

∑

j

∂

∂xj
[ρvj(

v2

2
+ w)] + vj

∂φ

∂xj
+ Λ (11.13)

where w = ε + p/ρ = γ/(γ − 1) p/ρ is the heat function. This is equivalent
to

∂

∂t
(
1

2
ρv2 + ρε) = −∇ · [v(

1

2
ρv2 + ρε + p)] + ρv · ∇φ + Λ (11.14)

This equation says that the change in total energy density in a volume is
equal to the flux of kinetic and internal energy through its surface (the
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ρv(v2/2 + ε) term) plus the work done on this volume by the pressure (the
vp term), plus the heat lost by other processes, like conduction or radiation.

Equations (11.3), (11.6) and (11.14) (or Eq. (11.13)) constitute the
complete set of hydrodynamic equations.

A case which often is important is that of a stationary, spherically sym-
metric flow. In this case all ∂/∂t-terms, as well as angular derivatives are
zero. Further, ∇ · f = r−2∂(r2fr)/∂r (since ∂/∂θ = ∂/∂φ = 0), and we get

0 = − 1

r2

∂

∂r
[vr2(

1

2
ρv2 + ρε + p)] + ρ

∂φ

∂r
+ Λ (11.15)

Finally we note that Eq. (11.6) can be written

∂ρ

∂t
+ ∇ · ρv =

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v =

dρ

dt
+ ρ∇ · v = 0 (11.16)

For terrestrial applications it is often a good approximation to consider the
fluid as incompressible, i.e. that the density does not change as the fluid
element moves. This means that dρ/dt = 0, or from the equation above
that ∇ · v = 0.

11.2 The shock jump conditions

The speed of sound for an adiabatic gas is given by

c2
s =

∂p

∂ρ
= γ

p

ρ
(11.17)

where γ is the adiabatic index. For a non relativistic gas γ = 5/3 and for a
relativistic γ = 4/3.

Consider a wave propagating with the sound velocity, initially with a
sinusoidal form (see Fig. 49). The crest of the wave will have a density
slightly higher than the through. Because c2

s ∝ p/ρ ∝ ργ−1 the sound
velocity will therefore be higher in the crest than in the through, which
means that the crest will propagate faster than the through. The initially
sinusoidal wave will therefore gradually become steeper, and at some point
the crest will catch up with the through. The wave will then break, as is
familiar from the sea. Mathematically this is the same as a discontinuity.

Before the breaking of the wave the motion of the particles in the fluid
could be considered as dissipation less, i.e., the viscosity played little role.
One the wave brakes the particles collide and the viscosity will lead to dis-
sipation, resulting in a non-adiabatic process.
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Figure 49: Non-linear development of a wave.

An even more dramatic situation will occur if some object, e.g., an air-
plane, is moving with a velocity higher than that of the sound. For objects
with velocity below that of the sound, sound waves will propagate ahead of
it, which will affect the density and pressure of the medium. The medium is
therefore ’prepared’ for the arrival of the object, and a fairly smooth tran-
sition takes place. This is not possible for a supersonic object. Here, the
sound waves can not send this kind of early warning to the system, since
they constantly lag behind the object. The arrival of the object will there-
fore only affect the medium once it has already arrived. The transition from
the undisturbed medium to the disturbed will therefore take place very sud-
denly, and will for a thin transition region where the atoms of swept up by
the object will collide with those of the undisturbed medium. Here viscosity
will play a very important role and as above a dissipative process with a
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large change in entropy will take place. The thickness of the transition will
be of the order of the mean free path of the particles. For most purposes
this shock wave can be considered as a mathematical discontinuity, although
for certain processes like non-thermal particle acceleration or non-thermal
heating the actual structure is important.

To describe the relation between the conditions ahead and behind the
hock wave we use the conservation laws derived in the previous section.

Let us therefore consider a very thin region of the flow with the pre-
shock gas on one side. Further, we make a Galilean transformation into
the reference system of the shock. All velocities will therefore from now

on refer to that of the shock discontinuity. If e.g., the shock moves with
velocity vs relative to an observer at rest relative to the gas into which the
shock propagates, the velocity of the gas coming in to the shock in the shock

system will be vs. The density, velocity and pressure are here denoted by
ρ1, v1, p1, while those behind the shock are denoted by ρ2, v2, p2. Because
the region is very thin the flow can be considered one-dimensional, and time
independent.

The mass conservation equation (11.3) then become

d

dx
ρv = 0 (11.18)

Therefore we have
ρ2v2 = ρ1v1 = J (11.19)

The momentum equation, Eq. (11.6), becomes

ρv
dv

dx
+

dp

dx
= 0 (11.20)

From Eq. (11.18) ρv = const., so ρv2 + p = constant, and

ρ1v
2
1 + p1 = ρ2v

2
2 + p2 (11.21)

Finally, the energy equation, Eq. (11.14), becomes

d

dx
[ρv(

v2

2
+ w)] = 0 (11.22)

Again using ρv = const. we get

v2
1

2
+ w1 =

v2
2

2
+ w2 (11.23)
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Let us now specialize this to a perfect gas where ε = (γ − 1)−1p/ρ The heat
function is w = ε + p/ρ = γ/(γ − 1) p/ρ. Therefore Eq. (11.23) becomes

v2
1

2
+

γ

(γ − 1)

p1

ρ1
=

v2
2

2
+

γ

(γ − 1)

p2

ρ2
(11.24)

Let us now further specialize this to the case when the pressure of the
gas in front of the shock is much smaller than that in the post shock gas,
i.e., p1 � p2. This is known as the strong shock condition. The momentum
condition Eq. (11.21) then becomes

ρ1v
2
1 = ρ2v

2
2 + p2 (11.25)

and the energy condition Eq. (11.24)

v2
1

2
=

v2
2

2
+

γ

(γ − 1)

p2

ρ2
(11.26)

Using Eqns. (11.19), (11.25) and (11.26) one then finds that

v2

v1
=

ρ1

ρ2
=

(γ − 1)

(γ + 1)
(11.27)

One then finds that

p2 =
2

(γ + 1)
ρ1v

2
1 (11.28)

and using p = kρT/µmp, where µ is the molecular weight and mp the atomic
mass unit, we get

T2 =
2(γ − 1)

(γ + 1)2
µmp

k
v2
1 (11.29)

For γ = 5/3 we have
v2

v1
=

ρ1

ρ2
=

1

4
(11.30)

One then finds that

p2 =
3

4
ρ1v

2
1 (11.31)

and

T2 =
3

16

µmp

k
v2
1 (11.32)

The mean molecular weight is for a fully ionized mix of hydrogen and helium
µ = (n(H) + 4n(He)/(2n(H) + 3n(He)). For n(He)/n(H) ≈ 0.1 we get
µ = 0.61 and

T2 = 1.38 × 107
( v1

1000 km s−1

)2
K. (11.33)
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12 Viscosity

The momentum transfer connected to the particle flow and pressure as given
by Euler’s equation Eq. (11.6), only involves reversible processes. There
may, however, also be processes involving irreversible, dissipative processes.
This is known as viscous processes, and are familiar from fluids like water,
oil etc. Also gases are characterized by a viscosity. For these the viscosity
is connected with molecular processes, There may, however, also be macro-
scopic processes which can have the same effect. An example is turbulence,
which is important in e.g., accretion disks.

To describe the viscous momentum transfer we should add a term to the
Euler equation. This means an additional term to the energy momentum
tensor in Eq. (11.8). This term should obviously depend on the derivative
of the velocity. If we have a flow in the x-direction, the momentum transfer
connected with the friction should be proportional to the derivative of the
velocity in the y-direction,

τxy = a
∂vx

∂y
(12.1)

For a fluid in circular motion the friction should depend on both ∂vx/∂y
and ∂vy/∂x. In addition for a fluid with angular velocity independent of the
distance from the center (solid body rotation) the friction should vanish.
For this v = Ωxr, where Ω is independent of r. Therefore vx = Ωy and
vy = −Ωx, The only combination of the above derivatives which gives zero
friction is

τxy = a(
∂vx

∂y
+

∂vy

∂x
) = τyx (12.2)

In addition to these shear stresses there may also be dissipation due to
compression in either direction. This should be proportional to dρ/dt or
∇ · v (see Eq. (11.16)),

τxx = b∇ · v = τyy (12.3)

The most general expression generalized to three dimensions is therefore

τij = a(
∂vi

∂xj
+

∂vj

∂xi
) + bδij

∑

k

∂vk

∂xk
(12.4)

Usually on writes this as a traceless part and a diagonal

τij = η(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij

∑

k

∂vk

∂xk
) + ζδij

∑

k

∂vk

∂xk
(12.5)
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Here η is called the shear viscosity and ζ the bulk viscosity. For an incom-
pressible fluid only the former is important. This should be added to the
perfect gas expression for the energy-momentum tensor in Eq. (11.8).

Tij = pδij + ρvivj + τij (12.6)

12.1 The Navier-Stokes equation

Adding the viscosity tensor to the energy-momentum tensor in Eq.(11.9) we
get the equation of motion, including viscosity

∂ρvi

∂t
= −

∑

j

∂Tij

∂xj
+ ρ

∂φ

∂xi
= − ∂p

∂xi
−
∑

j

∂ρvivj

∂xj
−
∑

j

∂τij

∂xj
+ ρ

∂φ

∂xi
(12.7)

To simplify the writing we will from now on use the Einsteins sum conven-
tion. This says that whenever an index occurs twice this implicitly means a

summation over this index. E.g.,
∑

i AiBi ≡ AiBi and

∇ · v =
∑

i

∂vi

∂xi
≡ ∂vi

∂xi

The equation above is therefore equivalent to

∂ρvi

∂t
= −∂Tij

∂xj
+ ρ

∂φ

∂xi
= − ∂p

∂xi
− ∂ρvivj

∂xj
− ∂τij

∂xj
+ ρ

∂φ

∂xi
(12.8)

If we assume that the viscosity coefficients η and ζ are independent of
temperature and pressure, i.e., of xi, we get

∂τij

∂xj
= η

∂2vi

∂xj∂xj
+ (ζ +

2

3
η)

∂2vj

∂xi∂xj
(12.9)

(note that δij∂/∂xj = ∂/∂xi). Using the mass continuity equation we can
now write Eq. (12.7) as

ρ
∂vi

∂t
+ ρvj

∂vi

∂xj
= − ∂p

∂xi
− η

∂2vi

∂xj∂xj
− (ζ +

2

3
η)

∂2vj

∂xi∂xj
+ ρ

∂φ

∂xi
(12.10)

or in vector notation

ρ
∂v

∂t
+ ρv · ∇v = −∇p − η∆v − (ζ +

2

3
η)∇ ∇ · v + ρ∇φ (12.11)

where ∆ is the Laplace operator, ∆ =
∑

i ∂
2/∂x2

i . This is the Navier-Stokes
equation for a viscous fluid.
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In the case of an incompressible fluid, ∇ · v = 0, the momentum tensor
due to viscosity, Eq. (12.5), and the Navier-Stokes equation above take a
simpler form,

τij = η(
∂vi

∂xj
+

∂vj

∂xi
) (12.12)

and
∂ρ

∂t
+ ρv · ∇v = −∇p − η∆v + ρ∇φ (12.13)

12.2 The energy equation for a viscous fluid

For a fluid with no viscosity the energy conservation equation Eq. (11.14)
is

∂

∂t
(
1

2
ρv2 + ρε) = −∇ · [v(

1

2
ρv2 + ρε + p] + ρv · ∇φ + Λ (12.14)

which says that the change of total energy in a volume (LHS) is equal to
the energy flux across its boundary (RHS).

Also the work done by the viscous force generates an energy flux. To see
this we note that τijdSj is the viscous force in the direction i on the surface
j. The work done per unit time on the volume in direction i is therefore
viτijdSj. (Because we are here considering the individual contributions for
each i and j, there is here no summation implied.) The total change in
energy is therefore

dE

dt
=

∫

viτijdSi (12.15)

where as usual a sum over i and j is implied, since we now consider the total
contribution from all directions and on all sides. Applying Gauss theorem
to the surface integral we get

dE

dt
=

∫

∂

∂xj
(viτij)dV (12.16)

Therefore, we should add this term to Eq. (12.14) giving in component form

∂

∂t
(
1

2
ρv2 + ρε) = − ∂

∂xi
[vi(

1

2
ρv2 + ρw) + vjτij] + ρvi

∂φ

∂xi
+ Λ (12.17)

where w = ε + p/ρ is the heat function. This is the full energy equation
including viscosity.

To more clearly see the effect of the viscous heating we calculate the total
energy dissipation ρTds/dt per volume and unit time as the fluid element
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moves. Transforming from the comoving, Lagrangian system to a fixed
Eulerian we get

ρT
ds

dt
= ρT [

∂s

∂t
+ vi

∂s

∂xi
] (12.18)

To rewrite this equation we use the law of thermodynamics, dε = −pdV +
Tds = p/ρ2dρ + Tds to eliminate ∂s/∂t. In the same way we use dw =
TdS + dp/ρ to eliminate ∂s/∂xi to get

ρT
ds

dt
= ρT [

∂ε

∂t
− p

ρ2

∂ρ

∂t
+ vi

∂w

∂xi
− vi

ρ

∂p

∂xi
] (12.19)

We now use the energy conservation equation Eq. (12.17) to calculate
the term ρ(∂ε/∂t+ vi∂w/∂xi). We neglect for the moment the gravitational
potential. Using mass conservation we find from Eq. (12.17)

ρ(
∂ε

∂t
+ vi

∂w

∂xi
) = −ρvi

∂vi

∂t
− p

ρ

∂ρvi

∂xi
− ρvivj

∂vj

∂xi
+

∂viτij

∂xj
(12.20)

We now use the Navier-Stokes equation

ρ
dvi

dt
= ρ

∂vi

∂t
+ ρvj

∂vi

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+ ρ

∂φ

∂xi
(12.21)

multiplied by vi to eliminate the ρvi∂vi/∂t term in Eq. (12.20), resulting in

ρ(
∂ε

∂t
+ vi

∂w

∂xi
) = vi

∂p

∂xi
− p

ρ

∂ρvi

∂xi
+ τij

∂vi

∂xj
(12.22)

Using this in Eq. (12.19) we finally get

ρT
ds

dt
= τij

∂vi

∂xj
(12.23)

for the energy dissipation due to the viscous forces per volume and unit
time. If there are radiation losses this adds the term Λ (see Eq. (12.17).
In addition, heat conduction or other diffusive energy losses may also con-
tribute. In particular, heat conduction is often important, either through
Coulomb collisions or through radiation (see Eq. 2.10). The energy flux is
for this proportional to the temperature gradient,

Fi = −κ
∂T

∂xi
(12.24)
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Note that the flux is opposite to the temperature gradient. The energy loss
per volume is then (using again Gauss theorem)

∂Fi

∂xi
= − ∂

∂xi

(

κ
∂T

∂xi

)

(12.25)

which should be added to Eq. (12.23). In general the conductivity κ is a
function of temperature.

The Navier-Stokes equation, Eq. (12.21), and Eq. (12.23) for the viscous
energy dissipation will be useful especially in connection to the hydrodynam-
ics of accretion disks.

In the case of an incompressible fluid Eq. (12.23) takes a simple form.
Using Eq. (12.12) in this we get

ρT
ds

dt
= η

∂vi

∂xj
(
∂vi

∂xj
+

∂vj

∂xi
) (12.26)

which can also be written

ρT
ds

dt
=

η

2

(

∂vi

∂xj
+

∂vj

∂xi

)2

(12.27)

13 Spherical accretion

As an application of the hydrodynamical equations we consider the adiabatic
accretion of gas from a constant density medium at rest onto a central grav-
itating body with mass M . We therefore start with the time independent
version of Eq. 11.14 with φ = GM/r

1

2
v2 + (ε + p/ρ) − GM

r
= constant (13.1)

or
1

2
v2 +

γ

(γ − 1)

p

ρ
− GM

r
= constant (13.2)

But c2
s = γp/ρ, so

1

2
v2 +

c2
s

(γ − 1)
− GM

r
= constant (13.3)

The value of the constant depends on the problem we consider. In our case
with accretion from a stationary medium with v ≈ 0 as r → ∞ we have
constant = c2

s(∞)/(γ − 1), so

1

2
v2 +

c2
s

(γ − 1)
− GM

r
=

c2
s(∞)

(γ − 1)
(13.4)
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In addition we have the mass conservation which says that

Ṁ = 4πr2vρ (13.5)

where Ṁ is the accretion rate.
The relation above contains both cs(r) and v(r). In principle we can

use the relation c2
s = γp/ρ = γKργ−1 and Eq. (13.5) to eliminate c2

s in Eq.
(13.4). This, however, only gives v as a function of r and Ṁ . The latter
should, however, not be a free parameter, but should be determined from
the values of the density and sound velocity at infinity.

To proceed further we go back to the momentum equation which for a
stationary, spherically symmetric flow gives

v
dv

dr
= −1

ρ

dp

dr
− GM

r2
(13.6)

But dp/dr = dp/dρ dρ/dr = c2
sdρ/dr. Eq. (13.5) shows that d ln ρ/dr =

−d ln vr2. Therefore

v
dv

dr
= c2

s

d ln vr2

dr
− GM

r2
(13.7)

or
(

1 − c2
s

v2

)

dv2

dr
= −2GM

r2
+

4c2
s

r
(13.8)

This equation is interesting because it has an obvious singularity for the
RHS at

rc =
GM

2c2
s

. (13.9)

This means that also the LHS must be zero for r = rc. There are two
possibilities for this. Either dv/dr = 0 at rc, or v = cs at rc.

For our outer boundary condition the dv/dr = 0 possibility corresponds
to solutions which accelerate to a maximum velocity and then decreases (see
Fig. 50). This means that the density and pressure will increase rapidly for
small r. For this to be possible the accretion solution must match some kind
of atmosphere. The flow will everywhere be subsonic.

The v = cs at rc solution means that the flow becomes supersonic at
rc, which is the reason for sometimes naming it the sonic radius. This is,
however, only correct for this type of solutions.

Using Eq. (13.9) in Eq. (13.4) with v = cs at r = rc we get

1

2
c2
s +

c2
s

(γ − 1)
− 2c2

s =
c2
s(∞)

(γ − 1)
(13.10)

100



Figure 50: Different solutions corresponding to different boundary condi-
tions of the flow equations. Solution number 2 corresponds to the accretion
onto a compact object. Solution number 1 corresponds to a wind, with an
outer boundary condition with negligible pressure.

or

cs(rc) = cs(∞)

(

2

5 − 3γ

)1/2

(13.11)

We can now use this in Eq. (13.5) evaluated at rc

Ṁ = 4πr2
ccs(rc)ρ(rc) =

πG2M2ρ(rc)

cs(rc)3
(13.12)

For an adiabatic flow ρ(rc) = ρ(∞)(cs(rc)/cs(∞))(2/(γ − 1)), so

Ṁ =
πG2M2ρ(∞)

cs(∞)3

(

2

5 − 3γ

)(5−3γ)/2(γ−1)

(13.13)
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This gives finally the accretion rate as function of the density and sound
velocity at infinity. This is usually referred to as the Bondi accretion rate.
The sound velocity is given by

cs =

(

γ
p

ρ

)1/2

=

(

γ
qkµT

mp

)1/2

=

(

γ
kT

µmp

)1/2

= 12

(

T

104K

)1/2

km s−1

(13.14)
for γ = 1 For the ISM we have cs ≈ 10 km s−1 and ρ ≈ 1.6 × 10−24 g cm−3

(i.e., one atom per cm−3). This gives for γ ≈ 1.4

Ṁ = 1011

(

M

1 M�

)2 ρ(∞)

1.6 × 10−24 g cm−3

(

cs(∞)

10 km s−1

)3

g s−1 (13.15)

This is a very small accretion rate (∼ 10−15 M� yr−1) and accretion from
the ISM is usually unimportant.

For r � rc the gravitational attraction dominates over the pressure term
in Eq. (13.4) and the gas is in free fall,

v =

(

2GM

r

)1/2

(13.16)

The density is then

ρ =
Ṁ

4π(2GM)1/2r3/2
(13.17)

We also remark that Eq. (13.3) also applies for an outflow, like the solar
wind, but now with a different constant and a solution which starts subsonic
at small radii, and ends with a supersonic flow at large radii.

14 Accretion efficiency

Consider first radial accretion onto a central object. Inside the accretion
radius it is a good approximation to consider the velocity to be close to free
fall,

1

2
mv2 ≈ GmM

R
(14.1)

Assume that the flow ends at a hard surface, e.g., a white dwarf or
neutron star. The kinetic energy will then be converted to radiation, and
the luminosity will be given by

L =
GṁM

R
=

1

2
ṁc2 Rg

R
(14.2)

102



where rg = 2GM/c2 is the Schwarzschild radius.
We can now define an accretion efficiency by

L = εṁc2 , (14.3)

so that

ε =
1

2
ṁ

Rg

R
(14.4)

For a white dwarf ε = 4 × 10−4 while for a neutron star ε = 0.2. For a
black hole the maximum energy which can be released is the binding energy
of the last stable orbit. For a Schwarzshild hole this corresponds to ε = 0.06,
while for a maximally rotating Kerr hole ε = 0.42. These numbers should
be compared to that of nuclear burning which corresponds to ε ≈ 0.01.
Note, however, that the accretion efficiencies for a black hole depends on
the energy release mechanism, because of the absence of a hard surface, and
the numbers just given are only upper limits, while there is no lower limit.
in fact, some models for black hole accretion have extremely low accretion
efficiencies.

15 The Eddington luminosity

The accretion luminosity results in a radiation pressure acting on the accre-
tion flow. An important upper limit to the accretion luminosity of a steady
flow can be obtained by balancing the gravitational force to the radiation
force acting on the gas. For a completely ionized gas, which is often a good
approximation at the high temperatures in the inflowing gas, electron scat-
tering is the most important source of opacity. The Coulomb force between
the protons and electrons then transfers this momentum to the protons,
which are responsible for most of the gravitational force.

Consider a spherical shell with radius r and thickness dr. The absorbed
momentum of the electrons in this shell is then

Fs =
absorbed momentum in dr

dt
=

∆E

cdt
=

dτLdA

4πr2c
(15.1)

where dτ is the optical depth and ∆E is the absorbed energy in a time dt.
Now, dτ = σT nedr, where σT is the Thompson cross section for electron
scattering. Therefore,

Fs = LneσT drdA

4πr2c
(15.2)
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The gravitational force on the protons in the shell is

Fg =
GMmpnpdrdA

r2
(15.3)

We then find that for a luminosity

LEdd =
4πGMmpc

σT
(15.4)

the radiation force is equal to the gravitational force. Steady accretion is
therefore not possible for higher luminosities. This upper limit is known as
the Eddington luminosity and is given by

LEdd = 1.3 × 1038 M

MO
erg s−1 (15.5)

In terms of accretion rate this corresponds to

ṁ = 1.4 × 1018 M

MO

( ε

0.1

)−1
g/s = 2.3 × 10−8 M

MO

( ε

0.1

)−1
M� yr−1

(15.6)
Note that this assumes that the flow is spherical, the opacity is dom-

inated by electron scattering and that the flow is steady. Each of these
assumptions can be violated. E.g., the inflow may be in the form of a disk,
while most of the radiation may be in the polar direction. Nevertheless,
the Eddington luminosity constitutes an important measure for the accre-
tion luminosity of a steady source. Unsteady sources, such as supernovae or
gamma-ray bursts, obviously violates this limit by orders of magnitude.

16 Accretion disks

16.1 Vertical structure

Let us first consider the vertical structure of the disk. The hydrostatic
equation in the vertical direction gives

∂p

∂z
= ρFz = −GMρ sin θ

r2
(16.1)

where θ is the azimuthal angle from the disk. Because z = r sin θ

∂p

∂z
= −GMρz

r3
. (16.2)
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Assuming now that the disk is approximately homogeneous in the vertical
direction we get

p

H
≈ GMρH

r3
(16.3)

where H is the thickness of the disk. If the motion of the gas in the disk is
approximately Keplerian

v2
φ

r
=

GM

r2
. (16.4)

With Eq. (16.3) this becomes

p

ρ
≈ v2

φ

H2

r2
(16.5)

The sound velocity cs is approximately given by

p

ρ
= c2

s (16.6)

Using this we can write Eq. (16.5) as

H

r
≈ cs

vφ
=

1

M
(16.7)

where M is the Mach number in the disk. We therefore find that a disk
where the gas motion is supersonic is also a thin disk, and conversely.

16.2 Radial structure

We now consider the radial structure of a thin disk. If we integrate over the
vertical direction, mass conservation in the radial direction becomes

ṁ = 2πrvr

∫

ρdz . (16.8)

Defining the surface density Σ by

Σ =

∫

ρdz (16.9)

this equation becomes

ṁ = 2πrvrΣ = constant . (16.10)

The determine the surface density we therefore need to know the radial
velocity of the gas as function of the radius.
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Because of the viscosity in the disk there will be a shear force at each
radius given by fA where f is the shear force per unit area. The total torque
at r is then G = Afr.

To evaluate the shear force we use the expression for f derived earlier.
If the flow is in the x direction and the velocity gradient in the y direction
the shear stress is given by Eq. (12.12)

fxy = η(
∂vx

∂vy
+

∂vy

∂vx
) (16.11)

Using now polar coordinates given by

x = r cos φ y = r sin φ (16.12)

one obtains for the velocity vectors

vx = vr cos φ − vφ sin φ vy = vr sinφ + vφ cos φ . (16.13)

Further,

∂

∂x
= cos φ

∂

∂r
− sin φ

r

∂

∂φ

∂

∂y
= sin φ

∂

∂r
+

cos φ

r

∂

∂φ
(16.14)

Collecting these results we get

fxy = η

(

−vφ

r
+

∂vφ

∂r

)

= ηr
∂

∂r

(vφ

r

)

= ηr
∂Ω

∂r
(16.15)

Because fxy = frφ we therefore get for the total torque

G = frφrA =

∫

ηr2 ∂Ω

∂r
2πrdz = 2πr3ν

∂Ω

∂r

∫

ρdz , (16.16)

or

G = 2πr3ν
∂Ω

∂r
Σ (16.17)

Consider now the net torque on a thin annular ring with thickness dr

dG

dr
dr = G(r + dr) − G(r) (16.18)

The angular momentum flow through r is

L̇(r) = ṁvφ(r)r (16.19)
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But G = L̇(r) and the change of angular momentum flow over dr is then

dL̇(r)

dr
dr =

dG

dr
dr (16.20)

Therefore,
dG

dr
= ṁ

d(vφr)

dr
. (16.21)

This can be integrated to

G = ṁvφr + constant (16.22)

and using Eqns. (16.4) and (16.10) we get

G = 2πr3vrΣΩ + C (16.23)

But from Eq. (16.17) we have

G = 2πr3ν
∂Ω

∂r
Σ , (16.24)

so

νΣ
∂Ω

∂r
= vrΣΩ +

C

2πr3
(16.25)

The value of the constant depends on the inner boundary condition. In
the simple case that we have a thin layer where the disk slows down to the
value of that of the accreting star

∂Ω

∂r
= 0 at Rs (16.26)

and
C = −2πr3vrΣΩ (16.27)

At the surface
v2
φ

Rs
= RsΩ

2 =
GMs

R2
s

(16.28)

and
ṁ = 2πRsvrΣ (16.29)

so
C = −ṁ(GMsRs)

1/2 . (16.30)

Using

Ω =

(

GMs

r3

)1/2

(16.31)
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and
ṁ = 2πrvrΣ (16.32)

with the above results in Eq. (16.25) we finally get

νΣ =
ṁ

3π

[

1 −
(

Rs

r

)1/2
]

(16.33)

More general boundary conditions are discussed in FKR. The important
point about Eq. (16.33) is that the surface density depends on the precise
nature of the viscosity and radius. We will discuss this in Sect. .

16.3 Energy loss from the disk

We now want to estimate the total energy loss rate of the disk as function
of the radius. For this we start at the expression for the energy loss due to
viscosity, Eq. (12.27)

dE

dt
=

η

2

∑

i,j

(

∂vi

∂vj
+

∂vj

∂vi

)2

(16.34)

In the same way as above we can calculate this in cylindrical coordinates
and find

∂vx

∂vy
+

∂vy

∂vx
= −vφ

r
+

∂vφ

∂r
= r

∂Ω

∂r
(16.35)

Therefore,
dE

dt
= η

(

r
∂Ω

∂r

)2

(16.36)

Using the relation between the kinematic ν and dynamic η viscosity,

η = νρ (16.37)

we get
∫

dE

dt
dz = νΣ

(

r
∂Ω

∂r

)2

(16.38)

Using now Eq. (16.33) for νΣ we finally get the simple result

∫

dE

dt
dz =

3GMsṁ

4πr3

[

1 −
(

Rs

r

)1/2
]

(16.39)
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This is the energy generation per surface area. The total energy gener-
ation in an annulus dr is therefore

dL

dr
dr =

∫

dE

dt
dz2πrdr =

3GMsṁ

2r2

[

1 −
(

Rs

r

)1/2
]

dr (16.40)

and the total luminosity from the disk is easily obtained as

L =
GMsṁ

2rs
(16.41)

where rs is the inner radius of the disk. Therefore, the energy radiated is
one half of the binding energy. The rest is in the kinetic energy of the gas.

If we assume that the disk radiates locally as a blackbody we have

2 × 2πrσT 4 =
3GMsṁ

2r2
r >> Rs (16.42)

where the factor of two comes from the two sides of the disk. The disk
temperature is therefore given by

T =

(

3GMsṁ

8πσr3

)1/4

(16.43)

Knowing the temperature and again assuming locally blackbody radia-
tion we can calculate the spectrum from the disk. The integrated intensity
is then

Iν = 2π

∫

∞

Rs

Bν [T (r)]rdr (16.44)

Using now

Bν(T ) =
2hν3

c2(ehν/kT − 1)
(16.45)

and

T ∝ r−3/4 y =
hν

kT
∝ νr3/4 dy = ν4/3y−1/3dr (16.46)

we get

Iν ∝ ν3

∫

∞

Rs

Bν(T (r))T dT ∝ ν1/3

∫

∞

x(Rs)

x5/3

(ex − 1)dx
(16.47)

The last integral is just a number and we therefore get for the spectrum

Iν ∝ ν1/3 (16.48)

This is the canonical disk spectrum. Note that this is a power law and not
a blackbody. The cutoff at low and high frequencies are caused by the inner
and outer disk temperatures.
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Figure 51: The spectrum from an optically thick standard disk. (From ?)

16.4 Viscosity

The surface density as well as the radial velocity depend on the viscosity
(see Eqns. (16.10) and (16.33)). To describe the structure of the disk, and in
particular the emission from it without making the assumption of blackbody
emission as well as describing the pressure we need to relate the viscosity to
the local properties of the disk.

In an ordinary gas the molecular viscosity is given by ν = 1/3vthermalλmfp,
where vthermal is the thermal velocity and λmfp is the mean free path of the
particles. The mean free path is determined by Coulomb collisions and given
by

λmfp ≈ 1

nσ
(16.49)

where σ is the cross section for collsions between the particles and n the par-
ticle density. The cross section for Coulomb collisions can be estimated from
the distance the Coulomb energy is equal to the thermal energy, e2Z2/rC ≈
3/2kT . The cross section is therefore σ = πr2

C ≈ 4πZ4e4/9(kT )2. The mean
free path is therefore given by

λ ≈ 9(kT )2 ln Λ

4πZ4e4n
(16.50)

Here Z the charge of the particles and we have included the Coulomb log-
arithm, Λ, which takes the effect of distant collisions into account, ln Λ ≈
10 − 30 (see e.g., Spitzer, Physics of Fully Ionized Gases).

110



To estimate the importance of viscosity we can take the ratio between
the inertial term ρv · ∇v and the viscosity term η∆v = ρν∆v in the Navier-
Stokes equation Eq. (12.11). If L is the typical length scale of the variations
in velocity and V the velocity we get

R ≈ V L

ν
(16.51)

R is known as the Reynolds number. Experimentally it is known that flows
with large Reynolds number tend to become turbulent, while the molecular
viscosity is important for R ∼ 1.

If typical values for the temperature, velocity and dimensions of an ac-
cretion disk is inserted in the expressions above one finds that R ∼ 1012. It
is therefore unlikely that molecular viscosity is important, and the the disk
is instead turbulent. This turbulence will instead give rise to a macroscopic
viscosity as the different turbulence elements interact with each other. This
is not well understood in the context of accretion disks and historically one
has instead used a simplified expression, based on dimensional analysis and
simple arguments. In particular, it is now understood that a weak magnetic
field is needed for turbulence to develop (see below).

As one of the simplest models one may argue that

ν = 1/3vtλt ≈ αvsH , (16.52)

where one approximates the turbulent velocity with that of sound vt ≈ vs

and the scale of the turbulence with the thickness of the disk, H. Because
ordinary turbulence is severely damped as it becomes supersonic and shocks
develop, and the scale of the turbulence is unlikely to exceed the thickness of
the disk, the scaling parameter α < 1. This simple prescription, introduced
by Shakura and Sunyaev in 1973, is known as the α-disk model.

In the 1990’s there has been some very interesting development in the
understanding of the disk physics, and the effects of magnetic instabilities
as a source of turbulence and viscosity. Balbus and Hawley, in particular,
rediscovered an instability, first discussed by Chandrasekhar, known as the
magnetorotationbal instability (MRI). They found that the presence of even
a very weak magnetic field in a differentiall rotating disk will lead to rapidly
growing MHD instabilities, which act like a source of turbulence (Fig. 52).
In contrast, a non-magnetic disk is stabilized against instabilities by the
Coriolis force. The growth of the instability is very fast, of the order of the
rotation period of the disk. The energy driving the instability is taken from
the differential rotation and not from the magnetioc field itself. Using MHD
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simulations it is now possible to make considerably more realistic models of
accretion disks in different contexts. Nevertheless, the simple models based
on the above scaling show many of the most important features.

Figure 52: Cross section through a magnetized disk, showing the devel-
opment of turbulence. The colors denote different values of the angular
momentum. (From J. Hawley)

16.5 α-disks

In Sect. 16.3 we assumed that the disk was optically thick and locally
radiated like a blackbody. For a more realistic model we need to know
the density and vertical structure of the disk. The disk equations in the
previous section then need to be supplemented by an equation of state and
an expression for the opacity. For a non-degenerate gas we have

P =
kρT

µmp
+

1

3
acT 4 (16.53)

where the first term is the gas pressure and the second the radiation pressure.
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Further, the energy losses in the previous section were assumed to be
described by an optically thick blackbody. A more realistic model is obtained
if we solve for the temperature using the diffusion equation with a realistic
opacity. From Eq. (2.10 ) we have

F = −4acT 3

3κρ

dT

dr
(16.54)

The optical depth is given by

τ =

∫

κρdz ≈ κρH = κΣ (16.55)

The flux should be equal to the vertically integrated viscous dissipation
given by

∫ H

0

dE

dt
dz =

1

2

3GMsṀ

4πr3

[

1 −
(

Rs

r

)1/2
]

(16.56)

where the factor 1/2 accounts for the fact that only one half of the total flux
emerges on each side of the disk. The flux is given by Eq. (16.54), which
we can approximate with

F = − ac

3κρ

dT 4

dr
≈ ac

3κρ

T 4

H
=

acT 4

3τ
(16.57)

In this equation the temperature should be interpreted as the temperature
at the center of the disk, z = 0. Combining these equations we get

acT 4

3τ
=

3GMsṀ

8πr3

[

1 −
(

Rs

r

)1/2
]

(16.58)

To proceed further we need to calculate the optical depth, τ = κΣ. This
requires tah we know the density and temperature, as well as the surface
density (or equivalently the thickness). Because Σ depends on the viscosity,
we must have a model for the viscosity, and in this section we study the
famous α-disk prescription from Eq. (16.52).

The form of the opacity depends on the temperature. At high tempera-
ture, >∼ 108 K electron scattering dominates. Below this Kramer’s opacity ,
which is an approximation to the free-free and free-bound (i.e., photoelectric
absorption) opacity is the dominant.

To illustrate the properties of an α-disk we show the solution for the
case of a optically thick, gas pressure dominated disk where the opacity is
dominated by Kramer’s opacity., is given by

κ = 5 × 1024ρT−7/2 cm2g−1. (16.59)
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For this case the solution of the disk equations is given by

Σ = 5.2α−4/5Ṁ
7/10
16 m1/4r

−3/4
10 f14/5 g cm−2

H = 1.7 × 108α−1/10Ṁ
3/20
16 m−3/8r

9/8
10 f3/5 cm

ρ = 3.1 × 10−8α−7/10Ṁ
11/20
16 m5/8r

−15/8
10 f11/5 g cm−3

Tc = 1.4 × 104α−1/5Ṁ
3/10
16 m1/4r

−3/4
10 f6/5 K

τ = 1.9 × 102α−4/5Ṁ
1/5
16 f4/5

ν = 1.8 × 1014α4/5Ṁ
3/10
16 m−1/4r

3/4
10 f6/5 cm2 s−1

vr = 2.7 × 104α4/5Ṁ
3/10
16 m−1/4r

−1/4
10 f−14/5 cm s−1 (16.60)

where f =
(

1 − (Rs/r)
1/2
)1/4

. The parameters are given by m = M/ M�,

Ṁ16 = Ṁ/1016g s−1, and r10 = r/1010cm.
From Eq. (16.60) we note several things:

1. The density, thickness of the disk and temperature are only weakly
dependent on α, while the optical depth and radial velocity are more
sensitive to this parameter.

2. For typical values of Ṁ and m the disk is indeed thin as we have
assumed, with H/r ∝ α−1/10Ṁ3/20r1/8

3. The radial velocity (∼ 0.3 km s−1 for m = Ṁ16 = r10 = 1) is much

less than the azimuthal (vφ = 1150m1/2r
−1/2
10 km s−1). This justifies

the Keplerian approximation for vφ.

Finally a word of caution: The scalings in Eq. (16.60) depend on the
assumption that ν = αcsH. The above scalings are therefore likely to change
if we find a more realistic model for the viscosity.

The solution in Eq. (16.60) was based on the assumption that gas pres-
sure dominates radiation pressure and that Kramer’s opacity is more impor-
tant than electron scattering. The ratio of radiation pressure to gas pressure
is

prad

pgas
= 2.8 × 10−3α1/10Ṁ

7/10
16 r

−3/8
10 f7/5 (16.61)

and one finds that Kramer’s’ opacity dominates electron scattering for

r >∼ 2.5 × 107Ṁ
2/3
16 m1/3f8/3 cm (16.62)

In Fig.53 we show the different regimes in the r - Ṁ plane, assuming that
α = 1 for the prad/pgas = 1 boundary, and that M = 1 M�.
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Figure 53: Different cases for the thin disk solution for M = 1 M�.

16.6 Thick disks. Skip this section!

The thin disk solution we have discussed is not obviously present in all
accreting sources. The condition for this to be the case is that

H

r
≈ cs

vφ
� 1 (16.63)

Therefore, if the sound velocity becomes large the thickness of the disk
grows. Because c2

s ≈ p/ρ = kT/mpµ this will occur if the temperature is
large. This may occur if e.g. the radiative efficiency is low, so that the
binding energy gained by the accretion is not radiate away. This could in
turn depend on if either the density is low, since for optically thin disks the
cooling is in most cases proportional to the density squared. In addition,
if the coupling between electrons and protons is weak the result may be
also be a high temperature for the ions. The reason is that most of the
binding energy is in the protons. Most of the energy losses are, however,
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by the electrons through processes such as free-free radiation or Compton
cooling. Therefore, if the coupling between these two components is weak
this will result in a two temperature plasma, with ions at a considerably
higher temperature than the electron.

The temperature of the protons may be close to the virial temperature,

kTp ∼ GMmp

r
=

2GMmpc
2

2c2r
= mpc

2 rg

2r
= 5 × 1012 rg

r
K (16.64)

The time sale of energy transfer between protons and electrons is in the
non-relativistic limit

tep ≈ (2π)1/2

2neσT c ln Λ

mp

me
(θe + θp)

3/2 ≈ 5.8 × 1015(θe + θp)
3/2n−1

e s (16.65)

where θe = kTe/mec
2 and θp = kTp/mpc

2.
To estimate the density we consider the spherical accretion model inside

the sonic radius where the velocity is close to free-fall, v ≈ (2GM/r3)1/2. If
we parameterize the accretion rate in terms of the Eddington luminosity as
εṀEddc

2 = LEdd, or

ṀEdd =
4πGMmp

εσT c
= 1.4 × 1018

( ε

0.1

)−1
(

M

M�

)

g s−1 (16.66)

we can write the density as

ne ≈ Ṁ

4πmpr2v
=

1

4ε

(rg

r

)3/2
(

Ṁ

ṀEdd

)

1

rgσT

= 1.2 × 1019
( ε

0.1

)−1 (rg

r

)3/2
(

Ṁ

ṀEdd

)

(

M

M�

)−1

cm−3(16.67)

The accretion time scale for spherical accretion is

tacc =
r

vff
=

rg

c

(

r

rg

)3/2

= 10−5

(

M

M�

)(

r

rg

)3/2

s (16.68)

Comparing these time scales we get

tacc

tep
= 2 × 10−2

( ε

0.1

)−1
(

Ṁ

ṀEdd

)

(θe + θp)
−3/2 (16.69)

independent of mass and radius. Because θp = kTp/mpc
2 = 1/2(rg/r) we

find that in the neighborhood of the gravitational radius the time scale
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for electron-ion equilibrium may be longer than the accretion time scale,
especially for sub-Eddington accretion rates. Therefore, a situation where
Tp � Te may occur. An important caveat is, however, that collisionless
processes, involving plasma instabilities, may couple the electrons and ions
more efficiently than Coulomb collisions. The fact that Te � Tp means that
we have to calculate the two temperatures separately and further that we
have to take into account the advection (flow term) of the energy explicitly.

The above discussion is one particular case of a more general situation.
The energy equation, including viscosity and radiation losses is given by Eq.
(12.23) and Eq. (12.25).

ρT
ds

dt
= τij

∂vi

∂xj
− ∂

∂xi

(

κ
∂T

∂xi

)

(16.70)

which schematically, and in a more general form, can be written

ρT
ds

dt
≡ qadv = q+ − q− (16.71)

where qadv is the term describing the heat advected by the flow, q+ the
different heating gains by e.g. viscosity and q− the energy losses by radiation
or conduction. Depending on the relative size of the three terms one can
then differentiate between three cases:

1. qadv � q+ ≈ q−. This is the standard disk model, where the local
heating and cooling balance.

2. q�qadv ≈ q+. In this case the advective term dominates the energy
losses, and balances heating. This is known as the advection-dominated

case.

3. q+ � qadv ≈ −q−. Heating due to viscosity is unimportant and the
adiabatic heating is balanced by radiation losses. This is the case for
the spherical Bondi solution.

The second case, the advection-dominated case, is of special importance
for accretion onto black holes. In this case most of the internal energy may
be carried along the flow and finally accrete onto the black hole. Once behind
the horizon this energy will never be observed to an outside observer. There
is therefore a possibility that of a very inefficient accretion process in terms
of luminosity. This is only possible for a black hole, because a neutron star
or white dwarf has a hard surface where the binding energy will be released
in either a shock or a boundary layer.
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17 Magnetospheric accretion

In the case of a central neutron star the accretion flow will be strongly
affected by the magnetic field. For simplicity consider a spherical accretion
inside the sonic radius The gas will there be in approximately free fall, with
velocity

Vff ≈
(

2GM

r

)1/2

. (17.1)

The ram pressure (momentum flux) is given by ρV 2, and the density by
ρ = Ṁ/4πr2vff , if the flow is spherically symmetric. Here Ṁ is the accretion
rate. We therefore get

pram =
Ṁ

4πr2

(

2GM

r

)1/2

. (17.2)

As the accretion flow approaches the central object the magnetic field
will become more and more important. As a first approximation one may
assume that the magnetic field of the neutron star is that of a dipole,

B =

(

Rs

r

)3

Bs (17.3)

where Bs is the magnetic field at the surface of the neutron star. The
magnetic pressure is therefore

pmagn =
B2

8π
=

(

Rs

r

)6

B2
s . (17.4)

Assuming now that the gas is in almost free fall to the surface. one then
finds from Eqns. (17.4) and (17.2) that inside a radius

rM =

(

R12
s B4

s

8GMṀ2

)1/7

(17.5)

the magnetic field dominates the dynamics. The radius rM is called the
Alfvén radius. For Rs = 10 km, Bs = 1012 G, Ms = 1.4 M� and Ṁ =
10−8 M� yr−1 the Alfvén radius is at ∼ 3000 km.

Using Eq. (14.2) we can write this in terms of the luminosity of the
source as

rM =

(

GR10
s B4

sM

8L2

)1/7

(17.6)

118



or

rM = 2.9×103

(

Rs

10km

)10/7 ( Bs

1012G

)4/7 ( M

M�

)1/7( L

1037 erg s−1

)−2/7

km.

(17.7)
Therefore, for a neutron star the magnetic field is dominant far before the
accretion reaches the surface of the neutron star.

If we instead insert typical values for an accreting normal white dwarf,
R ∼ 104 km, B0 ∼ 104 G, and L ∼ 1034 erg s−1 we get rM ∼ 2.1 × 104

km. This is of the same order as the radius of the star, and depending on
the precise numbers the accretion may or may not reach the surface of the
star. In particular, there is a class of accreting white dwarfs with very strong
magnetic fields, the AM Hercules objects or polars, where the magnetic field
is ∼ 107 G and therefore dominates the flow at large radii from the star.
In these cases the Alfvén radius may even be comparable to the separation
to the companion star, and the accretion occurs directly from the inner
Lagrange point, without the formation of a disk. In the opposite limit, in
accreting dwarf novae the fields are weak enough for the disk to reach the
surface of the white dwarf, and the energy release occurs in a boundary layer
at the equator.

The fact that the magnetic field dominates for accreting neutron stars,
and is likely to have a dipolar form, has important consequences for the
accretion. Even if at large radii the accretion is in a disk as a result of e.g.,
Roche lobe overflow from a companion star in a binary system, the gas flow
inside the Alfvén radius will be channeled along the magnetic field lines.
Instead of ending up on the equator in a boundary layer, where most of the
dissipation will occur, it will fall down on the magnetic poles of the star
(Fig. 55).

Assuming that the magnetic field is dipolar we can estimate the angle, β,
from the magnetic pole over which the accretion will take place (see Fig. 54).
For simplicity we assume that the magnetic rotation axis is perpendicular
to the disk. This is easily generalized to arbitrary inclinations. Eq. (9.21)
gives the form of the magnetic field lines, r = K sin2 θ. At the equator we
have r ≈ rM , giving K = rM . On the surface of the star we therefore have

sin2 θ =
Rs

rM
. (17.8)

Because θ � 1, the fraction of the surface covered by the accretion column
is therefore

f = 2
πθ2

4π
=

Rs

2rM
. (17.9)
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Figure 54: Schematic illustration of the transition from disk accretion to
polar accretion at the magnetosphere (Frank, King and Reine).

where the factor of 2 comes from the two poles. As we have seen, rM
>∼ 103

km, and therefore f <∼ 10−2.
The radiation therefore comes mainly from an accretion column at each

pole, covering only a small fraction of the surface. Therefore, it is likely that
the emission will be pulsed with the frequency of the rotating neutron star,
as is indeed the case in most binary neutron stars. Because the flow is highly
supersonic above the surface a strong shock will form, where most of the
kinetic energy is thermalized. Behind the shock the flow will gradually lose
energy in radiation and slow down until it reaches the surface. Because the
strong magnetic field the flow may be either in a hollow or filled cylinder,
and the radiation will be strongly beamed and also polarized.

If we assume that the protons and electrons are thermalized by the shock
(see below) the temperature behind the shock is

3

2
k(Te + Tp) =

GMmp

Rs
(17.10)

Assuming now that Te � Tp, because the energy transfer to the electrons
is inefficient, we find

Tp =
GMmp

3kRs
≈ 1.5 × 1012K (17.11)
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Figure 55: Schematic picture of the accretion column in a an accreting X-
ray binary where the magnetic field channels the accretion on to the poles.
(Frank, King and Reine).

for Rs = 10 km and Ms = 1.4 M�.
Because the protons radiate very inefficiently the energy has to be trans-

ferred to the electrons by some process. Ordinary Coulomb scattering is
relatively inefficient,

It is, however, far from obvious that the electrons and protons are ther-
malized in the shock, and even less that the protons have time to transfer
their energy to the electrons.

18 Spin-up by accretion

The magnetic field of the neutron star co-rotates approximately out to the
light cylinder, rlc = c/Ω = Pc/2π = 4.8×104P km. This is in general larger
than the Alfvén radius, rM . If the rotational frequency, Ω, of the neutron
star is less than the Keplerian frequency of the disk, ΩK = (GM/r3

M )1/2,
and the magnetic fields couples to the disk, there will be a torque from the
disk on the neutron star. This will lead to a spin-up of the rotation of the
neutron star.

The angular momentum flux inwards is given by Eq. (16.19), L̇(r) =
ṁvφ(r)r. This is transferred to the neutron star by the coupling of the
magnetic field at the magnetosphere. The change in angular momentum of
the neutron star is therefore

IΩ̇ = ṁvφ(rM )rM = ṁΩK(rM )r2
M =

LRsr
1/2
M

(GM)1/2
(18.1)
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Using Eq. (17.6) for the radius of the magnetosphere we get

IΩ̇ =
L6/7R

12/7
s B

2/7
s

23/14G3/7M1/4
(18.2)

For a quantitative estimate we take I ≈ 2MR2
s/5, which is valid for a

uniform star, and use Ω̇ = 2πṖ /P 2. Using the canonical values Rs = 10
km, M = 1 M� and Bs = 1012 G we find

log

(

−Ṗ

P

)

= −4.4 + log P +
6

7
log L37 . (18.3)

Figure 56: Spin-up rates for a number of X-ray binaries compared with Eq.
(18.3) (Rappaport and Joss (1983)).

In Fig. 56 we compare this with observations of a number of X-ray
binaries. In many sources the X-ray luminosity varies by a large factor.
Eq. (18.3) then predicts that there should be a relationship between the
instantaneous luminosity and spin-up rate. In Fig. 57 we show this for the
X-ray binary GRO J1744-28. In both cases we see a very good agreement
with this comparatively simple picture, giving strong support to this general
accretion picture.

This spin-up can only continue as long as the Keplerian frequency at
the magnetosphere is larger than that of the neutron star. We can therefore
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Figure 57: Spin-up rates as function of the X-ray luminosity for GRO J1744-
28, compared with Eq. (18.3) (??).

calculate the minimum period of a neutron star spun-up by accretion by
setting Ωs = 2π/Ps = ΩK = (GM/r3

M )1/2, or

Ps = 2π

(

r3
M

GM

)1/2

(18.4)

Again using Eq. (17.6 we find

Pmin = 25/14π

(

R15
s B6

s

G2M2L3

)1/7

(18.5)

or

Pmin = 1.0

(

Bs

1012 G

)6/7( L

1038 erg s−1

)−3/7

= 2.7×10−3

(

Bs

109 G

)6/7( L

1038 erg s−1

)−3/7

s.

(18.6)
The first estimate refers to a young neutron star with a strong magnetic
field. The observed milli-second pulsars all have very weak fields, Bs

<∼ 109

G, meaning that the minimum period can be of the order of milli-seconds,
as observed.
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If we combine this expression with the relation between the relation
between the spin-down for pulsars and the magnetic field, Eq. (9.10), B ≈
4×1019(PṖ )1/2 G, we can get a relation between the spin-down of the pulsar
and the period for a pulsar in a binary system,

Ṗ < 1 × 10−15P 4/3 s/s. (18.7)

We have here assumed that the luminosity of the binary is close to the
Eddington luminosity, 1.3× 1038 erg s−1. Note here that the spin-up occurs
while the neutron star is an accreting X-ray binary, while the spin-down
of the pulsar takes place after this has stopped, and the neutron star has
become a radio pulsar. If we compare this relation with Fig. 40 we note that
there is indeed an absence of mill-second pulsars with Ṗ above this relation.
The second thing to note from this figure is that all pulsars with P <∼ 0.01
s are in binary systems. This is, of course, consistent with the expectation
if the spin-up is caused by accretion. We therefore have a consistent picture
for the formation of these milli-second pulsars.

19 Characteristics of X-ray Binaries

There are about 130 known high mass X-ray binaries (HMXBs). About half
of them show pulsations, most of them with periods 10 – 300 s, but extending
from 0.069 s to 20 min. The companion stars are high mass stars with masses

>∼ 10 M�. The luminosities are very high, >∼ 105 L�, more characteristic
of stars of mass >∼ 20 M�. This indicates that they must have lost a large
fraction of the mass as a result of binary evolution, either to the companion
by Roche lobe overflow, or by a stellar wind (Fig. 58). These massive stars
have very strong winds with mass loss rates of ∼ 10−6 M� yr−1 and wind
velocities of 2000 − 3000 km s−1. Well-known examples are Cen X-3 and
Cyg X-1 and LMC X-1. The latter two do not show any pulsations, have
very large masses for the unseen component, and are therefore believed to
have black holes.

A large fraction of the HMXBs have a Be-star companion (i.e., B star
with emission lines) show transient X-ray outburst lasting several days.
These are thought to be the result off accretion onto the neutron star as
it passes periastron in a very elliptic orbit (i.e., closest to the companion).
A well-known example is A0535+26.

The low mass X-ray binaries (LMXBs) belong to an old population of
stars, older than a billion years, and therefore must have low mass compan-
ion stars. The LMXBs are seldom X-ray pulsars. The main reason is that
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Figure 58: Schematic illustrations of high and low mass X-ray binaries.
(From Tauris & van den Heuvel 2006)
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Table 3: The two main classes of strong Galactic X-ray sources (From Tauris
& van den Heuvel 2006)

HMXB LMXB

X-ray spectra: kT ≥ 15 keV (hard) kT ≤ 10 keV (soft)

Type of time variability: regular X-ray pulsations only a very few pulsars
no X-ray bursts often X-ray bursts

Accretion process: wind (or atmos. RLO) Roche-lobe overflow

Timescale of accretion: 105 yr 107 − 109 yr

Accreting compact star: high ~B-field NS (or BH) low ~B-field NS (or BH)

Spatial distribution: Galactic plane Galactic center and
spread around the plane

Stellar population: young, age < 107 yr old, age > 109 yr

Companion stars: luminous, Lopt/Lx > 1 faint, Lopt/Lx � 0.1
early-type O(B)-stars blue optical counterparts
> 10M� (Pop. I) ≤ 1M� (Pop. I and II)

the magnetic fields are in general weak, 109 − 1010 G compared to HMXBs.
Many of them show X-ray bursts, while HMXBs do not. The orbital pe-
riods range from 11 min to 17 days. The optical spectra are dominated
by the accretion disk, because of the comparatively low luminosity of the
companion star (Fig. 58). Many show kiloHertz quasi-periodic oscillations
(QPOs) presumably arising in the accretion disks. These have proved ex-
temely valuable for probing both the physics of the accretion disk and in
particular relativistic effects near the compact object.

More than ten LMXBs show the characteristics of a black hole. These
are all so called soft X-ray transients where the X-ray emission increase
dramatically to ∼ 1038 erg s−1 during a few weeks. Also the optical flux
increases by 6 – 10 magnitudes, and they therefore resemble ordinary novae,
although the origin of the emission is different. The best known example is
A0620-00.

In Table 3 we summarize the main charateristics of the HMXBs and
LMXBs.
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Figure 59: Geometry of the accretion flow onto a gravitating objec, discussed
in the text.

20 Wind accretion

While most low mass X-ray binaries lose mass by Roche lobe overflow, the
high mass X-ray binaries have very strong stellar winds. If the companion
star is not filling its Roche lobe the wind will dominate the accretion rate
to the compact object.

The total velocity of the compact object relative to the wind is the sum
of the orbital and wind velocities,

vt = v2
w + v2

orbit . (20.1)

The equations of motion for a particle with impact parameter b are

d2r

dt2
− r

dθ

dt
= −GMX

r2
(20.2)
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and conservation of angular momentum

r2 dθ

dt
= bv∞ ≡ h (20.3)

Substituting u = 1/r we get

d2u

dθ2
+ u =

GMX

h2
(20.4)

This has the solution

u = A cos θ + B sin θ +
GMX

h2
(20.5)

where the constants are fixed by the boundary conditions. As θ = π we
must have r → ∞, i.e., u → 0,. Therefore, A = GM/h2. Further, at infinity
we must have b = r sin θ (see Fig. 59). Therefore, B = 1/b, so that

u =
GMX

h2
(1 + cos θ) +

1

b
sin θ (20.6)

The flow will reach b = 0 at θ = 0, which occurs at a distance l behind
the X-ray source, given by

l =
h2

2GMX
(20.7)

Because we have a fluid, the particles will collide on this line, θ = 0, and by
symmetry lose their angular velocity. The radial velocity should, however,
not be seriously affected and close to v∞.

For capture by the compact object we now require that

GMx

lc
>

v2
∞

2
(20.8)

Using Eq. (20.7) lc corresponds to a critical impact parameter

bc =
2GMX

v2
∞

(20.9)

Using Eq. (20.1) we can generalize this to

Rc =
2GMX

v2
w + v2

orbit

. (20.10)

This is known as the Hoyle-Lyttleton radius.
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If we know ask what the accretion rate from the wind is, this is given by
the fraction of the wind which is inside Rc, or

ṁ =
πR2

c

4πR2
p

Ṁp =
R2

c

4R2
p

Ṁp , (20.11)

where Ṁp is the mass loss rate of the companion star. For an accretion
efficiency ε the luminosity then becomes

LX = εṁc2 = ε
R2

c

4R2
p

Ṁp =
εṀpc

2

4

(

2GMX

Rp(v2
w + v2

orbit)

)2

. (20.12)

If vw >> vorbit we get

LX ≈ εṀpc
2

(

GMX

Rp

)2

v−4
w . (20.13)

We here note the sensitivity to both the wind velocity and the orbital sep-
aration between the companion and compact object.

21 Cyclotron radiation

The strong magnetic field in the accretion column in X-ray binaries can have
important effects of the observed X-rays. In particular, cyclotron processes
may leave some imprint on the spectrum. The cyclotron frequency is given
by Ω = eB/cme. The observed energy of the first harmonic is therefore

E = 11.6

(

B

1012 G

)

(1 + z)−1 keV (21.1)

where the last factor accounts for the gravitational redshift.
The first source for which a cyclotron feature was observed was Her X-1

in a balloon flight in 1978. There are now ∼ 14 X-ray binaries for which at
least one absorption line has been identified. In some case higher harmonics
have also been identified, the best example is X0115+63. X0115+63 is one
of the best-studied X-ray transients. The source shows pulsation at 3.6 s,
and is orbiting an O9e companion with a period of 24.3 days. In this source
four harmonics have been identified at 12.74, 24.16, 35.74, and 49.5 keV
(Fig. 60). In a weak magnetic field the spacing between the harmonics is
just EN = nE0, where E0 is the energy of the first harmonic. In a strong
field relativistic effects change this to

EN = mec
2{[1 + 2n

B

Bcrit
sin2 θ]1/2 − 1}/ sin2 θ (21.2)
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Figure 60: Hard X-ray spectrum of X0115+63 observed with Beppo-SAX,
showing the first four cyclotron harmonics. binaries. (From Santangelo et
al. 1999)
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Here me is the electron mass, θ is the angle between the photon propagation
angle and the magnetic field, and Bcrit = 4.414 × 1013 G is the critical field
(see, e.g., Wang, Wasserman, & Lamb 1993). The typical magnetic field
depend on the angle to the line of sight, but is in general 1012 − 1013 G,
close to those found for radio pulsars.
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22 Non-thermal emission

Many objects in high energy astrophysics are characterized by non-thermal
spectra, typically power laws. Examples are the radio emission from super-
nova remnants, radio emission from active galaxies, and the diffuse radio
emission from the Galaxy. We therefore assume that the energy spectrum
of the emitting electrons can be approximated by

dn

dE
∝ dn

dγ
∝ E−p ∝ γ−p (22.1)

where γ is the Lorentz factor of the electrons. Assuming that the electrons
radiate in a narrow band around

νc =
eB

2πmec
γ2 = 4.2 × 106γ2B(G) Hz (22.2)

one may obtain the emitted spectrum from the expression

j(ν) ∝ B2

∫

γ2δ(ν − γ2νB)γ−pdγ ∝ B(p+1)/2ν−(p−1)/2 (22.3)

where
νB = 4.2 × 106B(G) Hz (22.4)

The observed spectral index α is thereforer related to the electron spec-
tral index by α = (p − 1)/2. The observed spectra vary between different
objects, but are in general between α ≈ 0.5 and α ≈ 1, corresponding to
p = 2 − 3. In some cases the spectra may flatter or steeper than this.

ISM B ∼ 3 × 10−6 G I up to 5 GHz
One may now ask two fundamental questions with regard to these elec-

trons. 1. What is the origin of the NT electrons (and cosmic rays in gen-
eral)? 2. Why do we observe different values of p in different sources and
at different frequencies?

The first question is one of the most important and to a large extent
unanswered questions in astrophysics. The second is better understood and
we will therefore discuss this first.

23 Energy losses of relativistic electrons

The electrons lose energy on a time scale τ given by

τ =
E

dE/dt
(23.1)
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where dE/dt gives the energy loss rate. For ionizations this is given by

dE

dt
= 7.6 × 10−9nHI(3 ln γ + 19.8) eV s−1 (23.2)

where nHI is the hydrogen density. Therefore, for this process

τ ∝ E (23.3)

For bremsstrahlung the energy loss is given by

dE

dt
= 4npZ

2αr2
ecgE . (23.4)

For a fully ionized plasma the Gaunt factor is

g = ln γ + 0.36 (23.5)

so that
dE

dt
= 7 × 10−17np(ln γ + 0.36)E(eV ) eV s−1 (23.6)

For a neutral plasma

g = ln(183/Z1/3) − 1

18
(23.7)

and the energy loss is now given by

dE

dt
= 3.7 × 10−16nHIE(eV ) eV s−1. (23.8)

Therefore, as for the ionization losses, the bremsstrahlung time scale is

τ independent of E (23.9)

Synchrotron losses are given by

dE

dt
= 2σT cγ2UB sin2 θ (23.10)

Averaging over all pitch angles θ one finds

1

2

∫ π

0
sin2 θd cos θ =

2

3
(23.11)

and therefore the averaged energy loss rate

dE

dt
=

4

3
σT cγ2UB = 6.6 × 10−4γ2B2 eV s−1 (23.12)
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For inverse Compton losses the same expression with the magnetic field
energy density replaced by the radiation density applies,

dE

dt
=

4

3
σT cγ2Urad (23.13)

The ratio between the two time scales is therefore given by the wellknown
relation

dE

dt IC
/
dE

dt synch
=

Urad

UB
(23.14)

For both these processes
τ ∝ E−1 (23.15)

Finally, we have the adiabatic energy loss rate

dE

dt
= −p

dV

dt
(23.16)

Using

ρ =
1

V
(23.17)

and the continuity equation

dρ

dt
= −ρ∇ · v (23.18)

we can write
dV

dt
= −V 2 dρ

dt
= −V ∇ · v (23.19)

In general

E =
pV

(γ − 1)
(23.20)

so
dE

dt
= −p

dV

dt
= (γ − 1)E∇ · v (23.21)

The rate of energy loss due to adiabatic expansion therefore depends on the
velocity field of the expansion (or contraction).

For the special, but interesting, case of a uniformily expanding sphere

v(r) = v0
r

r0
(23.22)

The divergence of this is easy to calculate since all angular terms are zero,
and we get

∇ · v =
1

r2

∂

∂r
(r2v) =

v0

r0

1

r2

∂

∂r
(r3) = 3

v0

r0

= 3
v

r
(23.23)
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Using this in Eq. (23.21) we find

dE

dt
= 3(γ − 1)E

v

r
= 3(γ − 1)

E

t
=

E

t
. (23.24)

Therefore, not unexpectedly
τ ∝ t (23.25)

24 The equation for the diffusion losses

Let us now consider the flow of particles in and out of an energy - space
volume element, x, x + dx and E,E + dE. Let φx be the flux of particles
in the x-direction while φE is the flux of particles in the E-direction. The
change in the number of particles in the volume dxdE is then

dn(E, x, t)

dt
dEdx = [φx(E, x, t) − φx(E, x + dx, t)]dE+

[φE(E, x, t) − φE(E + dE, x, t)]dx+
Q(E, x, t)dEdx (24.1)

or
dn(E, x, t)

dt
= −∂φx(E, x, t)

∂x
− ∂φE(E, x, t)

∂E
+ Q(E, x, t) (24.2)

where Q(E, x, t) is the source term for creation or destruction of particles
in the volume.

Assuming now that the spatial flux can be described as a diffusion pro-
cess, we can write the flux in space as a gradient with a diffusion coefficient
D, which in general is a function of both energy and poistion. Therefore,

φx(E, x, t) = −D
∂n(E, x, t)

∂x
(24.3)

Inserting this in the equation above we find

dn(E, x, t)

dt
= D

∂2n(E, x, t)

∂x2
− ∂φE(E, x, t)

∂E
+ Q(E, x, t) (24.4)

which can be generalized to three spatial dimensions as

dn(E, x, t)

dt
= D∇2n(E, x, t) − ∂φE(E, x, t)

∂E
+ Q(E, x, t) (24.5)

The flux of particles in energy is just the slowing down rate (’velocity’
in energy space) times the particle density

φE(E, x, t) = n(E)
dE

dt
≡ −b(E)n(E) (24.6)
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and the diffusion equation now takes the final form

dn(E, x, t)

dt
= D∇2n(E, x, t) +

∂

∂E
[b(E)n(E, x, t)] + Q(E, x, t) (24.7)

In this equation b(E) includes all energy loss (or gain) processes.

24.1 Example

Consider first the case when we have a uniform, infinite medium with a
uniform distribution of sources acting over an infinite time. Eq. (24.7) then
takes the simple form

d

dE
[b(E)n(E)] = −Q(E) (24.8)

which can be integrated to

∫

d[b(E)n(E)] = −
∫

Q(E)dE (24.9)

Now, if n(∞) → 0 we find

b(E)n(E) =

∫

∞

E
Q(E)dE (24.10)

Assuming that we inject a power law spectrum for the electrons Q(E) =
SE−p the integral is easily evaluated to

n(E) =
κE−(p−1)

(p − 1)b(E)
(24.11)

If we know write the energy loss term as

b(E) = A1(ln E/mec
2 + 19.8) + A2E + A3E

2 (24.12)

where the first term is the ionization loss, the second bremsstrahlung and
adiabatic losses, and the third the sum of the synchrotron and inverse Comp-
ton losses.

From Eqns (24.11) and (24.11) we then conclude that ionization losses
flatten the electron spectrum by one power, adiabatic and bremsstrahlung
losses leaves the slope unaffected, and synchrotron and inverse Compton
steepens the spectrum by one power. These are general and very useful
rules to remember.
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24.2 The minimum energy argument

Many radio galaxies and supernova remnants show synchrotron power law
spectra. From this one infers that the non-thermal electrons also have power
law spectra

dn

dE
= κE−p . (24.13)

The relation between the emitted frequency νmax and the Lorentz factor of
the electrons γ is

νmax = 0.29νc = 0.29·4.2×106γ2B(G) = 1.2×106γ2B(G) ≡ CE2B (24.14)

where
α = (p − 1)/2 (24.15)

The total synchrotron luminosity is then given by

Lν = A(α)V κB1+αν−α (24.16)

with α = (p − 1)/2. The total energy of the source is then

W = V (εe + εp +
B2

8π
) (24.17)

where εe and εp are the energy density in non-thermal electrons and protons,
respectively, and the last term is the energy density in magnetic fields. For
convenience we write

εe + εp ≡ ηεe (24.18)

Using Eq. (24.13) we find

W = V (εeη +
B2

8π
) = V (

∫ Emax

Emin

κE−pEdE +
B2

8π
) (24.19)

where Emin and Emax are the minimum and maximum energies, respectively.
We then find for the electron energy

We = V

∫ Emax

Emin

κE−p+1dE = V
κ

(p − 2)
(E−p+2

min − E−p+2
max ) (24.20)

Using Eq. (24.14) this becomes

We = V
κ(CB)(p−2)/2

(p − 2)
[ν

−(p−2)/2
min − ν−(p−2)/2

max ] (24.21)
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If we use Eq. (24.16) to elliminate the normalization of the total number of
electrons we get

We =
V (CB)(p−2)/2

(p − 2)

Lν

A(α)V B1+αν−α
[ν

−(p−2)/2
min − ν−(p−2)/2

max ] (24.22)

We can now write the total energy in particles as

Wpart = ηG(α, νmin, νmax)LνB
−3/2να (24.23)

andthe total energy

Wtot = ηGLνB−3/2να + V
B2

8π
(24.24)

For a given luminosity the total energy is therefore a function only of
the magnetic field. The two terms clearly define a minimum of tyhe total
energy and we can therefore ask what the magnetic field which corresponds
to this is. This is easliy found to be given by

Bmin =

[

6πηGLννα

V

]2/7

(24.25)

This correspond to an energy density in magetic field and particles given by

WminB = V
B2

8π
=

3

4Wmin part
(24.26)

and a total enery

Wmin tot =
7

4

V 3/7

8π
[6πηGLννα]4/7 (24.27)

The importance of this is that one can from this expression calculaute a
strict value of the minimum total energy in terms of observable paramters,
i.e., the luminosity and emitting volume. It is therefore often used as a first
estimate of the energy of different kinds of sources. There is, however, a
number of points which should be remebered in this this type of analysis.

• There is no obvious physical reason why the magnetic field and particle
energies should adjust to this minimum energy requirement!

• For B = Bmin we have WB ≈ Wpart. The minimum energy field is
therefore often called the equipartition field
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• Wmin tot is a strict lower limit to the total energy.

• Wmin tot is sensitive to the non-thermal proton/electron ratio η. This
can be large, but is not directly observable.

• Wpart depends on the minimum energy (for α > 0.5, or p > 2). νmin

is difficult to determine from observations.

• W depends on the emitting volume. The filling factor may of the
particle may be low!

We finally list some practical formulae. For this we assume a typical
spectral index α = 0.75, i.e. p = 2.5 and a minimum energy equal to the
minimum observed frequency νmin = ν.

Bmin = 1.8 × 104

[

ηLν

V

]2/7

ν1/7 G (24.28)

Wmin tot = 3 × 1013V 3/7 (ηLν)
4/7 ν2/7 erg (24.29)

As an example we take the radio lobes of the radio galaxy Cyg A. These
have a size of R ≈ 50 kpc = 1.5 × 1023 cm. The total luminosity is Lν ≈
8 × 1035 erg/s/Hz at 178 MHz. We then get Wmin tot = 2 × 1059η4/7 erg.
This corresponds to a rest mass energy equal to ∼ 3 × 105 M�c2, which is
of course a minimum.

Figure 61: Radio image at 6 cm (5 GHz) with VLA.

139



25 The expansion of a point explosion

The sudden energy release into a medium is of general interest in many
contexts. Historically this was first considered by Sedov and Taylor in the
USSR and UK, respectively, in connection to the interpretation of nuclear
explosions on Earth. Using the analytic solution for this problem Taylor
could estimate the total energy release in the first nuclear tests, which was
classified material in the US.

In astrophysics this has applications for supernova remnants and other
explosive events, and variations on this have been developed in several other
contexts. A strict analysis based on the time dependent hydrodynamical
equations is fairly complicated and can be found in e.g., Landau and Lifshitz,
Fluid Dynamics. A simple derivation can, however, be obtained if a few
approximations are made.

We therefore consider the injection of an energy Etot into a medium
of constant density ρ. This energy will create a large overpressure and a
shock wave propagating out from the centre. This shock will sweep up the
surrounding medium in a hot shell. To proceed we now make the main sim-
plification: Instead of calculating the detailed interior structure we consider
all swept up mass to be contained in the shell, which is assumed to be very
thin and we neglect the structure in this. Further, we neglect the mass of
the exploding object compared to that swept up by the shock wave, and
also the external pressure pext compared to that of the hot bubble. We also
consider the explosion to be adiabatic so that the total energy is constant.
We will consider radiative losses later.

To see why the thin shell approximation is reasonable we make a simple
estimate the thickness of the shell. If ∆r is the thickness we have

M =
4π

3
r3ρ = 4πr2ρ2∆r (25.1)

where ρ2 is the density behind the shock. For a strong shock we have ρ2 = 4ρ
and therefore

∆r =
r

12
(25.2)

We therefore find that the shell indeed is thin.
With this assumption the equation of motion for the shell becomes

d

dt
(Mv) = 4πr2(p − pext) ≈ 4πr2p (25.3)

where M is the mass, v the velocity, and p the interior pressure working on
the shell.
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We now consider the velocity and density at the shock. We assume that
this is strong (consistent with our neglect of pext). Let v′1 be the pre-shock
velocity of the incoming gas in the shock frame. Because the outside medium
is at rest this is also the velocity of the shock wave Vs as seen by observer
at rest (with a minus sign).

v′1 = Vs (25.4)

The velocity in the shock frame of the gas behind the shock is v′1/4, so

v′2 =
Vs

4
(25.5)

In the rest frame the velocity of the gas behind the shock is given by

v = −v′ + Vs =
3

4
Vs =

3

4

dr

dt
(25.6)

With Eq. (25.1) and Eq. (25.3) the equation of motion, Eq. (25.3), becomes

1

4
ρ

d

dt
(r3 dr

dt
) = r2p (25.7)

We now want to relate the pressure to the conserved quantity Etot. This
consists of the kinetic energy of the shell and the thermal energy of the hot
bubble interor of the shell

Etot = Etherm + Ekin = εV +
1

2
Mv2 = constant (25.8)

where ε is the internal energy, given by

ε =
p

(γ − 1)
=

3

2
p (25.9)

where we have assumed an adiabatic gas with adiabatic index γ = 5/3.
Therefore

Etot =
3

2
pV +

1

2
Mv2 (25.10)

If we now replace p with Eq. (25.7) and v from Eq. (25.6) we get a differential
equation for the radius of the shell

Etot =
3

8

ρ

r2

d

dt
(r3 dr

dt
)
4π

3
r3 +

1

2
ρ
4π

3
r3(

3

4

dr

dt
)2 (25.11)

Although this looks fairly complicated a simple power law solution can be
found. If we try

r = Atα (25.12)
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the above equation becomes

Etot = A5 π

2
ρt5α−2[α(4α − 1) +

3

4
α2] (25.13)

Because the right hand side should be constant this means that

α =
2

5
(25.14)

and

Etot = A5ρ
9π

50
(25.15)

Our final solution for the radius of the shell is therefore

r = Atα =

(

50

9π

)1/5(Etot

ρ

)1/5

t2/5 ≈ 1.12

(

Etot

ρ

)1/5

t2/5 (25.16)

This is the famous Sedov-Taylor solution.
Before proceeding we make a few remarks. Our solution above shows

that the radius (and velocity) of the shell only depends on the ratio Etot/ρ.
This should not be surprising since these two numbers are the only charac-
teristic quantities of the problem, since we have assumed that the mass of
the exploding object and the external pressure can be neglected. This in
turn is the reason why we could find the simple power law solution above. In
fact, except for numerical factors the solution for the radius could have been
written down on purely dimensional grounds (Do this!). Such solutions are
known as similarity solutions, because the properties of the solution only
depend in this scaling factor. For this type of solutions the density and
pressure in the interior as they are found from the exact hydrodynamical
calculation have e.g., the same form, independent of time and only change
in the scaling of the radius and values at the shock front (see Landau and
Lifshitz, Fluid Dynamics). We also remark that the approximate solution
in Eq. (25.16) only differs by a small facor from the exact solution.Instead
of the factor 1.12 the exact solution has 1.152. This approxiamte solution
is therefore surprisingly accurate, although it does not give any information
about e.g., the density inside the shock.

26 Collissionally ionized plasmas

ALthough non-thermal emission is characteristic for most object in high
energy astrophysics, most of them also emit thermal radiation. In many ob-
jects this actually dominates the non-thermal. In addition, this component
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has the advantage of having a very large information content in the form of
spectral lines from a wide range of ionization states, and thus temperatures.
Further, detailed velocity information can be derived from the line profiles.
They therefore offer a very useful complement to the non-thermal emission.
We willtherefore in this section consider some of the properties of plasmas
which are collisionally ionized. This includes especially the emission from
very hot gas, such as encountered in the solar corona, supernova remnants
and clusters of galaxies.

We first consider the ionization balance. If an electron has an energy
larger than the ionization potential, χi, of an ion Xi this may result in a
higher ionization stage Xi+1

e + Xi → Xi+1 + e (26.1)

For this to occur the thermal energy has to fullfill

1

2
mev

2 ≈ kTe ≈ χi (26.2)

This corresponds to
Te ≈ 1.16 × 104χi(eV ) K (26.3)

Because most ionizations result from the tail of the Maxwellian distribution
an element usually becomes ionized at a temperature well below that in Eq.
(26.3).

The number of ionizations per unit time is given by

dni

dt
= neniCi(Te) (26.4)

where Ci(Te) is the collisional ionization rate, which is a Maxwellian average
of the cross section for ionizations.

The process balancing the ionizations are in most low density plasmas
two-body recombination

e + Xi+1 → Xi + hν (26.5)

where an ion captures an electron with emission of a photon. In plasmas of
very high density also three-body recombination may become important.

The number of recombinations are given by

dni

dt
= neni+1αi+1(Te) (26.6)
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where αi+1(Te) is the recombination coefficient, which is again a thermal
average of the recombination cross section.

In a steady state plasma the above processes balance and the state of
ionization is given by a solution to the equations

niCi(Te) = ni+1αi+1(Te) (26.7)

for all ionization stages i of the element. This is supplemented by a number
conservation equation

∑

i

ni = ntot (26.8)

where ntot is the total number of ions of this element. Note that the ioniza-
tion balance is independent of the electron density, because both collisional
ionizations and recombinations are proportional to this.

The temperature dependence of the ionization and recombination rates
are given approximately by

Ci(Te) ∝ T−1/2
e e−kTe/χi αi+1(Te) ∝ T−0.7

e (26.9)

Therefore in th ecase of collisional ionizations the ionization balance is very
sensitive to the temperature. In Fig. ( 61) we show the ionization bal-
ance of iron as function of temperature. The presence of a specific ion in

Figure 62: Ionization balance of iron as function of temperature. (Shull
1979)
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e.g. the spectrum of a collisionally ionized plasma is therefore a very good
temperature indicator.

An example is the coronal line from Fe XIV seen in the optical spectrum
the solar corona at solar eclipses at a wavelength of 5303 Å. This ion is only
present at a temperature of ∼ 2× 106 K, which is therefore a good estimate
of the temperature of the solar corona. What is giving rise to this high
temperature is not yet completely clear.

In supernova remnants the temperature of the gas is determined by the
speed of the shock wave. The radius of the remnant is given by

r = 1.1

(

Etot

ρ

)1/5

t2/5 = 1.6×1019E0.2
51 n−0.4

(

t

1000 years

)0

.4 cm (26.10)

The velocity of the shock is therefore

Vs =
dr

dt
=

2

5

r

t
= 2.0 × 103E0

51.2n
−0.4

(

t

1000 years

)−0.6

km s−1 (26.11)

From Eq. (11.33) we have for a strong shock

T = 1.38×107

(

Vs

1000 km s−1

)2

= 5.6×107E0.40
51 n−0.8

(

t

1000 years

)−1.2

K

(26.12)

27 Emission processes

The emission from a hot thermal plasma has several components. The con-
tinuum emission originates from free-free emission (bremsstrahlung), bound-
free emission (recombination emission) and two-photon emission. The latter
is a result of the forbidden continuum emission originating from the 2s – 1s
transition in hydrogenic atoms and the 23S−11S and 23P −11S transitions
in helium like ions.

The free-free emission has a form

dE

dνdtdV
= neni

C

T 0.5
e

e−hν/kTe (27.1)

while the bound-free emission

dE

dνdtdV
= neni

C

T 1.5
e

e−(hν−χi)/kTe (27.2)

for hν > χi.
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In addition to the continuum processes there are discrete transitions
where bound electrons are excited by collision with free, thermal electrons.
These are then either de-excited by radiative transitions, giving rise to line
emission, or by collisional de-excitations. The rate for collisional excitations
from a level i to level j can be wriiten as

dEij

dt
= nenihνij

Ωij

giT 0.5
e

e−hνij/kTe (27.3)

where Ωij is the collision strength and gi the statistical weight of the lower
level. The collision strength is a thermal average over the cross section for
collisional excitation, and is in general only slowly varying with temperature.

Because all these emission processes are triggered by thermal electrons
and proportional to the number of ions present the total emission can be
written as

dE

dtdV
= neniΛ(Te) (27.4)

where the factor Λ(Te) mainly depends on the temperature. This is, however,
only true if collisional de-excitation processes as well as radiative heating and
ionization processes can be ignored. In particular, collisional ionization has
to be much more important than photoionization. One is usually referring
to this as the coronal approximation, because it closely applies to that of the
solar corona, as well as clusters of galaxies. In Fig. (62) we show this cooling
curve for a plasma of ’cosmic’ composition, i.e., to a chemical composition
close to that of the sun or interstellar medium in the Galaxy.

A good and very useful approximation to Λ(Te) is given by

Λ(Te) = 8.0×10−23(Z/Z�)

(

Te

106K

)−0.90

+2.3×10−24

(

Te

106K

)0.50

erg cm3 s−1

(27.5)
where Z is the metallicity and Z� that of the sun. In this expression the
first term comes from collisional excitation and radiative recombination,
important for Te

<∼ 2 × 107 K. The last term is from free-free emission,
which dominates at high temperatures and has a Λ(Te) ∝ T 0.5

e dependence.

28 Supernova remnants

28.1 The adiabatic stage

After the SN explosion the ejecta expands with a velocity of Vs ∼ (1 −
2) × 104 km s−1 into the CSM of the progenitor star (see Sect. 6.7). This
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Figure 63: Cooling function for a plasma of solar composition. The contri-
bution from different elements are also shown. (Shull 1979??)

results in a strong shock wave, andas we will discuss later, a reverse shock
into the SN ejecta. The interaction gives rise to both radio, X-ray and
optical emission. Because the temperature behind the outer shock is 1.4 ×
109(Vs/10

4 km s−1)2 K the cooling time of this is long and the shock will in
general be adiabatic. The reverse shock is, however, at least during the first
years, usually radiative. Because the mass of the swept-up CSM is smaller
than the ejecta mass the Sedov-Taylor solution in Sect. 25 does not apply.
Instead the expansion is close to free expansion. The exact rate depends on
the density gradient of the ejecta which determines how the reverse shock
will propagate inwards in mass.

The structure of the CSM can be highly complex with remains of pre-
vious evolutionary stages in the form of fast and slow winds and their in-
teractions. While the fast blue supergiant wind during the main sequence
stage creates a low density bubble around the SN. Most SNe explode as
red supergiants. These have slow winds with a high mass loss rate, which
expand out into the bubble. The interaction of the SN ejecta with this wind
will therefore dominate the evolution during the first decades or centuries
after the explosion. Because the circumstellar density is high in this case
the interaction can be very strong, with strong emission both in radio and
in X-rays. For some SNe (the Type IIn) even the optical light curve may be
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dominated by circumstellar interaction.
For the Type Ib/c SNe the situation may be even more complex. After

the red supergiant stage, with a slow, dense wind, the star evolves back
to the blue, as it loses the hydrogen envelope and becomes a Wolf-Rayet
star. The wind now has roughly the same mass loss rate (∼ 10−5 M� yr−1)
but the wind velocty increases to 1000 − 3000 km s−1. This fast wind will
therefore sweep up the red supergiant wind into a very dense shell. Between
this dense shell and the freely expanding wind there will be a region of
shocked wind from the Wolf-Rayet star. Fig. 63 shows the evolution of this
complex structure from the main sequence to the Wolf-Rayet stage.

Figure 64: Structure of CSM of a 35 M� star from the main sequence until
it explodes as a Wolf-Rayet star. (Dwarkadas 2004)

From this discussion it is clear that the interaction of the SN will be
very complex during the first few hundred years, as the shock sweeps up the
CSM. During this time the SN ejecta sweeps up mainly the CSM, and the
mass of the swept up gas is comparable to the ejecta mass. The conditions
for the Sedov-Taylor solution to apply are therefore not satisfied either for
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the uniform density or for the ejecta mass to be neglected. Only after at
least 1000 years can this be expected to be a reasonable approximation.
Even then the non-uniform nature of the ISM means that the evolution will
deviate from the Sedov-Taylor solution.

An object in this early stage of evolution is the youngest SN remnant
in the Galaxy, Cas A, which exploded around 1670. Fig. 64 shows a 24µ
Spitzer (red), optical HST (yellow) and Chandra X-ray image (green and
blue) of Cas A. The high energy X-rays are blue and trace especially the
continuum radiation from non-thermal synchrotron emission close to the
outer shock. The green is dominated by line emission and coincides well
with the region between the reverse shock and the forward shock of optical
emission from cool gas, as well as dust emission seen in the IR. It is likely
that the SN ejecta are interacting with CS gas from the progenitor star,
possibly a Type IIn SN.

Figure 65: Composite of a 24µ Spitzer (red), optical HST (yellow) and
Chandra X-ray image (green and blue) of Cas A.

28.2 The radiative stage

As the SN remnant expands it sweeeps up more gas and gradually slows
down. Because Ts ∝ V 2

s the temperature decreases and cooling becomes
more and more important. Because the density in the shell at the shock is
highest it will cool fastest. The interior may, however, stay hot and exert a
pressure on the cool shell.
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If we, however, neglect this pressure the equation of motion for the shell
is

d

dt
(Mv) = 4πr2(p − pext) ≈ 0 (28.1)

saying that the momentum of the shell is constant. The mass, however,
increases and the shell therefore slows down. Because Mv is constant and
the shell mass

M =
4π

3
r3ρ (28.2)

we find that
r3v = constant . (28.3)

Therefore,
r = At1/4 , (28.4)

which is often referred to as the snowplow solution. Because we have ne-
glected the interior pressure of the still hot gas, the actual solution will be
somewhere between the Sedov-Taylor and snowplow solutions.

Figure 66: Part of the Cygnus Loop with HST. Note the thin filaments which
are shocked interstellar gas which have cooled from ∼ 106 K to ∼ (1−2)×104

K.
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Using the expression for the shock velocity and the cooling function one
can estimate the cooling time of the gas. One then finds that cooling sets
in at ∼ 104 years. This has the character of a thermal instability. Because
Λ(Te) ∝ T−0.90

e for Te
<∼ 107 K (see Eq. (27.5)), the cooling accelerates as the

temperature drops. The gas therefore cools from ∼ 106 K to ∼ (1− 2)× 104

K very rapidly.
During the adiabatic stage most of the emission is in X-rays. In the

radiative phase most of the emission from the shell now emerges as optical
and UV emission. Fig. 65 shows one of the most well-known SNRs in this
cathegory, the Cygnus Loop. The total size of the remnant is ∼ 20 pc and
the expansion velocity ∼ 115 km s−1. The thin filaments seen are likely to
be a result of the thermal instability and the effects of magnetic fields.

29 Hot gas in clusters of galaxies

Clusters of galaxies contain 100−1000 galaxies within a radius of 1.5−3 Mpc,
with a very large fraction elliptical galaxies. From the velocity dispersion
500 − 1500 km s−1, one infers total masses of 1014 − 3 × 1015 M�. This
corresponds to a mass to light ratio of 200 − 300 M�/ L�, and already
Zwicky conclded that this was most likely a result of dark matter dominating
the gravitational potential. Clusters of galaxies were very early identified
as an important class of X-ray emittingobjects, and it was also clear that
this came from hot, diffuse gas in the cluster. The typical X-ray luminsities
are 1043 − 1045 erg s−1. Observations of this gas is important since it gives
information about the cluster formation process, the degree of relaxation in
the cluster and it can be used as a tracer of the gravitational potential of
the cluster. In Fig. 66 we show a sample of X-ray images of clusters with
different degrees of relaxation.

The hot gas in clusters of galaxies show many similarities with SN rem-
nants. The gas is dominated by collisionall ionization and most of the emis-
sion is coming out as X-rays. The typical temperature of the gasis ∼ 108

K and the emission is therefore dominated by free-free radiation. Because
Λ(Te) ∝ T 0.5

e for this process the total luminosity is

LX ≈ V n2
eΛ ∝ n2

eR
3T 1/2

e (29.1)

where V ≈ 4πR3/3 is the volume of the cluster and ne the electron density.
The heating of the gas is provided by the motion of the galaxies, as well

as the initial heating in connection to the formation of the cluster. The
gas is therefore expected to be in virial equilibrium and the temperature
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Figure 67: X-ray contours of four clusters with different morphology. The
upper left is highly irregular, indicating a non-relaxed state, while the others
are more relaxed (Ref?).

therefore

kTe ≈ σ2 ≈ GMtot

R
(29.2)

where σ is the velocity dispersion in the cluster, as obtained from measure-
ments of the dispersion of the spectra of the cluster members. Using this
we find that

ne ≈
Mgas

V
∝ Mtot

R3
∝ Te

R2
(29.3)

If we use this in Eq. (29.1) we obtain

LX ∝ n2
e(Te/ne)

3/2T 1/2
e = n1/2

e T 2
e (29.4)

Based on this simple scaling we therefore expect a relation between the
cluster luminosity and the density and temperature of the gas. The density
can be estimated from the luminosity and temperature, using Eq. (29.1),
while the temperature can be obtained from the X-ray spectrum. In Fig.
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67 we show the observed temperature against the X-ray luminosity together
with the above realtion.

Figure 68: The X-ray luminosity as function of the temperature of the gas
for a sample of clusters (Ref?).

A more detailed analysis fits the surface brightness S(R), i.e., the emis-
sivity integrated along the line of sight

S(R) = 2

∫

∞

0
ne(l)

2Λ[T (l)]dl = 2

∫

∞

R

ne(r)
2rΛ[T (r)]

(r2 − R2)1/2dr
(29.5)

As a simple parameterization of the density profile we can use

ne(r) = n0

[

1 + (r/Rc)
2
]−3β/2

(29.6)

where Rc is the core radius, which is a fitting parameter. β gives the radial
slope of the distribution. Typical values for the core density is ∼ 2.5 ×
10−3 cm−3 , β = 0.7 and Rc = 0.15 − 0.4 Mpc. Using

Λ[T ] ≈ 2.4 × 10−27T 1/2 for Te > 2 × 107K (29.7)

for free-free emission one can then from the surface brightness obtain the
parameters n0, β and Rc if T (r) is known. The latter can be obtained from
the spectrum, since dE/dνdtdV ∝ neniT

−0.5
e e−hν/kTe (Eq. (27.1)). In this

way we can determine the density profile of the cluster gas.
This is very useful since we can now relate this to the mass distribution

in the cluster. If the cluster is relaxed we expect it to be in hydrostatic
equilibrium. If we assume that the cluster is spherically symmetric we then
have

dp(r)

dr
= −GM(r)ρ(r)

r2
(29.8)
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where p(r) is the pressure and M(r) is the mass inside radius r. For the
pressure we have the usual relation

p =
k

mpµ
ρT (29.9)

where µ is the mean molecular weight. If we differentiate this we obtain

dp

dr
=

k

mpµ
(T

dρ

dr
+ ρ

dT

dr
) , (29.10)

which can be replaced for the left hand side in Eq. (29.8) to obtain

M(r) = − kTr

Gmpµ

(

d ln ρ

d ln r
+

d ln T

d ln r

)

(29.11)

Because we can determine T (r) and ne(r) from the spectrum and surface
brightness mass distribution we can now derive the mass profile M(r). Note
that this is the total gravitational mass, not only the mass in the gas. It is
therefore a very useful probe of the dark matter distribution in the cluster.

The analysis of the cluster Abell 478 illustrates this procedure. In Fig.
68 we show the X-ray image of the cluster, where the contours show the
surface brightness levels. In Fig. 69 the hardness ratio, i.e. the flux ratio
between 2.0-5.0 keV and 0.2-2.0 keV, is shown. This ratio is useful since
it provides a measure of the temperature of the gas. These observations
are used to obtain the surface brightness, electron density, temperature and
pressure as function of the radius from the center shown in Fig. 70. This
can then be used in Eq. (29.11) to obtain the mass profile in Fig. 71. The
total mass of the cluster is ∼ 1015 M�, typical for a massive cluster. The
mass is however much

The cooling time of the cluster gas is

tcool ≈
3kTe

neΛ(Te)
(29.12)

For free-free emission this gives

tcool ≈ 8.5 × 1010
( n

10−3cm−3

)−1
(

T

108K

)1/2

years (29.13)

For high densities, such as those encoutered in the core, the cooling time
may be much less than the Hubble time. Unless the gas is heated by some
process it is therefore expected to cool in the core. As with the radiative SN
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Figure 69: Chandra 0.5-5 keV X-ray image showing the surface brghtness
of the cluster Abell 478 from Chandra? The right panel shows the central
region (Sun et al 2003).

remnants this will lead to a thermal instability until the gas temperature is
∼ 104 K, or even less. The pressure will at the same time decrease and a
flow of gas towards the center may result. This is known as a cooling cluster.
In the central region the cool gas may give rise to optical line emission from
the gas, and to star formation in center.

This is indeed seen in some clusters, like the Perseus cluster. The fre-
quency is, however, much lower than expected which has been a problem.
Different explanations have been proposed to solve this problem, in partic-
ular heating by a central AGN or heat conduction may possibly prevent the
instability. This is, however, not yet solved.

29.1 The Sunyaev-Zeldovich effect

∆ν

ν
=

kTe

mec2
(29.14)

y =

∫

kTe

mec2
neσT dl (29.15)

30 The Fermi mechanism

Let us first consider the effect of an elastic scattering of a particle on a
moving object. Suppose also that this scattering is elastic. An example is
the scattering of an electron against a magnetic irregulaity in the interstellar
medium.
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Figure 70: The hardness ratio giving a measure of the temperature of the
gas. (Sun et al 2003).

To see the result of this we first consider the transformation of the mo-
mentum and energy from the rest system K to that of the moving object,
K’. The momentum in the frame K’ is then given by

p′x 1 = γ(px 1 +
V

c2
E1) (30.1)

where px 1 is the momentum before the collsion along the x-axis. In terms
of the total momentum px 1 = p1 cos θ, where θ is the angle of the velocity
with the x-axis. Similarily, the energy in frame K’ is

E′

x 1 = γ(V px 1 + E1) (30.2)

Suppose now that the scattering is eleastic in the K’ frame, i.e., E′
x 2 =

E′
x 1 and p′x 2 = −p′x 1. In the rest frame the energy after the scattering will

therefore be
E2 = γ(−V p′x 2 + E′

2) = γ(V p′x 1 + E′

1) (30.3)

Inserting the relation Eq. (30) between the energy and momentum in K’
and K we get

E2 = γ(V γ(px 1 +
V

c2
E1) + γ(V px 1 + E1)) (30.4)

or

E2 = γ2E1[1 + 2
V px 1

E1
+

V 2

c2
] (30.5)
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Figure 71: The surface brightness, electron density, temperature and pres-
sure as function of the radius from the center(Sun et al 2003).

Suppose the particle velocity has an angle θ against the scatterer (’wall’).
Because px 1 = p1 cos θ and p1 = E1v/c we get

E2 = γ2E1[1 + 2
V v cos θ

c2
+

V 2

c2
] (30.6)

Note here that v is the velocity of the particle and V that of the scatterer.
Let us now assume that the scatterer has a velocity much less than that

of light, while the particle velocity may be close to this. In this case γ ≈ 1
and we cab neglect the last term in the brackett,

E2 ≈ E1[1 + 2
V v cos θ

c2
+ O(V/c)2] (30.7)

The change in energy in one scattering is therefore

∆E

E
≈ 2V v cos θ

c2
(30.8)

F = n(v + V cos θ) ≈ n(c + V cos θ) (30.9)
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Figure 72: The derived mass profile of Abell 478. The solid line gives the
mass profile predicted by the CDM model of Navarro, Frenk and White (Ref
?).

F∆E = n(c + V cos θ)E1
2V cos θ

c
(30.10)

∆Enet = n[(c + V cos θ)E12V cos θ − (c − V cos θ)E12V cos θ] (30.11)

∆Enet = 4n(V cos θ)2 (30.12)

∆Enet =

∫ π/2
0 4n

c (V cos θ)2d cos θ
∫ π/2
0 d cos θ

=
4

3
nc

(

V

c

)2

(30.13)

E′ = γ(V px + E) (30.14)

E′ ≈ V

c
cos θE + E (30.15)
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Figure 73: Part of the Cygnus Loop with HST. Note the thin filaments
which are shocked interstellar gas cooling to ∼ (1 − 2) × 104 K.

∆E =
V

c
cos θE (30.16)

E(k) = (1 +
∆E

E
)E(k − 1) = ..... = (1 +

Vs

c
)kE0 (30.17)

N(k) = N0P
k (30.18)

ln[N(E)/N0] = k ln P =
ln P ln[E/E0]

ln(1 + Vs

c )
(30.19)

N(E)

N0
=

[

E

E0

]
ln P

ln(1+
Vs
c )

(30.20)

dN

dE
=

[

E

E0

] ln P

ln(1+ Vs
c )

−1

(30.21)

dn = cos θdΩ = 2cos θd cos θ (30.22)

∆E =
V

c
cos θE (30.23)

〈

∆E

E

〉

= 2

∫ π/2

0

V

c
cos θ cos θd cos θ =

2

3

V

c
(30.24)
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Figure 74: Part of the Cygnus Loop with HST. Note the thin filaments
which are shocked interstellar gas cooling to ∼ (1 − 2) × 104 K.

〈

∆E

E

〉

=
4

3

V

c
= Vs (30.25)

dn

dt
= Nc

1

2

∫ π/2

0
cos θd cos θ =

Nc

4
(30.26)

dn

dt
= NV =

NVs

4
(30.27)

Pesc =
Vs

c
(30.28)

dN

dE
= CE

ln P

ln(1+
Vs
c )

−1
(30.29)

ln P

ln(1 + Vs

c )
− 1 =

ln(1 − Vs

c )

ln(1 + Vs

c )
− 1 ≈ −1 − 1 = −2 (30.30)

dN

dE
= CE−2 (30.31)

dE

dt
= −p

dV

dt
= (γ − 1)E∇ · v (30.32)

v(r) = v0
r

r0
(30.33)
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∇ · v =
1

r2

∂

∂r
(r2v) =

v0

r0

1

r2

∂

∂r
(r3) = 3

v0

r0

= 3
v

r
(30.34)

dE

dt
= 3(γ − 1)E

v

r
= 3(γ − 1)

E

t
=

E

t
(30.35)

T = 5.6 × 107E0
51.4n

−0.8

(

t

1000 years

)−1.2

K (30.36)

tcool ≈
3kTe

neΛ(Te)
(30.37)

Λ(Te) = 8.0 × 10−23

(

Te

106K

)−0.90

(30.38)

n2 = 4n1 ≡ 4n (30.39)

tcool ≈ 4.0 × 104n−1

(

T

106K

)1.9

years (30.40)

t ≈ tcool ⇒ tcool ≈ 2 × 104E0.23
51 n−0.77 years (30.41)

31 Gamma-ray Bursts

31.1 Historical overview

Gamma-ray bursts (GRB’s) were discovered in 1967 as a result of the Cold
War. At that time the results were classified, and it was not until 1973 the
first results were published. This immediately inspired a large number of
more or less exotic theories, and in connection to the Texas conference on
Relativistic Astrophysics in 1974 Ruderman could summarize more theories
than discovered bursts at that time. Among these were more or less exotic
candidates, like mini-black holes, white holes, comets falling down on neu-
tron stars, etc. It is, however, worth noting that supernovae were already
in 1974 proposed as a candidate by Colgate.

With the Compton Gamma-ray Observatory in 1991 it was found that
the distribution on the sky was highly isotropic, indicating a cosmological
origin, although an extended halo population could not be completely ruled
out (Fig. 74). CGRO also found that the bursts could roughly be divided
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Figure 75: GRB distribution on the sky for bursts observed with BATSE
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into short (∆t <∼ 2 s) and long (∆t >∼ 2 s) bursts, although the distribution
of these formed a continuum.

A problem with CGRO was the fact that the localization could only be
done within ∼ 3◦. An optical identification, which requires a position within
arc minutes, was therefore impossible.

A breakthrough came with the Dutch-Italian satellite Beppo-Sax which
had both a gamma-ray trigger and an X-ray telescope which could localize
the X-ray emission in connection to the burst within a few arc minutes.
This allowed in 1997 the first optical identification of an afterglow from
GRB970228. Shortly afterwards, GRB970508 was identified, and, moreover,
the spectrum showed absorption lines from intervening galaxies up to z =
0.835, once and for all demonstrating that the GRBs are at cosmological
distances.

In 1998 the GRB 980425 was found to coincide with the Type Ic SN
1998bw in ESO 184-G82 at z=0.0085. This SN was highly unusual from
several points of view. The radio emission was the strongest seen among all
SNe (see Fig. ??). Also its optical luminosity was an order of magnitude
higher than the typical Type Ic luminosity, indicating M(56Ni) ∼ 0.7 M�,
which is larger than e.g., SN 1987A by a factor of ten. Finally the spectrum
indicated an expansion velocity of >∼ 60, 000 km s−1, which was probably
only a lower limit. Modeling of the radio observations showed that these
could be well fitted with a synchrotron-self absorption spectrum of a source
expanding with a Lorentz factor Γ ∼ 2. This gave rise to the notion hy-
pernovae. Although many in especially the SN community saw this as the
confirming evidence for the SN – GRB connection, which was proposed al-
ready 1974 by Colgate and others, this GRB was extremely weak compared
to typical GRBs.

More evidence, however, came from the afterglow light curves which in
several cases showed a clear bump in the light curves, which was interpreted
as a SN signature. Complete confirmation came with the identification of a
SN 1998bw-like spectrum in the afterglow of the GRB 030329.

31.2 Summary of observations

31.2.1 Prompt phase

In Fig. 75 we show a sample of burst profiles detected by BATSE. It is
obvious that both the length of the burst and its light curve shape differ
greatly. Some, like Triggers 1406 and 2571, have sharply rising bursts and
then a smooth decay, while others like Trigger 1606 have highly irregular
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Figure 76: Examples of light curves observed with BATSE.

profiles.
The duration of the bursts vary from 10−2 s to 103 s. As is seen from

Fig. 75, many long bursts show considerable substructure, with peaks with
a duration of the order of milliseconds or even less. The distribution of the
durations show a clearly bimodal structure, with one peak at ∼ 0.2 s and
one at ∼ 30 s (Fig. 76). Because of this, one usually divides the burst
into short <∼ 2 s and long >∼ 2 s. The short account for ∼ 25%, but there
may be selection effects which may increase the true fraction. This bimodal
distribution has led some people to the suggestion that this represents two
different physical mechanisms for the bursts. We are coming back to this
later.

The spectra of the prompt emission can be described as two power laws
with a break between, dN(E)/dE ∝ E−α where α is the photon number
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Figure 77: Distribution of durations of gamma-ray bursts detected by
BATSE. The duration is defined as the time, T90, between when 5% and
95% of the total number of counts are measured.

index. At energies less than the peak energy, Ep, α ≈ 1± 1, while above Ep

the bursts have a wide range of α ≈ 1−4. The fact that the EF (E) spectrum
shows a peak in the gamma-ray range, implies that for most GRBs most of
the energy of the burst is really coming out as gamma-rays. Recently, many
bursts have, however, been discovered which have their peak energy in the
X-rays.

The range in Ep is very large ranging from MeVs down to tens of keVs.
Unfortunately, both at high and low energies selection effects makes this
highly uncertain.

There is a correlation between the peak energy and the duration of the
burst, so that short burst in general have harder spectra than long bursts.
This can be seen in the hardness ratio defined as the ratio of the fluency
(time integrated flux) in the 100-300 keV channel divided by that in the 50
– 100 keV channel of the BATSE instrument (Fig. 77). Clearly, the short
bursts have considerably harder spectra. The transition between the two
groups is, however, smooth.

31.2.2 Afterglow phase

GRB 970508 was the first GRB to show an afterglow emission in the radio
as well as in the optical. This allowed first of all an identification of the
object at these wavelength, and secondly a very valuable diagnostic of the
global properties of the GRB. This includes such parameters as the total

165



Figure 78: Hardness – duration correlation of BATSE bursts. The HR is
defined as the ratio of the fluency in the 100-300 keV channel divided by
that in the 50 – 100 keV channel (from Qin et al. 1999)
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Figure 79: Sample of X-ray light curves observed with SWIFT. (Nousek et
al. 2005)

energy, the Lorentz factor of the expanding matter, magnetic fields and
particle energies, as well as information about the environment of the GRB.
In particular, this has allowed a direct identification of the type of object
which is responsible for the GRB. As examples of afterglow light curves in
the X-ray range we show in Fig. 78 a sample of recently observed GRBs
with SWIFT.

The afterglow phase is a direct relativistic version of the Sedov solution
for a supernova remnant. In the same way as for these the dynamics reflects
the properties of the radiative emission and spectrum. Before discussing this,
we, however, consider a few very basic constraints which can be derived from
observations of the prompt phase.
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31.3 The necessity of relativistic expansion

First assume that the source is non-relativistic. The fluency is then given by
F = L∆t/4πD2, where ∆t is the time scale of the burst, L the luminosity
and D the luminosity distance to the GRB. If we assume that the source has
a radius R, the energy density is L/4πR2c. As an estimate we take R ∼ ∆t.
Further, we assume that a fraction fp of the photons have energies above
the pair creation threshold, ∼ 2mec

2, the density of energetic photons is
nγ = fpL/4πR2mec

3. The optical depth to pair production is therefore

τγγ = σT nγR =
σT fpL

4πRmec3
=

σT fpFD2

R∆tmec3
=

σT fpFD2

(∆tc)2mec2
(31.1)

As a typical value for the fluency we take F ∼ 10−6erg cm−2 and D ∼
2000 Mpc, corresponding to a total energy of 5 × 1050 ergs. If we take
∆t ∼ 0.01 s we get

τγγ = 3 × 1014fp
F

10−6erg cm−2

(

∆t

0.01s

)−2

(31.2)

Therefore for any reasonable values of fp the source would be extremely opti-
cally thick to pair production and would therefore show a thermal spectrum,
contrary to the observations.

This paradox is solved if the source is expanding relativistically with a
large Lorentz factor, Γ. This has several consequences which help in the
right direction.

First, if the source is moving towards us with a velocity v, the observed
time interval, dtobs between two photons emitted in an interval dtem will
be smaller by a factor 2Γ2. To see this we consider a photon emitted from
the shell at a radius r1 from the origin at a time t1 em in the GRB frame,
and at an angle θ. The time when it will arrive to the observer is therefore
t1 obs = t1 em + (D − r1 cos θ)/c. Now, let a second photon be emitted at
a time t1 em + dtem. The radius will now be r2 = r1 + vdtem, and the
time when it will be observed is therefore t2 obs = t2 em + (D− r2 cos θ)/c =
[D−(r1 +vdtem) cos θ]/c. The time interval it will be received in is therefore

dtobs = dtem − βdtem cos θ = dtem(1 − β cos θ) (31.3)

where β = v/c.
Because v ≈ c it is more useful to write this in terms of the Lorentz factor.

For this we note that Γ2 = 1/(1 − β2) = 1/[(1 + β)(1 − β)] ≈ 1/[2(1 − β)].
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If we now assume that cos θ ≈ 1, we can write Eq. (31.3) as

dtobs =
dtem
2Γ2

(31.4)

If the source is expanding with constant velocity the true size is therefore
not ctobs but 2Γ2ctobs.

Note that Eq. (31.4) is not the result of a Lorentz transformation, but
is only a result of the fast expansion and the finite velocity of light.

Secondly, for a relativistically expanding source the radiation we receive
will be blue shifted by a the Doppler effect which gives a factor Γ higher
frequency. Therefore, the number of photons above the pair production
threshold will decrease by a factor Γ2α.

Putting everything together, one gains a factor of Γ2(1+α) from the rela-
tivistic motion. With α ∼ 2 this becomes ∼ Γ6. The Lorentz factors needed
to have τγγ � 1 are therefore in the range Γ ∼ 100 − 1000.

Further evidence of relativistic expansion comes from radio observations
of interstellar scintillations in GRB light curves. An example of this is shown
in Fig. 79 for GRB 970508. During the first ∼ 50 days the radio flux showed
large excursions, which later decreased, consistent with that expected for an
expanding source. From the size of the plasma fluctuations the angular
extent of the radio emission could be estimated, and one found that the
source must have had a size of >∼ 1017 cm, showing that the expansion was
close to the velocity of light.

The fact that we need a highly relativistic expansion means that the
mass involved in this must be very small, since

E ∼ ΓMc2 (31.5)

which means that

M ≈ 5 × 10−6

(

Γ

103

)−1( E

1052ergs

)

M� (31.6)

This means that the explosion has to have a very small fraction of baryons
to photons.

31.4 General scenario for the prompt and afterglow emis-
sion.

Most models for the prompt emission, as well as the afterglow, do not specify
the way the explosion takes place. The only assumption is that a very
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Figure 80: Radio light curve for GRB970508 at 8.46 GHz. Note the rapid
fluctuations due to interstellar scintillations in the light curve during the
first ∼ 50 days (Frail 2003).
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large amount of energy is released in either a spherical explosion or, as we
will discuss below, in a narrow conical jet. This is both the strength and
weakness of the model. On the one hand it is free of assumptions about this
early not well understood phase. On the other hand, the model gives very
little information about this crucial stage.

Figure 81: Schematic representations of the different stages in the evolution
of a GRB.

In it simplest version one releases a large amount of energy in a medium
and let this expand. Depending on the structure of the medium, like radial
density variation, asphericity and rotation, etc, the explosion may either be
spherical or, more realistically, confined to a jet. In the currently popular
models the latter is usually assumed.

The prompt emission may be produced in two quite different alternatives
(see Fig. 81). In one type of models it is a result of the interaction of the
blast wave with the external medium, in a similar way to what happens in a
supernova remnant. The properties of the emission is therefore sensitive to
the details of the circumstellar medium, such as clumping and the presence of
a stellar wind from the progenitor. This model is usually called the external
shock model.
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In the other type of models the prompt emission is caused by the fact
that it is likely that the ’central engine’ does not have a steady energy and
momentum output as function of time. Instead, the Lorentz factor may e.g.,
vary with time depending on the details of the energy production mecha-
nism. This variation will lead to a situation where you may have matter
with a higher Lorentz factor ejected after that of lower. The more energetic
ejection will therefore at some point catch up with the less energetic, and
a shock wave will form in the outflow itself. The energy release is in this
type of models therefore internal to the outflow and the models are therefore
referred to as the internal shock model.

�Internal Shocks

many colliding shells

�Complex, Long 
Lasting Engine

�External Shocks

irregular surrounding

�Simple “Explosive” Engine

Sari

Figure 82: Schematic representations of the internal and external shock
model for the prompt emission. (Sari).

An important clue to the the cause of the prompt phase is the rapid
variations in intensity on a time scale of milli-seconds seen in most bursts.
There are basically two possibilities to create this.

In the external shock model the variations are caused by encounters of
the relativistic blast wave by a large number of clumps in the circumstellar
medium. A problem for this model is, however, that the shock emission
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resulting from this does not react fast enough to the clumping but instead
smooths the variation with time. The internal shock model has no problems
in this respect, since the variations in the radiative flux will directly reflect
the variation in the outflow. For this reason it is the currently favored
model for the prompt emission. After the central engine has been switched
off and these internal variations have had time to set up a smooth outflow,
one expects the internal energy release to switch off. At that point the
interaction with the external medium takes over, and the GRB has entered
the afterglow phase. The details of the model, in particular the reason for
the variable Lorentz factor, are, however not at all clear.

The emission in the afterglow phase is better understood. In principle it
is just a relativistic version of the blast wave for a supernova remnant. In the
same way as this the kinetic energy of the outflow is converted into thermal
energy behind the shock. One can then formulate shock conditions similar
to the non-relativistic, which gives the relation between the conditions in
front and behind the shock (for details see the Appendix). For an adiabatic
expansion of the blast wave one can then find a similarity solution for the
dynamics, similar to the Sedov solution, which describes the expansion of
the blast wave in the surrounding medium. Compared to the Sedov solution
this is complicated first by the relativistic effects from the Lorentz transfor-
mations and secondly by the difference in the observed time evolution and
the time evolution in the frame of the GRB, as we discussed in the previous
section. Without any details the result is

R ≈
(

9E

2πn1muc

)1/8

t
1/4
obs (31.7)

or

R ≈ 4 × 1017

(

E

1052 ergs

)1/8
( n1

1 cm−3

)−1/8
(

tobs

days

)1/4

cm. (31.8)

The Lorentz factor of the shocked gas behind the blast wave, with parame-
ters considered to be typical for a GRB, is given by

Γ2 ≈ 4.4

(

E

1052 ergs

)1/8
( n1

1 cm−3

)−1/8
(

tobs

days

)−3/8

(31.9)

The energy, as well as the density, can vary by large factors, and can in par-
ticular be considerably higher respectively lower. It is therefore concevable
that larger Lorentz factors than the indicated are at hand in some cases.
Note, however, the fairly strong dependence on the observer time. Lorentz

173



factors of 100–1000 are therefore likely to be present during the first minutes
and hours after the burst, as is needed from the discussion earlier.

The derivation of these relations are given in the Appendix for those
interested.

31.5 Afterglow spectra

For synchrotron radiation an electron in a magnetic field, B, with energy
γmec

2 radiates a total power P = 4/3σT cB2γ2/8π, at a frequency

ν0 =
eBγ2

2πmec
≡ νBγ2B , (31.10)

where νB = 4.2×106 Hz. The spectral distribution can be approximated by
P (x) ≈ x1/3 exp(−x) where x = ν/ν0 (e.g., Rybicki & Lightman). This is
the frequency in the comoving frame. The frequency in the observer frame is
νobs = Γ2ν0. Both observationally and theoretically there are strong reasons
for assuming that the non-thermal electron spectrum is given by a power
law, dn(γ)/dγ ∝ γ−p, where p ∼ 2.

The spectrum of the afterglow is characterized by a number of power law
segments, separated by several breaks. The frequencies of these breaks corre-
spond to the minimum energy of the electron distribution, νmin = νBγ2

minB,
the energy where synchrotron cooling becomes important, νc = νBγ2

c , and
the frequency where synchrotron self-absorption becomes important νSSA.

Let us for a moment ignore the synchrotron self-absorption, and also
assume that νmin < νc. Below νmin the radiation will be dominated by
electrons close to γmin. The spectrum from these will be the same as a
mono-energetic spectrum with ν � ν0 = νmin. i.e., Fν ∝ P (ν/νmin) ∝
(ν/νmin)1/3. Between νmin and νc the spectrum will be Fν ∝ (ν/νmin)−(p−1)/2,
the usual synchrotron spectrum. Finally, for ν > νc cooling is important,
and Fν ∝ (ν/νc)

−p/2.
Let us now include synchrotron self-absorption. We then have to consider

two cases. Let us first assume that νmin < νSSA. For νmin < ν < νSSA the
spectrum will then be Fν ∝ (ν/νc)

5/2, characteristic of an optically thick
source. For ν < νmin the spectrum will, however, be somewhat flatter Fν ∝
(ν/νmin)2. The reason for this can be understood if we write the spectrum in
the optically thick Rayleigh-Wien limit as Fν = 2ν2Emean/c2, where Emean

is the mean energy of the radiating particles. For a thermal distribution
Emean ∼ kT , while for a non-thermal Emean ∝ γmean ∝ (νmean/B)1/2.
In this case Fν ∝ ν2γmean ∝ ν5/2/B1/2. However, if ν < νmin, then the
electrons at γmin are doing most of the absorption and emission, so that
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Figure 83: Schematic afterglow spectrum (Sari et al 1998).

γmean = γmin and Fν ∝ ν2γmin ∝ (νmin/B)1/2ν2. In Fig. 82 we summarize
the different sections of the spectrum.

To demonstrate this with real observations, we show in Fig. 83 a fit to
the broad band spectrum of GRB970508, which is one of the best examples
of this kind of fit. From the fit, in combination with the time evolution,
values of n1, E, εe, εB , γmin, p can be derived. The value of p is obtained
directly from the spectral slope and typical values are p ≈ 2.1, which is in
good accordance with theoretical expectations. The other parameters are
more uncertain and model dependent.

From the fit, one can determine the frequencies of the spectral breaks
νSSA, νmin and νc, as well as the flux at the peak, Fν(νmin). The value
of p is obtained directly from the spectral slope, and typical values are
p ≈ 2.2, which is in good accordance with theoretical expectations. The
remaining parameters characterizing the blast wave n1, E, εe, εB can then
be derived. Assuming a constant external density Panaitescu & Kumar get
n1 = 0.1− 30 cm−3, E ∼ (1− 5)× 1050 ergs, εe ≈ 0.1, εB ≈ 10−4 − 0.1. The
energy is corrected for beaming, as will be discussed below. These numbers
should be taken with caution, since they depend on uncertain observations,
as well as questionable assumptions.

Note that we have until now not made any assumptions about the time
evolution of the remnant. This, however, enters in the time evolution of
the frequencies of the spectral breaks, and therefore depend on the density
profile of the environment and whether the blast wave is adiabatic or not.
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Figure 84: Broad band spectrum of the burst GRB970508 12.1 days after
the burst, together with a model fit. (Galama et al. 1998)

31.6 Jet steepening

The fact that the energy, assuming isotropic emission, is so enormous has
lead to the suggestion that the relativistic outflow occurs in two narrow
jets, in analogy with e.g., jets from compact radio galaxies. This is also
motivated from hydrodynamical models for the GRB, as will be discussed
later. Because of relativistic abberation, the radiation emitted at an angle
θ′ relative to its velocity in the rest frame, will be seen to be emitted at an
angle θ given by

cos θ =
cos θ′ + β

1 + β cos θ′
(31.11)

(e.g., Rybicki & Lightman §4.1.3, or the similar effect for synchrotron emis-
sion in the electron and observer frames). Consider a light ray emitted at
θ′ = 90◦. Then cos θ = β. Using 1 − β ≈ 1/2Γ2, and cos θ ≈ 1 − θ2/2, we
find θ ≈ 1/Γ for Γ � 1.

Therefore, for relativistic velocities the radiation is seen only within an
angle θ ∼ 1/Γ. As long as the jet opening angle is larger than this, there is no
difference between a spherical shell and a jet. However, as the jet is slowing
down there will be a point when this condition is no longer true. Because
only part of the emitting cone will now be filled this leads to a steepening
of the light curve of the afterglow. Therefore, if one can determine when
this occurs one can from the afterglow model estimate the value of θ ∼ 1/Γ
(see Eq. (31.9)), if one from the spectral modeling has determined the other
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Figure 85: Optical light curves of GRB 990510 in the V, R and I bands
(Harrison et al. 1999).

parameters. Knowing θ, one can now determine the correct total energy as
E = 2θ2Eiso/4π (for a two-sided jet), where Eiso is the energy assuming an
isotropic shell.

In Fig. 84 we show the optical light curves of GRB 990510. At ∼ 1 day
there is a clear steepening in the light curves of all colors. This has now
been done for a number of afterglows, and in Fig. 85 we show a distribution
of isotropic and corrected total energies. Typical jet angles are ∼ 10◦. It is
here seen that while the isotropic energies are in the range 1052 − 1054 ergs,
the beam-corrected energies are ∼ 5 × 1050 ergs, with a small dispersion.
This has lead to the suggestion that one can use GRBs as standard candles
in the same way as TypeIa supernovae. Because of many systematic effects
this is in my view optimistic.

32 GRB Progenitors

Up to now we have made no assumptions about the nature of the exploding
object, but only assumed an instantaneous injection of a large amount of
energy with a large E/M0c

2. To explain the large energies involved ∼ 1051−
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Figure 86: Distribution of isotropic end corrected energies (Frail et al. 2001).

1052 ergs it is, however, obvious that the formation of some kind of compact
object is involved. This can either be a neutron star or a black hole. There
are then two main classes of scenarios, which have quite different progenitors.
The physics involved in the generation of the energy may, however, be fairly
similar. We will now discuss these one by one.

32.1 The supernova - GRB connection

Supernovae have from the theoretical point of view for a long time been
proposed as an origin for GRBs. When the first afterglows were identified,
it was also noted that these in most cases were in the central regions of star
forming galaxies, typical of massive stars. Direct evidence for a connection
between these was, however, lacking. This changed when in April 1998 the
error box of GRB 980425 was found to coincide with the supernova SN
1998bw in the galaxy ESO 184-G82 with a very low redshift, 2550 km s−1

or z=0.0085. The supernova which was a Type Ic SN, was very remarkable
from several points of view. The radio emission from the supernova was
found to be more luminous than any other radio SN, and was well fitted
by a synchrotron self-absorption spectrum. From modeling of the radio
emission the expansion velocity of the emitting material was found to have
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a Lorentz factor of Γ ∼ 2. Also the optical spectrum showed very broad,
smooth features indicating an expansion velocity of at least 60, 000 km s−1.
The luminosity of the SN was nearly a factor of ten larger than a typical
Type Ic SN, and close to that of Type Ia’s. The light curve indicated a
total 56Ni mass of ∼ 0.5 M�, much higher than that in e.g., SN 1987A. The
gamma-ray luminosity was, however, about four orders of magnitude less
than a typical GRB, ∼ 5×1047 ergs. This has lead to some doubt about the
GRB-SN connection in this case. The coincidence of the SN and GRB as
well as the remarkable properties of the SN, makes it in my view, however,
completely clear that the GRB and the SN really originated from the same
object.

In addition to this direct evidence there has for a number of GRBs been
seen evidence for a bump in the light curve of the afterglow. While the early
evolution in most cases follows a power law, there has been several examples
where a red bump has been seen in the light curve at ∼ 20 days (Fig. 86).
The luminosity of these bumps as well as the shape and color are roughly
consistent with that of SN 1998bw, indicating that it really is the emission
from the SN which is seen.

Besides SN 1998bw, the most direct evidence for the SN/GRB connec-
tion came from GRB 030329. This was by GRB standards an extremely
nearby GRB with z = 0.168. As was immediately recognized by several
groups, this was a unique opportunity of getting high S/N spectra of the
afterglow during the first months. While the first spectra showed basically
a power law spectrum with Fν ∝ ν−1.2, there was after ∼ 8 days a clear
excess emission above a power law fit (Fig. 87). This component became
increasingly stronger, and when the power law spectrum seen during the
first days was subtracted it was found that this coincided almost perfectly
with that of SN 1998bw. The supernova consequently got the designation
SN 2003dh. In addition to this there has been several other GRBs where
there is strong evidence for an underplaying supernova. With GRB980425,
GRB030329 and these other cases, the SN/GRB connection is now firmly
established,

Note, however, that the optically identified GRBs all belong to the long
GRBs. Because there is some evidence from the distribution of the durations
that there may be two different populations of progenitors, it is fair to say
that the SN–GRB connection is only established for the long bursts. The
short could have a different class of progenitors.
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Figure 87: Light curves of the afterglow of GRB011121 obtained with HST
(triangles) and ground based telescopes (diamonds). Note the bump in the
light curve at 10-30 days, consistent with that from a of SN 1998bw, dimmed
by ∼ 55% (Bloom et al 2002).
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Figure 88: Spectral sequence of GRB030329/SN2003dh with VLT (Hjorth
et al 2003). Note the power law spectrum on April 3 and the gradually
stronger supernova contribution. The dashed line shows the spectrum of SN
1998bw at an age of 33 days.
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32.2 The GRB environment

32.3 Collapsars

The collapsar model for GRBs is based on the partial failure to produce an
explosion from models of core collapse SNe. However, to get a gamma-ray
burst several special properties of the collapsing star are likely to be needed.
This is also indicated by the fact that only a very small fraction of all SNe
produce GRBs. From the beaming angle, corresponding to a solid angle of
Ω ∼ 0.03, we observe only every <∼ 200 of all GRBs. More detailed estimates
of this factor vary between 75−500. The total GRB rate (including the ones
with beaming away from us) is estimated to be ∼ 33 Gpc−3 year−1. The
typical rate should then be one GRB per ∼ 3×105 years for a typical galaxy.
Therefore, only a fraction of one per ∼ 3 × 103 SNe will become a GRB.

In the standard GRB scenario the main ingredients is a rapidly rotating
stellar core, and a low mass or absent stellar envelope. The former is needed
to produce a jet, while the latter is needed to get the jet out of the star.

The main parameters of the collapsing core are the specific angular mo-
mentum, j = J/M . During the first seconds a centrifugally supported disk
forms with interior to R ≈ j2/GM . For reasonable values of j this is
∼ 100 − 200 km. Because the centrifugal support is much smaller in the
polar direction the matter in this direction continues to accrete onto the
black hole, until this region is nearly empty (Fig. 88). The density contrast
between the equatorial disk, where the density is ∼ 109 g cm−3, and the
polar direction will therefore be very large.

Most of the energy losses from the disk will, because of the high temper-
ature, ∼ 1010 K, be in the form of neutrinos. Because the disk dominates the
neutrino luminosity, the neutrino radiation field will be highly anisotropic.
Neutrino annihilation, k, ν + ν̄ → e− + e+, above the disk may then pro-
duce electron-positron pairs in this region. These can then give rise to a
jet perpendicular to the disk. The details of this mechanism are, however,
uncertain.

Another suggestion uses some kind of electromagnetic extraction of the
energy from the disk in a similar manner as a pulsar. A magnetic field
anchored in the disk and treading the black hole horizon can tap the black
hole on rotational energy by the so called Blandford-Znajek mechanism. The
total amount of rotational energy is in principle enormous, ∼ 1054 ergs, but
again, this mechanisms is not worked out in sufficient detail for a proper
evaluation of its merits.

In some way or another a large amount of energy is likely to be deposited
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Figure 89: Density in the center ∼ 7 s after collapse. Inside of ∼ 200 km the
centrifugally supported torus can be seen. In the polar direction the density
is very low because the lack of centrifugal support has emptied this region.
(MacFadyen & Woosley 1999)
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in the polar directions above the disk on a time scale of the order of 1-100
s. This is the starting point of the two jets along the rotational axis of the
star.

As the jet is launched from the center, it propagates outwards through
the star. Fig. 89 shows a simulation of this from the inner region up to
the point when it interacts with the circumstellar medium in the form of
a wind from the progenitor. The radius of the Wolf-Rayet progenitor is in
this model 8 × 1010 cm and the He-core mass 15 M�.

While inside the star, the narrow jet will be preceded by a cocoon, con-
sisting of shocked material from the stellar core and envelope, as well as the
shocked jet. This cocoon propagates through the star with a sub-relativistic
velocity, ∼ (5 − 10) × 104 km s−1, although the jet itself is relativistic with
Γ ∼ 10. As it penetrates through the surface of the star the cocoon spreads
in angle and also accelerates down the steep density at the surface. This
results in a Lorentz factor of ∼ 5− 10 for the cocoon and an angular extent
of ∼ 30◦.

In Fig. 90 we show the density and Lorentz factor at the final epoch
of the model above. Although only ∼ 20 at the time of the jet break-out,
the final Lorentz factor in the jet reaches >∼ 100 as the internal energy is
converted to kinetic energy by the adiabatic expansion. A most important
thing to note in the figure is the highly variable Lorentz factor in the jet. As
the faster material will catch up with the slower, internal shocks in the jet
will form, explaining the initial burst. This can explain the prompt burst
as we discussed earlier.

The cocoon mentioned above is interesting because although it only con-
tains a minor fraction of the total energy, it has a factor of 5–10 larger an-
gular extent than the jet itself. The solid angle, and thus the probability of
observing it, is therefore a factor of 25−100 larger. The lower Lorentz factor
means that the radiation from the cocoon should be considerably softer. It
has been proposed that this may explain the so called X-ray flashes (XRFs),
which has most of their energy in the X-ray rather than gamma-ray domain.

The collapsar model is a very likely candidate to explain the long bursts.
The duration of the burst is set roughly by the time scale of the launch of
the jet. It is, however, difficult to see that this can be much shorter than
seconds, and the model has therefor problems explaining the short bursts.
In principle, it is, however, possible also to get very short bursts from the
interaction of the jet and the head of the cocoon.
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Figure 90: Simulation of jet propagation and break-out. The different panels
show the Lorentz factor and density at six epochs, 5, 10, 12, 20, 40, and 70
s. (from Zhang, Woosley, Heger 2003)
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2002).

32.4 Neutron star mergers

We know that binary neutron stars exist, as the famous case of the Hulse-
Taylor pulsar PSR1913+16 shows. This system will decay by gravitational
radiation on a time scale of ∼ 108 years. Because both stars have a mass
close to 1.4 M�, the result will most likely be a black hole, unless a very
large fraction of the mass is expelled. The energy release in connection to
this may be very large, comparable to that in an ordinary core collapse
supernova. The time scale will be of the order of milliseconds. This has lead
to the suggestion that merging neutron stars may have something to do with
GRBs, and was for a long time the most popular GRB model. As we have
seen, there is now compelling evidence that the long GRBs are connected
to supernovae. This evidence does, however, not apply to the short GRBs.
In particular, this models has some properties which can easier explain the
short time scales connected with this class of GRBs.

As the neutron stars spiral in they will lose more and more of the orbital
energy by gravitational radiation. The final merger will occur on a time
scale of the order of milliseconds. Because of the large angular momentum
the tidal forces will distort and tear apart the stars, and a flattened, disk
like configuration will form (Fig. 91). While most of the mass results in a
black hole of mass ∼ 2.5 M�, a substantial fraction, ∼ 0.1 − 0.2 M�, will
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Figure 92: Evolution of the neutron star binary at different epochs after the
start of the simulation. The contours show the density and temperature,
while the arrows show the velocity field. (Ruffert & Janka 2001).
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stay in the form of an extremely hot accretion disk. The temperature of
this will be ∼ 1010 K, and it will therefore lose most of its internal energy
as neutrinos. The accretion rate will be ∼ 1 M� s−1, so the disk will have
a life time of ∼ 0.1 − 0.2 s. The total energy in the neutrinos will be of the
same order as for a core collapse SN, ∼ 1053 ergs, more than enough to feed
a GRB with a moderate amount of beaming. The fundamental problem is
just how to convert the neutrino energy into photons.

Similar to the collapsars, there are two main mechanisms which have
been proposed for this, neutrino annihilation or electromagnetic extraction.
The neutrinos produce electron-positron pairs, which give rise to a jet per-
pendicular to the disk. This then convert its kinetic energy into heat by
internal shocks, giving rise to a gamma-ray burst. Because the neutron star
binary is not expected to have any circumstellar medium, the afterglow is
expected to be the result of interaction of the outflow with the interstellar
gas, having a constant density.

The main problem with this mechanism is that detailed simulations show
that the efficiency of the neutrino pair annihilation is relatively inefficient.
The energy converted into pairs is ∼ 5 × 1049 ergs, which may be too low.
This is especially true since it is difficult to obtain the narrow beaming sug-
gested by the afterglow observations. Although highly uncertain, the MHD
extraction of energy may be the most promising, but also most complex to
calculate.

Summarizing this model, it has the virtue of being based on events which
we know will take place, and that the total energy available is sufficient. The
drawbacks is the difficulty of converting this energy to photons. In addition,
the frequency of these mergers is highly uncertain, although estimates give
a rate of one merger per ∼ 106 years for a typical L? galaxy.

Recently, there has been observations of some short GRBs with SWIFT
which have given support to this progenitor scenario. GRB 050509B, GRB
050709 and GRB 050724 were the first short GRBs to have an X-ray af-
terglow and therefore allow a precise localization of the GRB. For two of
these optical afterglows were also found. The redshift of the galaxies were
all comparatively low, 0.16 - 0.25. In two of the cases the host galaxies
were ellipticals, while in the other it was a star forming dwarf galaxy. Com-
pared to the long bursts, the gamma-ray luminosity is down by 2-3 orders
of magnitude.

No indication of a supernova was found in the optical afterglows and
the modeling of the spectrum and light curves of the afterglows indicate
very low density environments. Both these results, as well as the location
in two of the cases in elliptical galaxies, are consistent with what would be
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expected for a merger of two compact objects. While the neutron –neutron
star merger is the most favored, also a black hole – neutron star merger is a
possibility.

It is likely that SWIFT will discover several more of the short bursts, and
that we will therefore get considerably more information about this class of
GRBs in the near future.

33 Active Galactic Nuclei

33.1 Classification

Seyfert 1
Seyfert 2
Quasars
Blazars
Host galaxies
Redshift distribution

33.2 Regions

reveberation

33.3 Emission lines

Photoionization
Fluoresence
Narrow and broad emission line regions
Overview of region FKR Fig 7.2

33.4 Superluminal expansion

VLBI observations of radio sources can reveal structures down to milli arc-
sec scales. A remarkable discovery with this technique was the fact that
some compact radio sources in radio galaxies excibited apparent expansion
velocities larger than the velocity of light, i.e., superluminal velocities.

The existence of superluminal motion indicates that one has physical
velocities close to that of light. In fact, superluminal motion were predicted
by M. Rees long before they were discovered observationally.

A simple example of superluminal expansion is that of a jet moving out
with a speed v = βc at an angle θ to the line of sight.
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Let a first flash of light be emitted at t = 0 when the jet is launched. The
jet then moves with constant velocity and emits a second flash at t = ∆t.
It has then moved a distance v∆t from the origin. This corresponds to a
transverse distance ∆L = v∆t sin θ as seen by the observer. If the distance
from the observer to the source is D the first pulse is received at time D/c.
The second pulse is emitted laterby∆t but has a shorter distance by v∆t cos θ
to travel to the observer, who receives if at t = ∆t + (D− v∆t cos θ)/c. The
observer therefore finds that they arrive with a time interval of ∆tobs =
∆t(1 − v cos θ/c). This can be much smaller that ∆t if the second factor is
close to unity. The transverse velocity the observer measures is then

vapp

c
=

∆L

∆tobs
=

βc∆t sin θ

∆t(1 − β cos θ)
=

β sin θ

(1 − β cos θ)
(33.1)

Consider now the case when the angle is close to the line of sight and the
velocity is close to that of light. In this case sin θ ≈ θ, cos θ ≈ 1 − θ2/2 and
β ≈ 1 − 1/2γ2, so that

vapp ≈ 2θ

1/γ2 + θ2
c (33.2)

Therefore, it is only for θ ∼ 1 that vapp < c !
Note also that it does not have to be a physical motion involved, as was

the case here. It could just as well have been a pulse of light from the center,
which gave rise to some excitation at a distance c/∆t from the source. Or
it can be a mirror, reflecting the light. The apparent velocity would then be
vapp ≈ 2c/θ, which can be very large for small angles.

33.5 The broadline region

Both quasars and Seyfert 1 galaxies show a large number of broad emission
lines from both neutral and highly ionized species on top of a power law
continuum. The velocities extend up to ∼ 104 km s−1, indicating motion in
a deep gravitational potential.

• ionization parameter

•

• reveberation
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33.6 Jets

Here we recapitulate the most important relations between the relevant
quantities in the frame of the propagating shock and the observer frame.
For a detailed derivation see e.g., Rybicki & Lightman Chap. 4. The rela-
tion between the emitted and observed frequency is

νobs =
νem

Γ(1 − µemβ)
(33.3)

where µem is the angle between the jet direction and the line of sight mea-
sured in the emitting system.

The relation between the angle of an emitted photon in the frame of the
shock and in the observer frame is

µobs =
µem + β

1 + µemβ
(33.4)

This illustrates the aberration of the emitted light. In particular, an isotropic
emission will be beamed in the direction of the jet propagation. Using
β1− ≈ 1/2γ2 one finds that a photon emitted at right angle in the emitting
frame (µem = 0) has an angle θobs ≈ 1/γ for γ � 1. This is the beaming
effect.

Because of the beaming and Doppler effect the relativistic velocity has
an important effect on the intensity of the emission from the jet, depending
on the direction of the jet. To see this we note that the quantity Iν/ν

3 is a
Lorentz invariant (RL Chap 4.9). If we define

D = Γ(1 − µemβ) (33.5)

we therefore have

Iν, obs(νobs) =

(

νobs

νem

)3

Iνem, em(νem) = D−3Iν, em(νem) (33.6)

In the case that the radiation is produced by synchrotron emission Iν, em(νem) =
Cν−α

em . If we want to see the effect of the Doppler boosting we should com-
pare the observed intensity at a give frequency with that emitted at the
same emitted frequency. Therefore,

Iν, obs(νobs) = CD−3ν−α
em = CD−3−αν−α

obs (33.7)

• Energetics

191



Figure 93: The radio galaxy Cygnus A on different spatial scales. The
distance between the two radio lobes is ∼ 100 kpc. (VLA, VLBI, Krichbaum
et al).
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Figure 94: The Fe Kα line profile showing the addition of different relativistic
effects to the Newtonian line profile. (Fabian 2006).

• Doppler boosting

• collimation

• synchrotron-Compton

33.7 Evidence for black holes in AGNs

33.7.1 Fe Kα lines from accretion disks

One of the most interesting indications of the effects of strong gravity around
a black hole can be seen in the Fe Kα line profile in several AGNs. This line
at 6.4–6.9 keV (depending on the state of ionization) arises as a result of
photoionization of one of the inner K-shell electrons and the subsequent flu-
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orescence as the outer electrons fills the hole after the K-shell electron. The
interesting aspect of this line is that because of the high ionization potential
iron is not completely ionized even in the inner parts of the accretion disk
the Kα line may act as a probe of the relativistic effects close to the black
hole. These result in a very characteristic, asymmetric line profile, showing
the different effects of strong gravity.

The first observations of an asymmetric Kα line was by ASCA of the
Seyfert galaxy MCG-6-30-15, shown in the left panel of Fig. 94. This has
now been observed for a large number of AGNs and also for several Galactic
stellar mass black holes.

It is instructive to see the different relativistic contributions to the line
profile,shown in Fig. 93. The upper panel of this figure shows the double
peaked line profile for a Newtonian disk, where the two peaks originate from
the region rotating towards and away from the observer. The second panel
shows the effect of including the transverse Doppler effect extending the
the profile to lower energies and the relativistic beaming increasing the blue
peak and decreasing the red. The gravitational redshift gives an overall shift
of the profile (third panel). The fourth panel shows the combination of these
effects and the contribution from different radii of the disk.

While there is good qualitative agreement with the expected profile this
can be taken one step further. The extension of the line to the ’red’ (low
energy) is a measure of the depth of the potential and velocity of the last
stable orbit. Because the LSO extends all the way to the horizon for a
Kerr hole this can have a larger redshift than a non-rotating black hole,
where the LSO is at 3Rs. In the right panel of Fig. 93 we show the line
profile of a Schwarzschild hole compared to a maximally rotating Kerr hole.
When compared to the observations the red extent of the line indicates that
a Schwarzschild hole is not sufficient to explain this. Instead the authors
argue that a Kerr hole rotating close to the maximum rate is necessary.
This is one of the few ways one can directly study the close environment of
a black hole.

33.7.2 The Galactic Center

The strongest evidence for a massive black hole in the center of a galaxy
comes from our own Galactic Center. It has long been known that there
is interesting activity in the central region of the Galaxy, especially in the
radio. This radio source is known as Sgr A∗.

Because of the large reddening observations can only be made in the near-
IR where extinction is much lower than in the optical. In Fig. 95 a K-band
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Figure 95: The left panel shows the Fe Kα line profile for the Seyfert 1 galaxy
MCG-6-30-15. Note the asymmetric line profile with almost no emission on
the ’blue’ side of the line, while the ’red’ extends to ∼ 3 keV. The right
panel shows the line profile from a non-rotating Schwarzschild black hole
(red) and a maximally rotating Kerr hole (blue). Note the larger extension
to the red for the Kerr case, in agreement with the observed. (Fabian 2006).

image at 2µ taken by NACO on the VLT is shown. The most spectacular
observation of the GC is the cluster of stars near Sgr A∗ seen in this picture.
From measurements using adaptive optics on 8-10 m class telescopes two
different groups have been able to measure the proper motions of several
stars close to the GC. In particular, they have been able to map the orbit
of one star, called S2, which has a very eccentric orbit with e = 0.87. The
period of the orbit is 15.2 years and at periastron (i.e., closest to Sgr A∗) it
is only ∼ 17 light-hours, or 124 AU, from Sgr A∗. From the orbital elements
it is straightforward to solve for the mass inside the orbit and they find a
total mass of (3.6 ± 0.6) × 106 M�. This corresponds to a stellar density of
∼ 1017 M�pc−3. Because the luminosity in any wavelength band is very low
( <∼ 1035 erg s−1) this enormous mass can only correspond to a black hole.

A recent discovery of great interest is that monitoring of Sgr A∗ at
both radio, IR and X-ray wavelengths shows a great amount of activity.
Compared to any AGNs the luminosity is, however, extremely low, only
10−10 − 10−9 times the Edington luminosity. The emission in the near-IR,
as well as radio, show a high degree of polarization, indicating that the emis-
sion is synchrotron. The light curve in the near-IR (Fig. 96) shows a quasi
periodic activity on a time scale of ∼ 20 minutes. This shows that it must
originate withing ∼ 10 Schwarzschild radii from the BH. All these observa-
tions indicate that the flares originate as a result of a very low lumnosity
accretion flow immediately outside the black hole.

bulge– BH mass
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Figure 96: The Galactic Center at 2 µ. The arrows point to star S2. The
right panel shows the orbit of the star with pericenter closest to the black
hole, star S2. (VLT/NACO), Schödel et al. 2002.

III IVIII
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Figure 97: Near-IR and X-ray light curves from the position of the Galactic
Center, Sgr A∗. (Eckart et al. 2006).
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34 Pair production

The interaction of two photons can lead to pair production provided E1E2
>∼ mec

2.
A low energy photon may therefore give rise to a pair if it interacts with a
photon with high enough energy.

The typical γ + γ → e+ + e− cross section is ∼ 0.2σT around E1 =
2mec

2/E2. The optical depth for a photon of energy E in a region with
radius R containing a density, nγ , of softer photons is therefore

τ(E1) = R

∫

Eth

σγγ
dnγ

dE
dE ≈ 0.2σT

dnγ

dE
(Eth)Eth (34.1)

where
dnγ

dE (Eth)Eth ≈ nγ approximately is the number density of photons
above the threshold. But, nγ ≈ L(E > (Eth))/4πcR2Eth, so

τ(E1) ≈ 0.2
σT L(E > Eth)

4πcREth
(34.2)

As a estimate we take Eth ∼ mec
2 so we get

τ(E1) ≈ 0.2
σT L(E > Eth)

4πcRmec2
≡ 0.2

4π
l (34.3)

where l is the compactness parameter

l ≡ σTL(E > Eth)

Rmec3
(34.4)

Therefore, if the compactness parameter is large that means that the
plasma will be optically thick to pair production. This will increase the den-
sity of electrons (and positrons), which can scatter the photons by Compton
scattering and change the observed spectrum dramatically.
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A Equations of relativistic hydrodynamics

This Appendix is NOT included in the course. Just for the really
interested!! See Weinberg Chap. 2.10 and Landau & Lifshitz,
Fluid Dynamics 1985 for more details

When we discuss the dynamics and radiation from the GRB there are
three reference frames which are of interest. The rest frame of the exploding
star, the comoving frame of the expanding gas and the reference frame of
the observer.

An example is the time interval of a process as measured in the comoving
frame, dtc, and that of the GRB, which are related as

dtGRB = γdtc (A.1)

In general when we want to relate measurements in different reference
systems it is convenient to see these as transformations between different
four-vectors. An example of such a four-vector is xµ = (x, y, z, t). If the
coordinates of an event in a system, K, moving with velocity v relative to
another system K’ along the x-axis is xµ = (x, y, z, t), then the coordinates
in the system K’ are given by

x′µ =

4
∑

ν=1

Λµ
νx

ν (A.2)

where ν = 1, 2, 3 denote the space components and ν = 4 the time
component. The matrix Λµ

ν is called the Lorentz boost, and is for the case
of motion only along the x–axis given by

Λµ
ν =









γ 0 0 γβ
0 1 0 0
0 0 1 0

γβ 0 0 γ









(A.3)

Here β = v/c and γ = 1/
√

1 − (v/c)2.
The energy density and pressure transform as components of the of the

energy– momentum tensor, T µν , which in the rest frame is given by

T µν =









p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 ε









(A.4)
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To transform this into a system moving along the x-axis, we apply two
Lorentz boosts,

T ′κλ =
4
∑

µ=1

4
∑

ν=1

Λκ
µΛλ

νT
µν . (A.5)

We therefore obtain

T ′µν =









γ2(εβ2 + p) 0 0 γ2β(ε + p)
0 p 0 0
0 0 p 0

γ2β(ε + p) 0 0 γ2(ε + β2p)









(A.6)

Exercise:
Show Eq. (A.6)!

The hydrodynamic equations are given by the divergence of the energy
momentum tensor,

4
∑

ν=1

∂T µν

∂xν
= 0 (A.7)

In spherical symmetry we get

∂

∂t
γ2(ε + β2p) +

1

r2

∂

∂r
r2γ2β(ε + p) = 0 (A.8)

∂

∂t
γ2β(ε + p) +

1

r2

∂

∂r
r2γ2β2(ε + p) +

∂p

∂r
= 0 (A.9)

In addition we have the conservation of the particle number. The particle
number in the rest frame is n. This is the time component of the particle
current four-vector. To transform this into an arbitrary frame we apply
again a Lorentz boost J ′µ =

∑4
ν=1 Λµ

νJν , or

J ′µ = (γβn, 0, 0, γn) (A.10)

Taking the four-divergence in spherical geometry we get

∂

∂t
γn +

1

r2

∂

∂r
r2γβn = 0 (A.11)
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B Relativistic shocks

Denote the postshock medium by 2 and the preshock medium by 1. As
in the non-relativistic case, the relativistic shock conditions are obtained
by integrating Eqns. (A.8), (A.9) and (A.11) over an infinitesimal radial
distance across the shock. All the time derivative terms then go to zero,
while the radial derivatives result in the jump conditions

γ1β1n1 = γ2β2n2 (B.1)

γ2
1β1(ε1 + p1) = γ2

2β2(ε2 + p2) (B.2)

γ2
1β2

1(ε1 + p1) + p1 = γ2
2β2

2(ε2 + p2) + p2 (B.3)

The energy densities and pressure refer to the proper values before and after
the shock, respectively. All velocities are relative to the reference frame of
the shock.

From the second and third equation one can solve for β1 and β2. After
some algebra, most easily done by setting β1 = tanh φ1 etc., one obtains

β1 =

[

(p2 − p1)(ε2 + p1)

(ε2 − ε1)(ε1 + p2)

]1/2

(B.4)

β2 =

[

(p2 − p1)(ε1 + p2)

(ε2 − ε1)(ε2 + p1)

]1/2

(B.5)

The relative velocity of the preshock and postshock gas is given by the
law of addition of velocities β = (β1 − β2)/(1 − β1β2), so

β =

[

(p2 − p1)(ε2 − ε1)

(ε1 + p2)(ε2 + p1)

]1/2

(B.6)

Because the medium into which the shock is propagating is at rest, the
Lorentz factor of the shock as seen by an observer is Γs = γ1, and Γ2 =
1/
√

(1− β2) that of the shocked gas as seen by the observer in the medium
at rest. It is easy to show that

Γ2 =

[

(ε1 + p2)(ε2 + p1)

(ε1 + p1)(ε2 + p2)

]1/2

(B.7)

Instead of the energy behind the shock it is usually more convenient to
consider this, or Γs, as the main parameter of the shock.

Let us now consider some special cases. First, assume that the shock
is propagating into a cold medium with density ρ1 = n1mu and negligible
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pressure, so that ε1 = n1muc2 and p1 = 0. Further, we assume that the gas
behind the shock is relativistic, so that p2 ≈ ε2/3. We then obtain from Eq.
(B.7)

Γ2 =
1

2

(

ε2

n1muc2
+ 3

)1/2

. (B.8)

The velocities of the preshock and postshock gas in the shock frame are
Eq. (B.5)

β1 ≈ 1 − n1muc2/ε2 (B.9)

β2 ≈ 1

3
(1 + 2n1muc2/ε2) (B.10)

showing that the gas is flowing in with nearly the speed of light, while the
postshock gas flows away with β2 ∼ 1/3.

Using Eq. (B.10) it is easy to show that therefore

Γs = γ1 ≈
(

ε2

2n1muc2

)1/2

. (B.11)

Therefore, the shock Lorentz factor is a factor of 21/2 larger than that of the
postshock gas as seen by the observer at rest,

Γs ≈ 21/2Γ2 (B.12)

Using Eq. (B.10) in the first of the jump conditions in Eq. (B.3) we
obtain

n2

n1
≈ 2

(

ε2

n1muc2

)1/2

≈ 4Γ2 (B.13)

In contrast to a non-relativistic shock we can therefore get arbitrarily large
compressions behind the shock. This relation, together with Eq. (B.11),
also shows that most of the incoming kinetic energy of the particles in the
shock frame, ∼ Γsmuc2, is converted to thermal, internal energy.

Equations (B.8), (B.12), and (B.13) form the basic relations describ-
ing the properties of the shock wave as function of its Lorentz factor and
preshock density, or alternatively the energy density behind the shock and
the preshock density.

The shape and flux of the synchrotron emission is determined by the
magnetic field and density of relativistic particles behind the shock. Lacking
a fundamental theory, one is usually assuming that the energy densities of
these scale with the thermal energy density behind the shock. Therefore

B2

8π
= εBε2 ≈ 4εBΓ2

2n1muc2 (B.14)
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and
urel = εeε2 ≈ 4εeΓ

2
2n1muc2 (B.15)

For a power law spectrum nrel = Cγ−p the ratio of the energy density
and number density is given by

urel

nrel
=

(p − 1)

(p − 2)
mec

2γmin (B.16)

where γmin is the minimum energy, and we assume that p > 2, so that we
can omit the upper limit to γ.

To determine γmin we divide Eq. (B.15) by Eq. (B.13) to obtain

urel

n2
= εempc

2Γ2 . (B.17)

If we now assume that nrel ≈ n2 we get

γmin = εe
mp(p − 2)

me(p − 1)
Γ2 . (B.18)

Note that this is based on the assumptions that the relativistic particle
density scales as the postshock energy density, and that number of rela-
tivistic particles also scale with the postshock particle density. Although, a
likely situation, this has to be justified by detailed simulations of collisionless
shocks. There is currently substantial work going on in this area.

C Relativistic blast waves

Immediately after the explosion the hot ejecta is basically a ball of hot
photons, with a very small baryon load M0 (Eq. 31.6). ..... It therefore
expands with Γ ∝ R, until Γ = Γ0 ≈ E/M0c

2, after which it expands with
constant Γ until it has swept up an energy comparable to the initial. The
shock condition Eq. (B.8) shows that in the rest frame of the shocked fluid
the energy is E ≈ Γmc2, and therefore in the rest frame of the observer
Eobs ≈ Γ2mc2. The energy swept up is therefore comparable to the initial
thermal energy when the mass of the swept up ejecta is m ≈ M0/Γ0. At
this point the ejecta will start to slow down.

In the same way as the Sedov solution plays a central role for the dynam-
ics of the interaction of the SN with its environment, one can find relativistic
generalizations of these, which describes the slowing down of the blast wave,
and the conversion of the kinetic energy to thermal energy behind the blast
wave.
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From Eq. (B.11) and Eq. (B.12), we find that the energy behind the
shock in the comoving frame is

ε2 = 4Γ2
2muc2n1 (C.1)

Because the post-shock gas is relativistic, p2 = ε2/3. To transform ε2 and
p2 to the observer frame we use

εobs = Γ2
2(εc + β2pc) = Γ2

2εc(1 +
1

3
β2) = (4Γ2

2 − 1)
εc

3
(C.2)

With εc = ε2 from Eq. (C.1), we get for large Γ2’s

εobs ≈
16

3
Γ4

2muc2n1 (C.3)

The total energy in the observer frame is therefore

Eobs ≈ 64π

3
Γ4

2muc2n1R
2∆Robs (C.4)

where ∆Robs is the shock thickness as seen in the observer frame. To esti-
mate ∆Robs we use the conservation of mass. For constant external density
the total mass swept up by the shock is 4πR3mun1/3. This should be equal
to the mass in the shell, 4πR2∆Robsn2, obsmu. The density behind the shock
in the observer frame is n2, obs = Γ2n2, c. The comoving density is given in
terms of the pre-shock density by Eq. (B.13). Therefore,

n2, obs = 4 Γ2
2n1 (C.5)

and

∆Robs ≈
R

12Γ2
2

(C.6)

In the comoving frame of the shocked gas ∆R/R = 1/(12Γ2). The shell
is therefore even in the comoving frame extremely thin, due to the large
compression behind the shock.

Inserting this in Eq. (C.4) we get

Γ2 ≈
(

9E

16πn1muc2

)1/2

R−3/2 (C.7)

This is the Blandford – McKee solution, and describes together with Eqns.
(B.12), (C.1), and (C.5) the physical conditions of the blast wave as function
of its radius.
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To transform this into a relation of time as measured by the observer we
use Eq. (31.4), dtobs = dtem/2Γ2

2, and that dR = cβdtem ≈ cdtem, so that

tobs =

∫

dtem
2Γ2

2

=

∫ R

0

dR′

2cΓ2(R′)2
. (C.8)

Therefore, if Γs ∝ R−α, we get

R = 2(1 + 2α)Γ2(R)2ctobs (C.9)

so that with α = 3/2 we get R = 8Γ2
2ctobs. Using this in Eq. (C.7) we get

Γ2 ≈ 0.4

(

E

n1muc5

)1/8

t
−3/8
obs (C.10)

or with parameters considered to be typical for a GRB

Γ2 ≈ 4.4

(

E

1052 ergs

)1/8 ( n1

1 cm−3

)−1/8
(

tobs

days

)−3/8

(C.11)

and

R ≈
(

9E

2πn1muc

)1/8

t
1/4
obs (C.12)

or

R ≈ 4 × 1017

(

E

1052 ergs

)1/8
( n1

1 cm−3

)−1/8
(

tobs

days

)1/4

(C.13)

The derivation above, as well as the total energy used here, assume a
spherical expansion. As we will see, it is, however, likely that the outflow
is in the form of two narrow jets. As long as the jet angle is much larger
than Γ−1 this is, however, of minor importance, except for the fact that the
energy going into these equations is the equivalent isotropic energy, Eiso.
The real total energy is only ΩEiso/2π, where Ω is the solid angle of each of
the two jets.
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