Astrophysical Gasdynamics Lecture Notes

Garrelt Mellema
Dept. of Astronomy, Stockholm University

October 10, 2011



1 Introduction

This course is about the dynamical behaviour of gas in asyigipal systems. Itis

one of the fundamental pieces of physics needed in astragshys at least 90%
of all (baryonic) matter in the Universe can be described gasa The other fun-

damental physical processes governing astrophysicamegsare gravity and the
interaction between radiation and matter. Most astroglaysystems can there-
fore be described as a gas interacting with radiation urndeinfluence of gravity.

The major constituents of the Universe consist all of galsesrder of increasing

size scale they are

e Stars: not solids, but self-gravitating gaseous bodies.

¢ Interstellar medium (ISM): gas inside galaxies consisbhg@ mix of cold
molecular clouds, cool HI clouds, warm ionized gas, het{0° K) gas
(multiphase ISM). In the Milky Way the ISM makes up20% of the mass.

¢ Intergalactic gas: low density gas between galaxies. édigsters of galax-
ies (intracluster medium or ICM): dominant part of clusterssighot X-ray
emitting gas); Outside clusters (intergalactic medium@): substantial
part of the mass in the Universe.

What is a gas? The practical answer is that it is a collectiomiofoscopic par-
ticles whose properties can be described by macroscapiinuumquantities
(density, velocity, pressure, temperature, entropy).ditthis sense gas isflid,
just as liquids are fluids. However, unlike liquids, gases @mpressible (the
density can vary). For gas on Earth the compressabilitypis&fly low (and often
neglected), but for astrophysical gases it is high. Theom&sr the compress-
ability of gases is that the gas particles are relativelyafaart compared to the
particles in a liquid.

Gases and liquids are not the only systems that can be ded@ba continuum.
Other examples are

e Stellar systems consisting of stars
e Dust systems (e.g. Saturn’s rings) consisting of dustglasti
e Radiation consisting of photons

e Traffic systems consisting of cars



In all of these systems the particles interact with eachrpthe not continuously,
that is the interactions can be described as ‘collisiong’sdme systems these
collisions are rather rare (stellar systems, dust systeans) they are referred to
collisionless. In normal gases collisions are importantl such collisional gases
are the subject of this course.

There are a number of other terminologies being used for gaandics. It is
good to be aware of this in order to prevent confusion. Gasuayes is often
referred to asydrodynamicsfluid dynamics or aerodynamics The latter term
is only used in Earth-based applications. ‘Hydrodynamgsfficially defined to
be the dynamics of liquids, but in astrophysics it is ofteacud mean dynamics
of gases. The term ‘Fluid dynamics’ covers both liquids aaskes, but often it is
used for gases alone (as in the title of the course book “Ptasof Astrophysical
Fluid Dynamics”).

When the gas consists of ions and electrons, the particlegt@nact with any
magnetic and/or electric fields present, as well as with edlelr. This is situa-
tion is most generally described plasma physicr its less general varietpag-
netohydrodynamicéMHD). In this course we will not consider magnetic fields,
but it is good to remember that magnetic fields are presentist mstrophysical
systems and a more complete description should take thena@cbunt.

The study of fluid dynamics has a considerable history witht afl activity in the
18th and 19th centuries. We will encounter names such as Béirrieuler, La-
grange, Navier, Stokes, von Helmholtz, Kelvin. In the 2@htary the theoretical
interest diminished as focus shifted to relativity and quamphysics. However,
this period also saw the development of many new applicatddfiuid dynamics:
flight (sub— and supersonic), atomic bomb explosions, tererf space vehicles.
Also plasma physics and magnetohydrodynamics was firsiasee in the 20th
century, a key figure being the Swede Hannes &tfvimportant applications of
magnetohydrodynamics have been the development of ndakEan reactors, as
well as studies of the Earth’s ionosphere. Another remdekdevelopment has
been the possibility to study solutions of the flow equatiasiag numerical tech-
niques. This enabled the study of flows in a lot more detait ihahe laboratory.
Even though gas and fluid dynamics are no longer at the fore@ftheoretical
physics, this does not mean that every aspect is fully utmkmts Our theoretical
understanding of processes such as turbulence and canvaoti only limited and
at the fundamental mathematical level it has not been prthargiven an initial
condition inIR? there are smooth solutions for the gas dynamic equationalifor
future times. This is one of the sevsfillenium Prize Problemss chosen by the
Clay Mathematics Institute of Cambridge, Massachusetts @20
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| Read pages 1 —4 (up to Section 1.2) of Clarke & Carswell.

1.1 Properties of gases

Gases consists of particles which interact with each otiteugh collisions. Through
these collisions, the particles act as a collective, andndéimaum description is
possible. One can thus say that there is a microscopic vieavgafs (particles)
and a macroscopic view (continuum). The typical quantitiesd to characterize

a gas are the macroscopic ones: density, pressure, teomgenalocity, entropy,
etc. These are the types of quantities you have worked witteirmodynamics.

To be able to describe a collection as particles as a comtirfiwid, it needs to
fulfill certain criteria. First of all one needs to be able &dide regions calletiuid
elementsvhich

e are large enough to construct a meaningful average magiasgoantity
from the microscopic properties of the individual partgl@his means that
if the number density of particles ig the size of the region should satisfy

ngfegion > I (1)
In other words the region should contain many patrticles.

e are small enough that we can ignore variations in macrosagyéantities
across them. This means that the size of the regiQn, is much smaller
than a scale length for any variations in quangityOr

gregion < gscale ~ (2)

_1
V4|
In addition, a collisional fluid needs to fulfill the conditis that the interaction
scale or mean free path between collisions of partigles much less than the

size of the fluid element:
)\ < gregion . (3)

The cases we will consider in this course are all collisidhatls. The effect of
the collisional fluid condition is that the particles witrarfluid element collide so
often with each other that they have reached a unique equiiibdistribution in
their velocities. This allows us to defindazal velocity, temperature and pressure.
An example of a non-collisional fluid problem would be cadis of two stellar
systems (galaxies). Since the stellar densities are losvjrttlividual stars do
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not interact with each other during the collision, but orgsact to the collective
gravitational potential of all the stars together. The ltasitthat the galaxies will
fly through each other. In a given region of space there wilsthe stars moving
in one direction (belonging to galaxy 1) and stars movingnother direction
(belonging to galaxy 2). Averaging the stellar velocitieghis region is not useful,
since you will find, for example in a head-on collision, a vieny average velocity,
whereas there are large systematic motions in the regiarrder to describe this
region you have to know from which galaxy the stars came, other words you
need to know their initial conditions.

As an aside it can mentioned that we see concrete evidencsténga do act this
way. Even today one can find ‘stellar streams’ in the Milky Walyich are rem-
nants of collisions which happened long ago.

Gas particles have a much higher space density than statis ancbllision be-
tween galaxies any gas contained in the galaxies will tbeeafeact very differ-
ently from the stars. In our simplified example of a head-dhston, the gas will
attain a very low average velocity, but with a large randontiomocomponent of
the gas particles, or in other words a high gas temperature.mfany collisions
that have happened between the gas particles have alsa emasénformation
on where they originally came from. The motions of the gadiglas are now
characterized by the local temperatr@nd not by their initial conditions.

This difference between the collisional behaviour of gad aallisionless be-
haviour of other materials has been used as a proof of theeagss of dark matter.
In the collision of two clusters of galaxies, the collisies$ dark matter particles
moved through each other, whereas the gas patrticles in theltwters collided
and remained stuck in the middle, reaching high temperati@apping the dark
matter through gravitational lensing and the gas througayxebservations, this
effect was seen in the so-called Bullet cluster (Fig. 1).

The equilibrium distribution achieved by the particlesloaties corresponds to
a state of maximum entropy. For a stationary collection ofigas of identical
massm this distribution is theMaxwell-Boltzmann distribution function

3/2 2
nuvp(v)dv =n (QWTZBT) exp {— ;Z:T] 4rvidu, 4

wheren is the number density of particles,is the particle speed (absolute ve-
locity) and T" is the temperature. The constay is the Boltzmann constant,
connecting energy and temperature. For a Maxwell-Boltznthstnibution the



Figure 1: The Bullet cluster (1E 0657-56). The purple colali¢ates the x-ray
emission from the gas (observed with the Chandra x-ray tefeg¢c whereas the
blue colour indicates the distribution of gravitationalttea(mostly dark matter),
mapped using gravitational lensing.



nye/n (107 s/cm)

speed (10° cm/s)

Figure 2: The Maxwell-Boltzmann distribution of absolutdogities for a hydro-
gen gas of temperatui®* K. The most probable velocity i520 x 10° cm sL.
The area under the curve between two speeds is equal to thierfraf gas parti-
cles in that range of speeds.

most probable velocity of a particle is

[2kgT
Ump = Tz (5)

implying that the most probably kinetic energy of a partidéig7. However,
some particles have much lower and some much higher velsaind energies
(see Fig. 2).

As we will see, the fact that the particles follow this pautar distribution, al-
lows us to find a relation between the density, temperatudepaessure ) of
the patrticles, the so-called Equation of State (EOS). FeMbaxwell-Boltzmann
distribution, this EOS is

p = nkgT, (6)

also known as the ideal gas law.



1.2 Mathematical concepts

As we will see the basic equations of gas dynamics are pdliffatential equa-
tions involving three-dimensional vectors. It is therefarseful to review the
mathematics of 3D vector operations. A separate documéatds=ECTOR CAL-
CULUS: USEFUL STUFHives an overview of this.

Read throughECTOR CALCULUS: USEFUL STUFF

Make sure you understand the use of the various vector apesat\Which op-
erations turn vectors into scalars? Which turn scalars iatd@ors? Which turn
vectors into vectors? Pay special attention to the opelato¥ which may be
new to you, but which we will encounter often. It is also knomsithecomoving
derivative (F - V)A is the derivative of vectoA along vecto'. Also make sure
to familiarize yourself with theuffix notatioras we will frequently encounter it.
In addition to what is contained in that document, please ttwe following:

e We will follow the usual convention that boldface symbol represents a
vector. On the board | may use the alternative notaiioensors may be

represented using capitals in a sans serif fAngr by/T on the board.

e The book uses the symbolwhere we use<. So the outer product of two
vectors in the book is written asA b, but we will use the more usual form
a x b. The same goes for the curl operator: where the book Wses we
useV x a.

e The suffix notationis sometimes known as the (Einstein) summation con-
vention (Clarke & Carswell use this terminology). We will usdih sym-
bols such ag andj, implying summation from 1 to 3. In relativity greek
symbols are usedy( ) to imply summation from 0 to 3, where 0 represents
the temporal dimension.

e We will also encounter the use of curvilinear coordinatadiridrical and
spherical coordinates). Appendix A.2 of Clarke & Carswell suamizes
in very general terms how the vector operators change whensouasing
curvilinear coordinates. The hand-dDtFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES8oes this more explicitly for cylindrical
polar and spherical polar coordinates. You can consultibcsiment once
we encounter the curvilinear coordinates.
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e We will also encounter the so-called dyadic operator whichg two vec-
tors into a two-dimensional tensor:

azby agby ab,
a®b=| ayb, ayb, ayb. | . (7)
asb, a.b, a.b,



2 Crowd Control

2.1 Introduction

Any gas consists of particles (atoms, ions), and consigehie properties of these
particles is called the microscopic view. Properties ofipkes are

1. Number of particlesv
2. Position of a particle
3. Velocity of a particlev
4. Other intrinsic particle properties (mass, charge).etc.

When we measure gas properties in a lab, we instead are congidesasurable,
collective properties of the particles. What macroscopegiies define the state
of a gas?

1. How much there is, so the mass dengitgr the number density.

2. How it moves, so the gas velocity or momentum densityu (Systemic or
average motion of the particles).

3. The pressurg it exerts external objects (e.g. a wall or a contaiperyhich
is as we know from thermodynamics connected to the temperdtuor
internal/thermal energy€ or the gas through the Equation of State (EOS):

p = nkgT (8)
p = (y—=1)p&, 9)

wherey is the so-called adiabatic index, connected to the numbdegriees
of freedom of the patrticles; it is 5/3 for a monatomic gas.

4. Other quantities, such as composition, magnetic fietd, et

The minimum set is the first three,(u, p), so in order to study the dynamics of
a gas, one need to derive a set of equations describing teestiolution of these
quantities. In other words we need to derive mathematigalessions fobp/ot,
Jdpu/ot anddp/ot.



2.2 Ways to derive the fluid equations: conservation principles

To arrive at these equations there are different ways. Otweuse conservation
principles (for mass, momentum, energy) and concepts flemiodynamics.
This derivation relies partly on théivergence theorerar Gauss’ theorenfrom
fundamental calculus.

Gauss’ theorem states that if one has a vettanen for a volumé’ enclosed by
a surfaceS, the following equality holds

%SU.dsz/vv.Udv. (10)

This is a purely mathematical theorem, that has a strongestiom to physics,
especially gas dynamics.

Now if we have quantity) of something in volumé/, let us say mass/, then
we define the mass densjiythrough

M= /V pdV (11)

the mass in volum¥ is the volume integral over the mass density. This mass may
be changing because the gas is moving with a velacit®bviously the change in
mass must be the difference between the amount of mateaicflolvs in and out

of V. If we now divide the surfacé of V' into small sectionslS then themass

flux across such a section will b - dS, since only the component af into or

out of V matters (that is, the componentwiperpendicular talS). If pu - dS is
positive, material is flowing out df".

Thus the rate by which is the mass is changing in$idis given by the integral
over all small sectiondS of the entire surfacé’

oM

where the minus sign makes sure that inflow will increase thesnUsing Gauss’
theorem this becomes

2/pdV:/V-(,ou)dV, (13)
ot Jy v
which being true for all volumes, becomes
dp
hl . = 14
5tV (w =0, (14)
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describing the time evolution of the mass dengity his equation is known as the
continuity equation.

Obviously, this equation holds for any other quantity whietm only change be-
cause of being transported by the flow. An example is the numibgarticlesn
or partial densities (such as the density of helium in a gasisting of a mix of
elements). Below we will see another example of the congregfuation in the
context of density in what is known as six-dimensioplaase space

Clarke & Carswell describe in somewhat more detail how comdienv principles
lead to the fluid equations.

Read Chapter 2 of Clarke & Carswell to see how the fluid
equation can be derived from conservation principles |em-
ploying the divergence theorem. Please note that we |will
treat Lagrangian versus Eulerian points of view below.

2.3 Ways to derive the fluid equations: statistical mechancis

The other way to derive the fluid equations is to use the tobiatistical me-
chanics, i.e. considering a gas as a collection of parti@esause the latter gives
us a better insight in when the equation of gas dynamics apply the fact that
gas consists of particles is conceptually important inogétysical contexts, these
lecture notes provide a sketch of how the derivation is darsdtistical mechan-
ics. If you are eager to learn more, a more detailed desonitf how to derive
the gasdynamic equations using statistical mechanicsocaxémple be found in
the textbookThe Physics of Fluids and Plasrbg A. R. Choudhuri.

2.3.1 Distribution function

Consider a collection oV gas particles of equal mass This is the microscopic
view of a gas. Each particle has a positioand a velocitw. We can thus putitin
a 6-dimensiongbhase spacéwvhich we calli;) of position and velocity, and count
the number of particles in the 6-dimensional volufge- 6x/2 : x + §x/2,v —
dv/2: v+ dv/2). Doing this gives us thdistribution functionf (x, v, t):

N(x—0x/2:x40x/2,v—0v/2:v+v/2),t) = f(x,v,t)dxov. (15)

The distribution function is effectively a particle numlonsity in the six-dimensional
j-space.
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You may have encountered distribution functions beforemdizs distribution
functions are the Bose-Einstein and Fermi-Dirac distrdsufunctions, for bosons
and fermions respectively. Since we are not dealing witltjura effects, we can
use that other famous distribution function, tdeaxwell-Boltzmann distribution

function
3/2 2
B m ~m(v—u)
fMB(V) =n (27T]€BT> eXp |: QkBT :| ) (16)

which gives the distribution of the particles over velagstin an equilibrium sys-
tem at temperatur@. Note that Eq. 16 gives the form for the distribution of the
three-dimensional velocity, whereas the Eq. 4 gave it for the absolute veloc-
ity v. The Maxwell-Boltzmann distribution function does not deg®n position
because the system is at equilibrium and the particles Inaveame velocity dis-
tribution at all positions. The microscopic quantities #re particle mass: and
velocity v, and the macroscopic quantities are the temper&tutiee number den-
sity of particlesn, and the gas velocity (mean velocity of the particleskg is
the Boltzmann constant, connecting energy and temperature.

In general, the macroscopic quantities that we are after dgasity, velocity, and
energy) can be derived from the distribution functiprby integrating over the
particle velocities:

o) = [ mfix v a7
aG) = [vitcviav/ [ foxvis (18)
Ex) = /%vaf(x,v)dv//f(x,v)dv. (19)

These are actually the') 1°* and 2¢ moments of the distribution function over
the velocities.

To find the time evolution of these quantities we need to firedebolution off:

d f/dt, which we will address in the following sections.

2.3.2 Collisionless systems

What isdf/dt? Sincef is a function oft, x andv, we can start by considering
the partial derivatives.

df _of ox of ov Of
a ot Tt ox ot ov (20)
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Let us now consider the case of no collisions, a so-callelisaoiless system,
where the only force working on the particles is a possibliside one. From
classical mechanics we know that such a system can be desdryba Hamilto-
nian H(x, v, t) equal toH = v?/2 + ¢(x), whereg is the potential describing the
outside forces The equations of motion follow from

v=a=-VH
x=v=V,H, (21)

whereV , is the gradient in the velocity coordinatgl/dv,, d/0v,, d/0v,).
The evolution off in this case is particularly simple, given Ry /d¢t = 0. This
can be shown by realizing th#tis a density in phase-space, and hence must obey
the equation of continuity (Eq. 14, derived from the prineipf mass conserva-
tion: no particles are created or destroyed, they just moweral in phase space).
This means that o7

E—FV'fo:O, (22)
whereuy is the ‘velocity’ for the densityf. In p-space this ‘velocity’ is the six-
dimensional vectofv, a), so the continuity equation can be written as

af 0 9

E+&-(fv)+a—v-(fa)20. (23)

This can be rewritten as

af ox JOf ov Of B

From the Hamilton relations (EqQ. 21) it follows that
V-v+V,.-a=V-(V,H)-V,-(VH)=0. (25)
So, the evolution of can be written as

df of ox of ov of Of of of
i "ot o ox ot oot Y ek gyl (20
an equation known as th@ollisionless Boltzmann Equation. This equation can

be used for all kinds of systems consisting of particles forclw collisions are

1if the forces on a particle depend on neighbouring partié@sexample due to collisions, we
cannot find anf which depends only or andv.
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unimportant, for example low density stellar systems sofjedaxies (but not the
cores of the much denser globular clusters).

If we consider a voluméxdv in phase space, then it will contaivi = fixdv
particles (Eq. 15). Following these particles, they wilddater time be contained

in a volumejx’'ov’. However, for a collisionless systerfiwill not have changed

in this volume (sincel f/d¢ = 0), and since particle numbé¥ is conserved, this
implies thatoxév = dx'6v/, i.e. the shape of the volume can change, but not
its total value. This is generally true for a system which bandescribed by a
Hamiltonian and is known as Liouville’s theorem.

2.3.3 Collisions

For a typical gas, collisionare important, so Eq. 26 has to be modified. An
important parameters when considering collisions is thamfeee path between
collisions, given by

A= V2ra*n, (27)

for spherical particles of number densityand particle size:. As we saw in
Sect. 1.1, Eq. 3, for collisions to be important we requira th < L, the size
of our system. To be able to consider collisions to be a patiob (rather than a
permanent condition of the collection of particles), thbgpdd be rather rare, so
we need\ > a. In this case we speak of a ‘dilute gas’ as the particles celr
many times their own size before colliding with another jodet This is the usual
case in astrophysics.

For this dilute case, the effects of collisions can be added perturbation to
the case of no collisions. Most of the time particles moveiadoin phase space
following continuous trajectories set by their velocitydeercceleration, but every
now and then they jump to another trajectory due to a coiliggee Fig. 3). The
collisions are thus short range, and also binary (for aeij#s we do not need to
consider collisions of three or more particles). We theeefewrite Eq. 26 as

%:%+V'%+a'g—£zo(f), (28)
whereC'(f) depends on the distribution functigiix, v,¢) and describes the ef-
fects of collisions. If we can find a good mathematical dedion for C' we
have a full description of the time evolution ¢f The description of the effects
of collisions on the distribution function was the major @slement of Ludwig
Boltzmann (1844-1906). We will not give the form of the cadis term here (it
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Figure 3: The effect of collisions on the distribution fuioct. On the left: trajecto-
ries without collisions. On the right: a collision suddenlyanges the trajectories
of two particles.

can for example be found in the book by Choudhuri), but simepresent it with
the symbolC'. With the expression fof' found by Boltzmann, Eq. 28 is known
as theBoltzmann Equation.

2.3.4 Stationary solution of the Boltzmann equation

It is useful to first consider the solution of the Boltzmann &ttpn for the sta-
tionary case, without outside forces. For this c@stoes not change in time, so
df/ot = 0 and does not depend on positiffx, v,t) = f(v), sodf/dz = 0.
Without outside forcea = 0.

All of this implies that the left hand side of Eq. 28 is zero,tlse total collisional
term C' should also be zero. Boltzmann could show that for his exmreser C'
this meant thaff should be the Maxwell-Boltzmann distribution functiofiyg,
given in EqQ. 16.

The result is thus that the stationary solution for the Bodmmequation is the
Maxwell-Boltzmann distribution function. This is the reasehy fys iS SO use-
ful. Any initial condition left to itself will evolve to thidistribution. Note how-
ever that its derivation relies on binary short range doltis, and the absence of
non-conservative forces. When these conditions not hglg will not necessarily
be the equilibrium solution.
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Boltzmann could then also show thAig represents the state of maximum en-
tropy, and thus that entropy always increases as a givaalistate evolves to-
wards the equilibrium solutiorfy;g. This is known as Boltzmann’'s H-theorem,
and is of course closely related to the 2nd law of thermodyesmvhich says
that in a closed system, the entropy can never go down. Théhaiche was able
to derive an irreversible relation from essentially rel@esprocesses (binary col-
lisions between particles), impressed many people andeglay important part
in convincing the scientific community of the correctnes8oltzmann’s particle
view (which was far from being universally accepted in th& X®ntury). There
are however a number of subtleties connected to this demivathich have not
stopped to generate discussions.

2.3.5 Macroscopic quantities

As mentioned above, we can derive macroscopic quantitiels asl density and
energy from moments of the distribution functigrfEqgs. 17—19). Let us consider
a microscopic quantity) and its mean valuéy) defined by

E/Qﬂw. (29)

The time evolution of) can be found by multiplying both sides of the Boltzmann
equation withQ) and integrating ovetv

8f ox (9f ov 8f /
/Q( 5 + 5 V) QCdv . (30)
If x is a quantity which is conserved in binary collisions, one show that
/Xaw_o. (31)

This expresses the fact that singes conserved in collisions, the collisions cannot
changey. Using this and some manipulation of the LHS of Eq. 30, we earmite
Eqg. 30 as

9] 0 x 0x da; \
En()o + a—win@i){) —-n <vlﬁ_xl> —-n <‘“a_vi> -n <8vix> =0. (32

Here have used the suffix notation (see Sect. 1.2) to deathéthiectorsx, u and
a. For an acceleration due to a conservative force, the last [{@:; /0v;) is also
zero?

2For a conservative force, the force and acceleration do epenid on the velocity of the
particle.
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We will now consider the three microscopic quantities covese in binary con-
ditions: mass, momentum and energy and from these find thetiega for the
evolution of macroscopic mass density, momentum densdyeaergy density.

Mass

Fory = m the mass of the particles Eg. 32 gives
dp 0 _Op B
a—l—axipui—EJrV-pu—O. (33)

This is thecontinuity equation, which we already found above from mass conser-
vation principles (Eq. 14). Here we have defined the masstgens- nm and the
mean (or bulk) velocity of the particles as= (v), the macroscopic gas velocity.

Momentum
For x = mu; the particle momentum in thedirection we get

op{v;) 0

a—tj + a—%(/)@ivﬁ) —pa; =0. (34)
Now (v;) = u;, the macroscopic gas velocity, bli;v;) # u;u;. Let us define
the difference between a particle velocity and the mearciglasw; = v; — ;.
Obviously(w;) = 0. We then construct a tensBras

Pij = p{wiw;) = p((viv;) — usuy) - (35)
We can then write
Gpuj 0 . an
5 + 8@-'0%% = o, + pa; . (36)

This is known as thenomentum or Euler equation.

The tensoP contains the information about the microscopic random aigés

of the particles. As we will see below, in the equivalent neacopic quantity is
the pressure. Note that Clarke & Carswell define a stress tensoiSect. 2.2,
Eq. 2.9) which is related tB by 0,; = p(v,v;) = Pj; + puu,;.

Energy

For y = 3mw? the kinetic energy of the particles, it makes sense to dithike

into the energy connected with the mean velogityu” and the remainder which

can be written agwu - w + smw?. As (u-w) = u- (w) = 0 since(w) = 0, the

equation becomes
01

01
515P(W + (W) + 5= p((ui + wi)lu+ wl’) = pu-a. (37)
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The ((u; + w;)|u + w|?) term can be written out as follows
((u; +wi)(u; +w;)?) = vu; + 2u - (ww;) + ui(w?) + (w;w?) . (38)

We define the internal energy density of the gagés= %p<w2> (the kinetic

energy contained in the random motions of the particles;ithequal to half the
trace of the tensd?) and define a vectay to bep(%w2w> (this will turn out to be

the heat flux due to conduction). We can then write

o /1 o (1, o 0
e A e P = ou- 39
ot (2”“ +’)5) +agci““’<2p“ +p‘g) *an gt = eu-a, (39)

the energy equation. We will call the sum of the kinetic energy density and the
internal energy densitypu2 + p€ the total energy densit.
2.3.6 Closure relation

We have thus obtained three general equations describengviblution of mass,
momentum and energy in a gas:

dp
£ Cpu = 40
8t+v pu =70 (40)
dpu;
gf LV (puin) = —(V - P); + pas (41)
OF
E+V-(E+P)u+v-q:pu-a (42)

These three equations are general but not a closed set stnbaws 5 equations,
but 13 quantitie¥ p, u, £, andP.

What can we do with the excess unknowns? In order to get a sethatlde
equations we need to get rid of them. They seem to be relatihe tmicroscopic
behaviour of the fluid, and so we need the distribution fuorcto say something
about them. For a gas which is at equilibrium, thigyig;, but such a gas would not
evolve any more. Instead, let us assume a situation in whielgadocally has
a Maxwell-Boltzmann distribution. This means that the gassesis of regions
(fluid elements’ as we called them in Sect. 1.1) which eacheha Maxwell-
Boltzmann distribution, but which can differ im, 7" andu. For this assumption

3Note thatps = 1p(w?) and thatP;; = p(w;w;), SO thatz P,; = 2p€, thus we have 13

guantities, not 14.
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to hold there need to be enough collisions within such a reghs we saw above,
this means that the mean free pathg, should be smaller than the size of the
regionL: A\yp < L.

We can now evaluate the tensBrusing the Maxwell-Boltzmann distribution
function and thus reduce the number of unknowns. SiRge= p(w,w;) and
(Q) = [Qfdv/n, we find that locally

3/2 2

m muw
= dww;w; — . 43
=P <27rk:BT) / Wity Exp ( QkBT) (43)

Since we integrate symmetrically ovalt velocities, both positive and negative,
the off-diagonal terms, being asymmetric around zero, goseontribution under
the integral ovew, and we are left with only the diagonal terms, for which the
integral gives

P = nkgT9, (44)

a diagonal matrix. As we know from thermodynamics, the te#pT is the gas
pressurep. SoP;; = pé;;. Since we define@& to be%p<w2>, we also find that
pE = gnkBT, showing that only the temperature determines the spenticrial
energy densit¥ of the gas, ap = nm. We have thus recovered the Equation of
State for an ideal gas by averaging over the Maxwell-Boltamdiatribution.
Similar considerations show that for the Maxwell-Boltzmaistribution function
the heat conduction flug found in the energy equation, is equal to zero (since it
involves a symmetric integral over the asymmetric function?).

We have thus removed the excess unknowns and obtained a clesef equa-
tions, known as the set &uler equations for an inviscid fluid. The word invis-
cid means without viscosity:

YR

0
—p—i—V-pu:O

ot

dpu;

g: + V- puu=—-V,p+ pa; (45)
OF

EjLV-(E—i-p)u:pu-a.

These equations are not the full fluid equations, since teeyrae thaf = fygp
everywhere (although not necessarily g@mefys everywhere). Obviously in
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real fluids there will be deviations fronfiy;g, and these give rise to so-called
‘transport phenomena’ such as viscosity and thermal cdrmiudHowever, in as-
trophysics these transport phenomena are often unimp@manmany astrophys-
ical systems can be described with the set of Euler equatibawill later return
to consider the terms introduced by deviations from a locakWell-Boltzmann
distribution (Chapter 8).

It is important to realize that we have removed the infororatibout the motions
of the individual particles through the introduction of temsorP, which in the
Euler equations is represented by the pressure terms. 8aoydd say that the
appearance of pressure terms is our punishment for notmegatdideal with the
motions of individual particles.

2.4 Summary

The following points summarize the most essential concepteduced in this
chapter.

e When considering the state of gas from the microscopic pdintew (as
a collection of particles), we introduce the so-calledrdstion function
which specifies how many particles have a certain positiah \aiocity.
The 6-dimensional space of position and velocity is knowplesse space
The distrubution function is thus a density function in phapace.

e The time evolution of the distribution function for a dilugas is given by
the Boltzmann equation (Eq. 28).

e The Boltzmann equation has a collision te€frwhich contains the effects
of collisions between particles. The equilibrium solutmfrthe Boltzmann
equation is the Maxwell-Boltzmann distribution functiorg(EL6), which is
also the state of maximum entropy.

¢ Position-dependent macroscopic gas quantities can beeeszb by inte-
grating the distribution function over velocity space. Timee evolution of
these macroscopic quantities can be found by taking monoéthe Boltz-
mann equation. For the collisionally invariant quantifegss, momentum
and kinetic energy) these moments result in the equatioa®tignamics.

e To obtain a closed set of equations from the moment equatesneeds
to define a closure relation.
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e The equation of gas dynamics simplify into the Euler equnetior inviscid
flow if one assumes for a closure relation that the gas is exeye inlocal
equilibrium (i.e. it consists of fluid elements which eaclvdna Maxwell-
Boltzmann distribution).
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3 Equations is Power?

We have now obtained a set of equations which describe theediralution of a
gas (Egs. 45). Before proceeding it is good to consider thisfsjuations.

It is a set ofpartial differential equationsn (x,t). The equations in the set are
coupled in the sense that for example to solve for the timéugweo of p you
need to knowa which has its own equation for its time evolution. In additibe
equations are non-linear due to the double appearanagrothe V - pu,;u term

in the momentum equations. These properties make the egsdtard to solve
in the most general cases, but at the same time make for stiteyesolutions.
Consider a complex flow pattern which you may have seen in & rivés is a
solution of these equations (or at least some equationssugilar to them).

Since it is hard to find solutions in general cases, most &nalysolutions for the
gas dynamic equations are for very simplified cases. We wibanter a number
of these solutions later. As you will notice, the simplificats often take the shape
of a reduction of the dimensionality of the problem (usinguesed symmetries
in the flow) or a reduction in the number of quantities to sdbue(by assuming
simple relations between different quantities, for exarptween pressure and
density).

Because of the very limited set of possible analytical sohgj the development of
techniques to find numerical solutions to the fluid equatiassrevolutionized the
field. Computational gas dynamic simulations allows one toseer much more
complex cases, such as star formation, galaxy formatian, @he has however
constantly to be aware of the limitations of the numericalsons which will
always have a finite resolution. Chapter 7 will introduce saifie concepts of
computational fluid dynamics.

3.1 Advection

It can be seen that all five equations of the set of Euler egpsifor inviscid flow
have some terms in common. Each of them can be written as

0

a—cf + V - Qu = other terms (46)
The first term is the change &f at positionx and the second term has to do with
the flow velocityu. If the “other terms” are zero one can show mathematically
that this equation represents a quangityeing carried along by the flow. This
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Figure 4: The concept of advection. After a tide the pattern in quantity Q has
been carried to the right by the flow.

process is known aadvection and therefore the terrfv - Qu is known as the
advection term.

Figure 4 illustrates how a pattern in the quantilyis carried along by a flow. In
this case the velocity is the same at all positions and the pattern is simply shifted
to the right. Ifu would be different at different positions, the pattern vebbke
shiftedand deformed, either compressed or stretched, depending shtpe of
One could thus write the Euler equations thus

p pu 0

0
o | P +V. pua | = —Vip + pa; (47)
E Fu —V - (pu)+pa-u
change in time advection other processes

The other processes here are the pressure forces and theratioe due to exter-
nal forces.

3.2 Momentum or velocity?

The equations of fluid dynamics are coupled, and therefaeealso possible to
write them in many different forms. As an example one can iclenghe momen-
tum equation which describes the time evolution of the mdomandensitypu.

One might prefer to write this as an equation for the time @oh of the velocity
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u instead. This is possible by using the chain rule and theirmaibg equation.

Since
Opu;  Ouy dp

and 5
p P — .
one finds that 5
p ;f Fpu- V) = —Vip + pas. (50)

The latter equation is found in Clarke & Carswell as Eq. (2.Xvjpage 17. How-
ever, there it is written fou instead of for velocity component. Because of this
the second term becomes ambigious: it is unclear how thederWu should be
interpreted. Equation 50 shows how it should be interpreted
Up to now we have written the momentum equation as an equiatidine velocity
componenty;. If one wants to write the momentum equation as an equation fo
the velocity vecton, one should introduce the dyadic tensabu (see Sect. 1.2).
With it one can then write

ag;tu—l—v-(,ou@)u):—Vp—l—pa, (51)
where the divergence operaf@r now works on a two-dimensional tensor, reduc-
ing it to a vector.

3.3 Eulerian versus Lagrangian

When following the time evolution of gas quantities such a&sdansity, pressure
and velocity, there are two different points of view one caltet These are

1. Eulerian description: one defines a fixed coordinate grid in space and fol-
lows how the gas quantities are changing at a given positidns is the
perspective of someone sitting at one position and makingsarements.

If a steadily moving density wave is passing, a time evotutd the den-
sity is found. When considering the time derivative in thisaétion, the
symbol0 is used. This is the point of view which we have used up to now.

2. Lagrangian description: one chooses a fluid element in the fluid and fol-
lows how its properties change. This is the perspective wiesme moving
with the fluid and making measurements. In this case a syeadiving
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density wave would not be described as having a time evolatsowe now
have the perspective of someone “riding the wave”. When denisig the
time derivative in this description, the symHtolis used.

The two point of views are related through the following eeqsion (for a general
guantity Q):
b _ 2@

Dt—a‘l—u-VQ. (52)

This expression can be derived by following a fluid elemermraonfinitesimally

small time stept. If it starts at position: at timet, then at time + 6t it will be

at positionr + or. The Lagrangian derivative is thus
DQ Q(r + dr,t + 0t) — Q(r,t)

X
Dt sta0 5t

(53)

The numerator can be written as

Q(r +dr,t +6t) — Q(r,t) =
Qr,t+0t) — Q(r,t) + Q(r + or,t + t) — Q(r,t + dt), (54)

which to first order inft anddr equals

= %& +0r-VQ(r,t + dt). (55)
The second term can then be expanded as
or- |VQ(r,t) + ?& . (56)

For ot anddor — 0 the time derivative of the gradient ¢f disappears, as itis a
second order term. Realizing that the fluid veloaity= Jr/dt, we thus obtain
Eq. 52.
It is instructive to transform the fluid equations to theirgtangian form, since
this provides us with the perspective of fluid elements. A Eq. 52 to the
continuity equation, the Lagrangian form becomes
Dp Op
E—a+u~Vp——V-(pu)—l—u-V,o——pV-u, (57)
or

Dp
D—t+pV-u—O (58)
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This equation shows that the density of a fluid element ongngles wherw -
u # 0. So-called incompressible flows have the propé&rp/Dt = 0 and as a
consequence their velocity field has to o3&y u = 0, i.e. it must be divergence
free. It is a useful exercise to try to reason why this mustheecase; consider
what velocity differences mean for the volume of a fluid elatne
The Lagrangian form can be seen to remove the advection teo@ gne is mov-
ing with the fluid. This sometimes means that the Lagrangiam s the simplest
one. ltis for example possible to rewrite the momentum equah Lagrangian
form as

pD—l; =—Vp+pa, (59)
from which the connection with Newton's2law becomes apparent

ma=F. (60)

It is therefore one sometimes speaks of pressure forcesmgook the fluid. Note
however that it would be more appropriate to speak of preggadientforces.

3.4 Particle paths

Even though the Lagrangian form may be sometimes easieraovdth, one
should realize that for a full solution, one still needs ttvedor the paths the fluid
elements are taking. If one wants to trace the trajectorié¢kiiol elements one
needs to solve the equation
dr
dt
which describes the path of a fluid element, or a so-calletigiapath.

=u(r,t), (61)

3.5 Gravity

Up to now we have carried along an external accelerationtddrinya. In prac-
tice this external acceleration is almost always a graeital one. Therefore we
replace the symbeal by g.
Since gravity is a conservative force, it can be described $galar potential field
¥ such that

g=-VVU (62)

Since it is only the gradient that matters, an arbitraryacedn always be added
to the field. Usually the field is normalized this way so tirdto) = 0.
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The gravitational field may be completely external, for epéenthe field imposed
by a planet or a star on its surroundings, or it may be interfiag latter case is
usually calledself-gravity a gas cloud feels the gravitational field produced by
its own mass. To find the gravitational field of a mass distidmp one needs to
solve the Poisson equation:

VU = 4nGp, (63)

whereG is the gravitational constant. The Poisson equation is ¢etely equiva-
lent to the equation of the electric potential of a chargesdgfield, familiar from
electromagnetism. A derivation can be found in Clarke & Calis{@ect. 3.2).
Solving the Poisson equation is rather complicated as isescand order differen-
tial equation. Even quite simple density distributions pamduce rather compli-
cated potentials. If you are interested to see some exanyplesan read Chapter
3 of Clarke & Carswell.
A useful theorem related to the self-gravitating systemthésVirial Theorem
Since gravity is only an attractive force, a collection of-ggavitating particles
needs to have some internal motions in order not to collapsavever, if the
velocities of the particles are too large, the collectiofi disperse. The Virial
Theorem specifies the amount of kinetic energy that is netwetcollection of
particles not to collapse and not to fly apart.7lfis the total kinetic energy of
the particles and2 their collective gravitational potential energy, then Wigal
Theorem states that

2I'+Q =0. (64)

Note thatT’ is the total kinetic energy, so for a gas it consists of thekaenergy
of the mean motion, and the kinetic energy contained in rangmtions, that is,
the internal energy of the gas.

Read Sections 3.5 and 3.6 of Clarke & Carswell to learn
more about the Virial Theorem.

The Virial Theorem is an important concept in astrophysitselates the grav-
itational potential energy and the kinetic energy of any-gedvitating systems
in equilibrium. This includes gas clouds, but also stelimtems and galaxy sys-
tems. Since the gravitational potential energy of the systeproportional to its
mass squared, it becomes possible to ‘weigh’ systems byurieggheir kinetic
energy content. This was for example used in the 1930s toHmdiass of galaxy
clusters. These measurements provided the first indicttaira large part of the
mass of galaxy clusters is ‘dark’. In current cosmology thisiterpreted as being
due to the presence of dark matter in the Universe.
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3.6 Summary

These are the most important points addressed in this aghapte

e The set of fluid equations is a set of couples, partial andlimaar differen-
tial equations. Analytical solutions are only availablegonpler problems.

e The termV - Qu found in all five equations describes the advection of
quantity Q.

e The Eulerian description of a fluid gives the evolution of flluéd quantities
at fixed pointsr in space. It is associated with the differential symbol
The Lagrangian description gives the evolution of the fluichmtities in
fluid elements which are carried along by the flow. It is assteci with the
differential symbolD.

e The gravitational acceleratiog can be calculates from the gravitational
potential V. If the gas is self-gravitatingy must be calculated from the
Poisson equation.

e For a self-gravitating system to be in equilibrium the Miffdeorem hold
which states that twice the kinetic energy of the system lshequal €2, the
gravitational potential energy of the system.
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4 Finding order in chaos

In Chapter 2 we derived the energy equation from the micrascogw, showing
that for the inviscid flow it is given by

%—f—l—V-(E%—p)u:pug, (65)
with £ = %puz + p€. The first term inZ is the kinetic energy density of the flow,
corresponding to the mean motion of the particles, the setemm is the internal
energy density of the flow, corresponding to the random metaf the particles.
Since only the total energy of the particles is conservedthi® most general case
one has to consider the evolution of the sum of these two grkgsities. As we
will see later, flows can convert one type of energy into thent
The internal energy of a gas is sometimes also called thenddeznergy. It is
the internal energy which is a key concept in thermodynamit&re most of the
time the motion of the gas is not considered. In this chaptedeal with several
concepts connected with the internal energy of a gas, ctsmedpch may already
be known to you from studying thermodynamics.

4.1 Energy equation and relation to thermodynamics

When in Chapter 2 we assumed that the distribution functioheptrticles is lo-
cally a Maxwell-Boltzmann distribution function, this alsoplied that the gas is
ideal. For an ideal gas the specific internal enefgy only a function of temper-
ature, anchot of the density. This relation betwee&hand other thermodynamic
guantities is called thequation of stat¢EOS). As we saw in Chapter 2, the spe-
cific internal energy and the pressure for a monatomic gasedaéed through
&= %p/p, so instead of the internal energy, the EOS is usually gigemralation
between the pressure and the other thermodynamic quarditibe gas. In fact,
the assumption of a Maxwell-Boltzmann state of the gas ajrgade us an EOS:
p = nkgT. This is the EOS of an ideal gas. It shows that for an ideal gas t
internal energy is only a function of the temperatur&ye.; = Eigeal(1).

If £ starts to depend on other quantities, such as the denstgahis no longer
considered to be ideal. From the course on stellar strugtbmemay remember
that the cores of stars can consist of a degenerate gas.gihie fully degenerate,
the internal energy dependsly on the density { pg) and no longer on the
temperature, so this is a very non-ideal gas.
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Read the beginning of Chapter 4 up to Section 4.2 of Clarke
& Carswell to learn about the the equation of state.

As given in Sect. 4.1 of Clarke & Carswell, for ideal gas the ¢igueof state can
be written as

p=—0pT (66)

:U’u
whereR, = 8300 J K- kmole! (and equals 100R, the gas constant) and,
is the mean molecular weight in atomic mass number (1/12efihss of?C,
or 1.661 x 10727 kg). The Boltzmann constant is connected to the gas constant
throughks = R/Nx, whereN, is Avogadro’s number6(022 x 10 mole™?).
This form of the equation of state is the usual form for Edoéised applications.
However, in astrophysics, hydrogen is by far the dominagrneint and it is more
usual to use the mass of hydrogen as the unit mags=€ 1.672 x 10727 kg). In
this case the the equation of state is usually written as

kg
pmy

wherey is the molecular weight expressedriny;. Sincep is the mass density of
the gas, this is equivalent jo= nkgT since the mass and number density of gas
particles are connected through

p= T, (67)

p = pmgn. (68)

4.2 Barotropic equations of state

The energy equation Eq. 65 is the most general equation éog\tblution of the
total energy density of a gas (consisting of internal + kinenergy density).
However, in many cases it is not actually necessary to sblehergy equation
because the pressure is only a function of dengity, p(p). Since the pressure
gives&, both can then be derived from the solution of the densitye Kinetic
energy can always be found from the momentum equation =fp(p), the EOS
is calledbarotropic There are two main cases of such a barotropic EOS

1. isothermal EOS: the temperature is (locally) constant, amdx p. This
can happen if other processes than the flow dominate the #hetate of
the gas. These other processes (heating and cooling, forpdsdhrough
radiative processes) can act akharmostatkeeping the temperature of the
gas constant despite changes in the gas.
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2. adiabatic EOS:the gas only undergoes reversible changes and the entropy
of fluid elements is conserved. In this case: p” where~ is the adiabatic
index.

Read the Section 4.2 of Clarke & Carswell to learn about
these two cases of barotropic EOS.

The adiabatic index for a monatomic gas/is- % and for a gas made of diatomic
molecules itisy = I.

As we wrote above, for an ideal gas the specific internal gngnly depends on
the temperature. How can it then be that for that same idesavganow find that
the pressure (proportional £) depends op”? The answer is that still only
depends on the temperature, but that the temperature haide the density
(T < p"~1) when the entropy is conserved. So the dependené&yoofthe density
is anindirect one, not a direct one (as it is for the case of a fully degenagas
that was mentioned above).

4.3 Deriving the energy equation from thermodynamics

When one starts with the macroscopic theory of thermodyrngnoice can also
derive the energy equation. This is done by considering shéatv of thermody-
namics, which states that energy is conserved. Thermodgsammly considers
the internal energy of the ga&)( whereas the particle perspective considers the
total energy of the gas, the sum of kinetic and internal gndfigwever, the evo-
lution of the kinetic energy can be found from the momentumatign and then

be added to the evolution of the internal energy.

The first law of thermodynamics can be written as

A€ +pdV = dQ, (69)

stating that the internal enerdy can only change due to heat being added or
removed {Q) or through work done by the gas when it changes its volymi& (
term). All these term actually come back in the enery equatibhepdl” term

is contained in thévV - (pu) term which can be split intpV - u (internal energy
change due to compression/expansion; as we saw above iagnarigian version

of the continuity equationy - u corresponds to volume changes in the flow) and
u - Vp (kinetic energy change due to pressure gradients).
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The @ term is new for us, since it represents external processéshvetad or
remove energy from the gas. Below we will consider this terra iittle bit more
detail.

Read the Section 4.3 of Clarke & Carswell to learn about
how the energy equation derives from the 1st law of ther-
modynamics.

There is one small difference between the book and the diervirom Chapter 2.
The book defines the total energy density:as” + p€ + p¥, where the last term
is the potential energy term. If we call this definition of ti¢al energy density
E*, the energy equation becomes

oL*

ot Pt
as shown in Eqg. (4.32) of Clarke & Carswell. This formulatiorca@anpletely
equivalent to Eq. 65 as can be seen from some manipulation:

+V .- (E"+pu=

e The termpo¥ /9t occurs on both sides of equation and thus cancels.

¢ In the advection term foE* there is aV - (Wu) which can be rewritten as
pg - u, sinceg = —VWU. This is the term we had in the energy equation for
L.

e The remaining term¥9dp/0t and¥'V - (pu) cancel each other due to the
continuity equation.

So we can conclude that the two versions of the energy equateequivalent.
This is another example of how the fluid equations can be t@arin different
forms. A further example is writing down separate equationshe evolution of
the internal and kinetic energy density, a problem which ares@er in one of the
exercises.

4.4 Heating and cooling processes

The energy equation Eqg. 65 describes the situation when fanty processes
change the energy density. However in astrophysics theygmEnsity is often
modified by other processes, such as radiative processescdmmodate this in
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the equation, Clarke & Carswell introduce a tesp(Q...; which when added to
our energy equation gives

oF .
E‘FV'(E‘FP)U:PU'%—PQCOOL

If Qcoo > O this represents energy loss and)if,,, < 0 it represents energy gain.
It is important to realize thaf)...,; only affects&, the (specific) internal energy,
and obviously not the kinetic energy of the gas.

Clarke & Carswell describe four processes that can contribut@ergytransport

1. Cosmic Rays
2. Conduction
3. Convection
4. Radiation

Of these only cosmic rays and radiation are actual heatidgcaaling processes
that contribute ta).,.;. As we will see in Chapter &onductions a fluid process
that is caused by deviations from the assumption of a locadvi#-Boltzmann
distribution. It is therefore amternalfluid process, not an external source or sink
of energy.

Convections a complex macroscopic fluid process, which is in princgteady
described by the fluid equations. Because of its complexisysometimes added
to the equations in a parametrized form, which is why Clarke &@ell group it
under energy transport processes.

Read the Section 4.4 of Clarke & Carswell to learn about
energy transport processes. The details of the various|radi
ation processes described on pages 42 — 45 are optional.

The interaction between gas and radiation is more fullytéean the course on the
Interstellar Medium, and therefore not part of this courBee main message to
remember here is that there can g g, term in the energy equation representing
energy gains and losses due to interactions with cosmicaiagsadiation. Often
this interaction works as a thermostat, fixing the tempeeaddi the gas, allowing
the use of the isothermal EOS (see Sect. 4.2). It is for exarofien a good
assumption that a gas being photo-ionized and heated by stdrds isothermal
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at a temperature of 10* K, as the photons can easily heat the gas to temperatures
abovel0* K, but radiative cooling processes will reduce the tempeesto values
below which radiative cooling becomes inefficient, whiclppens to be- 10 K.
Radiative cooling is a very importent process in astroplsysidhe reason is that
under many circumstances the density of the gas is so lovif thae to collisions,
a molecule, atom or ion gets excited, it is more likely to dete by sending out
a photon then through another collision. If this photon doesget absorbed,
it will leave the gas, carrying with it some energy. In fullgnized gases, the
main cooling process is the electrodynamic interactionwbeh charged parti-
cles, mostly between electrons and ions. This is known a&sffeee emission or
bremsstrahlung (this concept will come back in the complate).

Radiative heating is mostly through ionization processitiseethrough photons
or collisions with cosmic rays. The excess energy beyondathization energy
needed to release the electron, is given to the electrondrothrough collisions
can share this with the rest of the particles in the gas. Aergtlath for radiative
heating is through dust grains. They can absorb photonsremease their tem-
perature. Interaction with gas phase particles then leaddeating of the entire
mixture of gas and dust.

4.5 Adiabatic flow and entropy

When the gas has an adiabatic EQSx p?, the entropy of fluid elements is
conserved. This implies that the entropy of a fluid elemeatfisnction ofpp=".
A more thorough analysis shows that the thermodynamic gyaoftentropy is
given by

s=Cyln <£> + 5o (70)
p’Y

whereCly is the specific heat capacity at constant volumesgnsla normalization
constant. The adiabatic index is given by= C,/Cy, whereC, is the specific
heat capacity at constant pressure.

Saying that the entropy is conserved is equivalent to sayiagno irreversible
processes are affecting the gas. This follows from revgithre first law of ther-
modynamics in terms of the entropy.

Irreversible processes can be external processes thahadgydo or remove en-
ergy from the gas, processes contained inGhg, term. However, even when
no external heating and cooling processes are operatiegersible changes can
happen in a fluid due to shock waves. We will treat shocks irerdetail in Chap-
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ter 6. We will see that in shocks kinetic energy is converted thermal energy,
which is an irreversible process that increases the entr@uy across a shock
entropy is not conserved.

Further irreversible processes are those connected \aiisort processes, to be
treated in Chapter 10. These processes are associated setisity and heat
conduction. If these are important, the gas will also notseove entropy.

The summary is thus that if a gas is inviscid (no viscosity eadduction) and
external heating and cooling processes are unimporta, dtvay from shocks,
the gas will have an adiabatic EOS (as explained above in &4t In this case
it is not necessary to solve the energy equation, since t&spre (internal en-
ergy) can be derived from the density and the kinetic enexgy the momentum
density.

4.6 Pressure, internal energy and enthalpy

The adiabatic relation also allows us to derive the conordietween pressuge
and internal energ¥. If the flow is adiabatic, the first law of thermodynamics can
be written as

d€ + pdV =0, (71)

and we also know that for this condition
p=Kp, (72)

with K some constant. Combining them gives

K 1
A€ = —pdV=Kpd(p™')=—=dp" ' = ——dp/p (73)
v—1 v—1
=
as = a0 (74)
v—1
=
£ — p/p (75)
v—1

Although derived from the assumption of adiabatic condgidhe internal energy
£ of a fluid is an intrinsice property of the fluid, not dependimig the actual
conditions. So this relation f& is generally valid. In fact, for a monatomic gas,
v = 5/3 and thusf = 2p/p, something we already found in Chapter 2.

35



Another energy related quantity which is sometimes usetle®mnthalpy The
specific enthalpy is defined as

h=E+p/p. (76)

Using Eq. 75 this can also be written as

4.7

_ "
h = mp/P- (77)

Summary

The most important points to remember from this chapter are

The general form of the EOS for an ideal gas is Eq. 67.

The adiabatic index (ratio of the specific heat capacitie€s/C'), connects
the specific internal energy densdy pressure and density through the re-
lation p€ = p/(y—1). It also occures in the definition of the entropy which
is proportional tdn (pp~7).

Under some circumstances, the pressure can be written ascofu of
the density (barotropic EOS), removing the need to solvettierenergy
eqguation.

The two well-known cases of barotropic flow are isothermpabq{ p) and
adiabatic p o« p?).

External processes (mostly radiative) can add or remowrat energy
from the gas.
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5 Spherical Cows

There is a well-known joke which says that if a theoreticiaould be asked to
study how a cow produces milk, they would start by assumingheeiscal cow
(see Fig. 5). In this chapter we will look at some simple,istaplutions of the
gas dynamic equations, some of which assume spherical syymnte the rest
of the course we will encouter other examples of “spherioals® since reducing
the dimensionality of the equations is one way to simplifgrthso that finding
analytical solutions becomes possible.

Figure 5: A typical spherical cow model.

5.1 Non-cartesian coordinates

We have been writing the Euler equations for inviscid flow @mgral terms with-
out specifying the coordinate system to be used, employiaghabla symboV

to represent the differential operators. The equationsfazeurse valid in any co-
ordinate system, and thus writing them in general termspsgpiate. However,
when one starts to look for solutions for specific cases (s explosion, an
accretion disk, a stellar wind), one has to choose a certairdmate system. The
mathematically simplest one is of course the cartesiandooate system, usually
denoted withz, y, z. In this type of coordinate system the various vector and
tensor operators have their simplest form.
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However, in many cases the symmetry of the problem one isgrg solve sug-
gests other, so-called curvilinear coordinate systems.twb most common ones
are cylindrical coordinates (more fully described as ajfical polar coordinates),
often represented by the symbdlB, ¢, z) and spherical coordinates (spherical
polar coordinates), often represented by the symbols ¢). These systems are
called curvilinear coordinate systems because at leastooelinate follows a
curvedpath in a cartesian representation.

For example, an idealized supernova explosion proceedsisphy, and the wind
from a spherical star will also travel radially outward. hrese cases it is more
appropriate and even simpler to use a spherical coordigatera. Similarly, it is
easier to use cylindrical coordinates to describe a cydaityi symmetric accretion
disk.

Because of the inherent curvature in curvilinear coordsdtee vector and tensor
operators obtain different forms. The hand-DUEFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES@ves an overview of these forms for the cylin-
drical and spherical cases. One thing to keep in mind whekirigat these forms
is that the angles do not have dimension of length, so for dg@al reasons
differentials with respect to angle have to be divided by s@muantity of dimen-
sion length. Also note that some of the operators contamgewxhich arenot
differentials.

We will consider the case of cylindrical polar coordinatesiilater chapter when
we will look at accretion disks, which we will describe as tdionensional ob-
jects in(R, ). The purpose of using curvilinear coordinates is to makeafise
possible symmetries in a system, and this often means tleatlo@s not use the
full three-dimensional set; a symmetry allows one to redheedimensionality
of the system. One often occuring symmetrgjphericalsymmetry. In this case
the only coordinate is the spherical radius The Euler equations for spherical
symmetry become

o * gy o) =0

opu, 10 5 H  Op 0¥

ot +ﬁ5 (r pur) - Or +p8r (78)
o8 19 ,, OU

a0 tragy CEARw) = purgn
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5.2 Hydrostatic equilibrium

The simplest solutions for the gas dynamic equations argetimowhich the gas
is in hydrostatic equilibrium. Even for those simplest siolns, a reduction of
the dimensionality is often applied. Hydrostatic equiliion means that the gas
velocity is zero (static) and that the time derivatives ds® @ero (equilibrium).
This implies that if one assumes a barotropic EQS+ p(p), of all the fluid
equations one only needs to solve for a simplied form of thener@um equation
where the pressure gradient is balanced by a force field

Vp=pg=-pVV¥ (79)

Read Chapter 5 up to Section 5.1 to learn about hydrostatic
solutions.

The book considers a number of classical cases

1. The isotermal self-gravitating slab. This employs “stgimmetry” which
means that one considers an slab which is infinite in two offihee carte-
sian coordinates. Only one needs to consider one of thescamteoordi-
nates £).

2. The isothermal atmosphere. This also employs the slalngyry, but the
gravitational force field is external.

3. Self-gravitating spheres. This employs spherical sytnm&hese types of
solutions are known agolytropesand are useful as simplified models for
stars. The differential equation that needs to be solvedlisdthe Lane-
Emden equation. With one exception (see Sect. 5.4) we wilcoosider
them in this course.

5.3 Isothermal slabs and atmospheres

Read Sections 5.2 and 5.3 to learn about the isothermal slab
and atmosphere solutions.

In one of the exercises we will consider a variation of thehieomal atmosphere,
namely an isothermal atmosphere around a spherical body.
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5.4 Self-gravitating spheres

While we will not be looking at the general case of self-gratuitg spheres, we
will look at one case. This case is a simple model of an irgdestcloud which is
about to form a star, rather than a model of an already forrteed Bhis solution
is known as thé&ingular Isothermal Sphere

The will assume that the gas is globally isothermalpse Ap, where A is a
constant (proportional to the temperature). With this egpion for the pressure,
the condition for hydrostatic equilibrium becomes

Adp dlnp
2P _ A SS v A/ 80
p Or or v, (80)
and the Poisson equation is
10 ov
2w . 2 _
VU = i (7" —(%) ArGp . (81)

We can substitutéW /0r in the Poisson equation using the hydrostatic equilib-
rium equation, to give

10 (,0lnp\  4nG
Zor ( or )— Al (82)

If we assume that the solution fpiis a power law and that = 0 for » — oo, the

solution is
A

plr) = 2nGr?
which is singular for- = 0, and therefore called the Singular Isothermal Sphere
solution. Even though this solution is singularat 0 and of infinite mass if one
lets the radius go to infinity, it has a finite mass within a $jest radius (so the
singularity atr = 0 does not make it diverge). Also, measurements of so-called
dense clouds that are close to forming stars (so-calledghi@@scores) often show
al/r? density distribution, at least over part of the core. Sogbisition provides
a reasonable description of the structure of a large pafhaxe pre-stellar cores
and is often use to derive properties of such cores from gasens.
Non-singular solutions can be found by changing the boyndanditions, for
example by specifying a central density and a constant tyelnsyond a certain
radius. These solutions are more realistic as the cloudhaile a finite central
density and a finite extent. They are known as Bonnor-Ebegrgsh However,

(83)
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although it is possible to calculate such solutions nunadyicit is not possible
to write them down in the form of an equation. Figure 5.2 in Kiéa& Carswell
shows such a Bonnor-Ebert solution, comparing it to the ddrdensity structure
of an observed cloud. The best fitting part of the solutiomifact very close to
following the 1/r? of the singular isothermal sphere.

5.5 Summary

The main points of this chapter are

e Hydrostatic solutions are statiai (= 0) solutions in a gravitational field.
The equation to be solved is that of the balance of the presgadient
with the gravitational acceleration.

e Examples of hydrostatic solutions are the exponential afthere and self-
gravitating spheres, also known as polytropes.
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6 The Perfect Wave

This chapter is about waves. Wave phenomena are importéatdrdynamics as

they are the means by which disturbances travel through.a/gasire intimately

familiar with wave phenomena in gases, as sound is a waveopiemon in atmo-

spheric gas. From this we also know by experience that the wpged is not at
all the same as the material speed. Sound travels with abounhss at the surface
of the Earth, but this does not mean that this is the wind speed

As we will see below, and as you probably already know, soand (hus waves)
travel with the so-called sound speed. This means that atyrtdance will travel

with the speed of sound and the use of the sound speed allaiwseasmate how

guickly one region can respond to another: there has to efomsound waves
to travel from the one region to the other.

] Read the introduction of Chapter 6 in Clarke & Carswell.

6.1 Acoustic waves

To describe how waves travel in a uniform medium, one perfonhat is known
as alinear perturbation analysiswhere one considers small deviations from an
equilibrium solution. We take a medium of constant density, (at rest (1 = 0)
and in pressure equilibrium (at presspgg and study the effect of perturbations
in the density, pressure and velocity

p = po+Ap (84)
p = pot+Ap (85)
u = Au (86)

When substituting these perturbations into the fluid eqnat{oontinuity and mo-
mentum equations), only keeping 1st order terms in the getlquantities and
assuming a barotropic EOS, one obtains the classical wawaieq. This shows
that perturbations travel as waves through a fluid.

To use the equations:

0 A
T2V (o + Ap)Au] = 0, (87)

which can be linearized as
%+pOV~Au:O. (88)
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Similarly, the momentum equation can be linearized as

0Au 1
—— =——VAp. 89
T o VA (89)
If we now assume that the gas has a barotropic EOS, we canthwifgressure as
a function of density, and thus

VAp = @VAp (90)
dp
We can thus replacAp with Ap in Eq. 89 and by takin@ of Eq. 88 minuspV-

of Eq. 89 we obtain
PAp  dp_,
= —V-°A 91
BT de P, (91)
which is a wave equation for waves with wave spggédp/dp. This wave speed
is called thesound spegdsymbolc;.

The general solution of this equation is

Ap = Apgexp(ik - r —iwt), (92)

wherek is the wave number vector (its absolute valus equal t2r /\ with A the
wave length) and is the angular frequency (equal2av if v is the frequency).
Substituting Eq. 92 into 91 gives that

w® = k|, (93)

which is known as alispersion relation giving the relation between the wave
numberk and the angular frequency. It can be used to calculate the phase and
group velocities of the waves

w

Uphase — m (94)
dw
Vphase — @ . (95)

In the case of sounds waves, the velocities are constant @amebtddepend on
frequency, making sound wavasen-dispersive
From the relations above we can also see that

dp
2 _ = 96
<=, (96)
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from which follows that
Ap = Apoct exp(ik - T — iwt) , (97)
and from Eq. 89 it can be deduced that

Apoc? A k
Au = ﬂkexp(ik T —iwt) = il

cs— exp(tk - r —iwt) . 98
pow po |k p( ) (%8)

This last equation shows two things. First, the waves argifodinal, that is their
velocity has the same direction as their wave vectors. Skdbe amplitude of
the velocity variations ié*ﬁ times the propagation speed of the wave, that is the
wave travels much faster than individual fluid elements.

~

Read Section 6.1 upto the last paragraph on page 66 in
Clarke & Carswell to see how the wave equation is found
from small perturbations.

Clarke & Carswell correctly point out that if there are vawas in the fluid, one
should perform the linear perturbation analysis in the hagran frame. However,
since we are considering the case of a constant density @asdype medium,
the distinction between the Lagrangian and Eulerian frammest important. If

one wants to do the same analysis in a stratified medium, |uah axponential
atmosphere, one does need to perform the analysis in thahgign frame. This
particular example is presented in Sect. 6.2 of Clarke & Cdtswe

6.2 Sound speed

As we showed above, the sound speed depends on how the presaats to
density changes, or rather since we assumed a barotropicdfQIge form of that
barotropic EOS. As we saw in Sect. 4.2, there are two mainores®f such EOS,
namely adiabatic and isothermal. There are thus also twsores of the sound

speed the adiabatic
T
Y ¥y . (99)
P Py
o \/? _ [T (100)
P pwmy
44
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equal to the adiabatic one when one takes 1. Which one is the relevant one
depends on the conditions. If the gas is truly isothermal, ighit can cool on time
scales smaller than those associated with the sound wavési( is the latter
expression for,. At the surface of the Earth this is actually not the case.r@he
is cooling, but it is not efficient enough to make sounds wasethermal. In
this case it is the adiabatic sound speed which should be #sed = 7/5 and
appropriate values fdf' and i one obtains~ 330 m s™! as the sound speed on
Earth.

Read the rest of Section 6.1 (page 67) on page 66 in Clarke
& Carswell to learn about the sound speed.

As was explained in the introduction, the sound speed is rtapbwhen consid-
ering fluid problems, as it connects length and time scalbésréfore it is useful
to consider what are typical sound speeds for differenbphirsical systems. As
was shown in the book, the sound speed depends on the teargerfitwe take
the adiabatic sound speed for a monatomic hydrogen-gas §/3, © = 1) the
numbers are like this

T(K) e (km/s)

10 0.29
100 0.91
10* 9.1
10° 91
108 9.110?

These combinations of temperature and velocity often gettag. Systems that
have velocities of the order of those listed above will ofdso contain tempera-
tures of this order. For example, a stellar winc~of 000 km/s will blow a bubble
in the surrounding gas which is filled with a hot gas-of 0® K.
Because the sound speed is equivalent to the temperatures afadh) for the
isothermal case it can be used to write the relation betwessspre and density
as follows

p=pc.  isothermal EOS. (101)

This means that thd that we used in Sect. 5.4 and in Sects. 5.2-3 of Clarke &
Carswell (and the< that was used in their Sect. 5.6) actually is equafto
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6.3 Shock waves

The momentum equation is non-linear containing a term ptapwl to the ve-
locity squared. This means that velocity variations wilideto steepen as the
faster moving fluid is transported faster than the sloweringfluid. When the
faster moving fluid is overtakes the slower moving fluid, stmmg has to happen
as they cannot both exist in the same place. This somethimgh®ck, in which
the faster moving fluid almost instantaneously brakes, eximg a large part of
its kinetic energy into thermal energy.

An alternative way to look at shocks is by considering thhpatturbations in a
fluid travel with the sound speed. Imagine a wall and a gas figwowards the
wall. If the gas has a velocity lower than the sound speed]l gaeurbations
generated at the wall will travel upstream into the gas amdnganicate to the gas
that there is a wall up ahead. This will allow the flow to smdpthdjust to the
existence of the obstruction.

If the fluid is moving supersonically towards the wall, thetpebations travelling
still at the sound speed, cannot flow upstream as they anead¢atong by the fluid
faster than they can travel upstream. The supersonicallyngdlow does not
‘know’ that there is an obstruction ahead and cannot adjustvéll collide with
the wall at its full speed. In the collision it will almost it@htaneously convert its
high velocity to a low one, converting the kinetic energyiirternal energy.

Read the introduction of Chapter 7 upto the middle of page
79 in Clarke & Carswell.

6.4 Rankine-Hugoniot relations

Shocks are regions in which the collisions between pastictenvert kinetic en-
ergy into internal energy. This happens in a region which thassize of the
mean free path between patrticle collisions. This implies that inside tleual
shock region the distribution function of the particles iosgly non-Maxwell-
Boltzmann. However, the size of the region is very small camegdo the rest of
the fluid, namely only about a mean free path. It thereforeenaense to treat
it as an infinitely thin transition region or a discontinuitysing this assumption
and the fluid equations it is possible to find the relationsvben the conditions
on either side of the shock. The relations are known as the iRedikugoniot
relations.
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They can be derived from the fluid equations by realizing thatme (cartesian)
dimension and in the absence of an external force and regietioling, all five
equations can be written as

0oC OF
5 + 9 (102)
with
p Py
Plg pui +p
C=1| py and F = PlUy Uy , (103)
pU PULU
E (E + p)uy

whereF are the so-called fluxes. If any of the quantitiesGnis a region is
constant, then the flux into and out of that region should heakd herefore in a
frame of reference in which the shock is stationary, the flowithg into the shock
should be the same as the flux flowing out of the shock, otherilisre would be
either a pile up or an emptying of any of the quantifesTherefore if “1” refers
to the material flowing into the shock region and “2” to maikfiowing out of
the shock region, we obtain (writingfor «, and for the moment not considering
the velocitiesu, andu.):

prur = pPaug
prui +p1 = paus + po (104)
1 1
Leg wi/p Loy P2/ P2 |
2 v—1 2 v—1

where in the last relation we divided out a fagtarand used thaty —1)€ = p/p.

Read Section 7.1 starting in the middle of page 79 in Clarke
& Carswell to learn about the Rankine-Hugoniot relations.
Note that the contents of the paragraph about the relation
between pressure and internal energy (bottom of page 81
and top of page 82) is not specific to shocks and was alrgady
described in Sect. 4.6 of these lecture notes.

The conditions before the shock (unshocked gasu., p;) are known as the
pre-shock conditions; the conditions after the shock (sbdgas ., us, p2) are
known as the post-shock conditions. Note that shockateeversible so it is
easy to tell pre- from post-shock conditions: the density pressure are always
higher in the post-shock region.
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6.5 Shock jump conditions

There are various ways to write the shock relations. A vergroon way (buhot
given in the book) is to express it in terms of the shock’s MagimberM;, given
by u, /c; whereu; is the pre-shock velocity, measured in the shock frame.
The Rankine-Hugoniot conditions can then be manipulatexarform

P2 (Y+DME w

po 24+ (=DM (105)
2 _ _

D1 v+1

Since the sole parameter determining the magnitude of thpgunp, v andp is
My, this number is often used to express the strength of theksfarcexample
as in “a Mach 10 shock”. Note that the Mach number is alwaysrgas positive,
so one should really writd 1, = |uq|/c;.

SinceM; has to be larger than 1 for there to be a shock, one sees,that to be
supersonic, and that the density and pressure go up, ancelibhgty goes down
as the flow passes through the shock. From the relations aim@/ean also see
the maximum density ratio dfy + 1) /(v — 1) for M; — oo, and that there is no
such maximum for the pressure change. Furthermore thesposk velocityu,
is subsonic, i.e. less than the sound speed in the post-giasck

shock

Figure 6: A shock refracting the velocity vector.
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Figure 7: The relation between the observer’s and shockdsavhreference.

6.6 Refraction across shocks

The velocity component perpendicular to the shock is thewameh is reduced
across the shock front. The velocity components paralleldioock danotchange
across the shock, as can be seen from going back to Eq. 10&) vaniconstant
mass fluxpu, (Eq. 105) give thait,; = u,» andu.; = u,,. This means that
a shock in ther-direction changes the flow direction (i.e. the velocity teeg if
there arey andz components to the velocity vector. This is illustrated ig.Fa.
This is known as shock refraction, as it is reminiscent ofréfeaction of light
rays at when they travel into a medium of different density.

Shock refraction is especially important for the case ofvedrshocks. Such
shocks may have different post-shock conditions as theedbefiween the pre-
shock velocity vector and the shock surface is changing.

6.7 Frames of reference

We derived the Rankine-Hugoniot relations for the so-cadleack framei.e. the
frame of reference in which the shock does not move and wiergite-shock
material flows into the shock and the post-shock materialslout of the shock.
This gives the simplest form for the shock jump conditionewidver, one often
needs to calculate results in another reference frame xnple that of a star,

or a medium at rest into which a shock wave is travelling. Thiben called the
observer’s or lab frame. In this frame the shock may be moving

Let’s call the shock velocity in the lab framg,, the pre- and post-shock velocities
in the lab frameu| anduj, and the pre- and post-shock velocities in the shock
framew, andu,. Then obviouslyy, » = v} , — vs,. See Fig. 7.
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Since the shock jump conditions can be conveniently writtelerms of the pre-
shock Mach number in the shock framé, it is also good to realize that1, =
|uy — ven|/c1 (here we dropped the subscript 1 for the Mach number of thenaga
see Sect. 6.5).

One should also remember that in the lab frame the shock mag maany di-
rection. It could move in direction of the shocked matergald in the direction
of the unshocked material. This also means that in the labdrahe flow on
both sides of the shock may be supersonic, even though in the drerole, the
pre-shock material has to be super- and the post-shockialaeb-sonic. In this
sense shock waves are true wave phenomena: they have thewebocity v,
with which they travel.

6.8 Isothermal shocks

If there are no energy losse94,,1 = 0), the temperature in the post-shock region
will be high. Very often this higher temperature will trigg@adiative) cooling
processes in the gas and as the gas is moving away from thie sisdemperature
will drop (see Fig. 7.4 in Clarke & Carswell). If the cooling pesses are so
efficient that the temperature returns to the same valuedtiimahe pre-shock
region within a distance much smaller than any length in ftstesn, the shock is
called an isothermal shock.

Read Section 7.2 in Clarke & Carswell to learn ahout
isothermal shocks.

Isothermal shocks correspond to the case 1 in the shock jump conditions. This
means that much higher compression factors are possibbssaan isothermal
shock.

6.9 Other discontinuities/waves

Apart from shock waves there are other characteristic wenagsoccur in fluids.
The book does not look at these, even though they are quientessin some
astrophysical contexts.
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Figure 8: Collision of two flows, leading to the formation ofék discontinuities.

6.9.1 Contact discontinuities

Looking back at the Rankine-Hugoniot conditions (Eq.10%) oan see that they
allow another, seemingly trivial solution:

Uy = U =0 (107)
P = D2 (108)

andnocondition on the densities. This solution does correspomdihysical phe-
nomenon, called aontact discontinuity: a surface without pressure or velocity
differences, butvith a density jump. A contact discontinuity never forms spon-
taneously, but always originates from an initial discouitiypn Since the pressure
is the same on either side, but the density is not, contacodisuities separate
areas of different temperature and entropy. Because ofhbisdre sometimes
referred to as entropy waves.

An example of a contact discontinuity is a fast flow hittindaasflow, as schemat-
ically shown in Fig. 8. In this example the fast flow has a lowensity. The
collision leads to three discontinuities: a shock in the fesv, a shock in the
slow flow, and a contact discontinuity separating the ardashocked fast and
slow flow. The origin of the discontinuity in this case is timiial discontinuity
between the fast and slow flows.

Since there is no flow across the contact discontinuitiesethare no jump condi-
tions that can be written for them. The jumps in density amdperature can in
principle be arbitrarily high.

Contact discontinuities are found in a number of astroplaysioblems. One is
the interaction of a stellar wind with a surrounding mediuis. the stellar wind
is pushing the medium aside, there will be a region of shoskelthr wind and
a region of shocked environment. These two regions are aguhby a contact
discontinuity. A similar situation occurs when a supersgat is running into a
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Figure 9: Visualization of a computer simulations of an @gtrysical jet from
Camenzind & Krause (2001). The figures show density contoline main jet
beam is running along the x-axis (the cylindrical symmetqg @f the problem).
The contact discontinuity is mostly clearly visible in tharlg phases before the
flow becomes turbulent. It is the thick pile up of contour 8nendicating a large
jump in density. The outermost contours is the so-called-bback of the jet,
through which the surrounding medium is shocked.

medium, see Fig. 9. You will also encounter contact discwiities in the collid-
ing flows that are part of the computer lab.

6.9.2 Expansion waves

Shock waves can be said to be compression waves: matesal@apressed as it
goes through the shock. Contact discontinuities are entmapes, through which
no material travels. The third kind of wave is the so-caéiepansion wave, which
is basically the reverse of a shock wave: material streamstina high density,
low velocity and high pressure, and leaves with a low denbigh velocity and
low pressure. They are also knownrasefaction waves, as the density is lowered
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Figure 10: The impossible expansion shock.

when passing through them.

Mathematically, expansion waves could also be discorttesii However, this
would mean that in such an expansion shock internal energyoize converted
into bulk kinetic energy, or equivalently, that the entropgyuld be lowered (see
Fig. 10). This goes against the 2nd law of thermodynamics.

As a result expansion waves are not discontinuities, bubfimoansition waves,
in which bothp andp change while conserving entropy.

Expansion waves for example occur when you pull out a pistad,the gas has
to adjust to the new larger volume (Fig. 11). The head of theevimthe position
where the density starts to drop. Since it is a smooth, epttopserving wave,
the velocity of an expansion wave is always the speed of souwdf the medium
has a velocity: + c oru — c.

— |

Expansion

Piston pw

Figure 11: An example of an expansion wave.
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6.10 Summary
The most important points from this chapter are
[ ]
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7 Blast from the Past

The classical astrophysical example of the use of shocki@hys the solution

for an idealized explosion, the so-called spherical blasteyalso known as the
Sedov-Taylor problem. This solution is relevant for supemexplosions, al-

though not for the very early phases and not for the very lagses.

7.1 Supernova explosions

Supernova explosions are among the most energetic pheaamére Universe.
In a short period energies of around®® ergs (0% J) are released. Since this
amount of energy is released in a relatively short time, #ekgduminosity of a
supernova can be comparable to that of a whole galaxy.

The origin of the explosion is one of two types of stars.

e Thermonuclear supernova:these are the former cores of low to intermedi-
ate mass stardi,isi1 < 8 0r 9 My) which through nuclear fusion and mass
loss have evolved into compact white dwarfs (WD) of mas$ M, con-
sisting of carbon and oxygen. If such a WD through mass aocrétom a
companion star reaches the so-called Chandrasekhar magshdf 1t will
start to collapse and initiate carbon fusion in an explograg which will
disrupt the whole star. Observationally these supernokaelassified as
type la.

e Core collapse supernova: these are massive star®/;;i. > 8 or 9 M)
which through different stages of nuclear fusion have lugla central core
consisting of elements of the iron group. Nuclear fusiomiving elements
heavier than iron no longer produces energy, but ratbstsenergy. As the
star tries to keep a high pressure in the core to countesaotwih gravity,
initiating another stage of nuclear fusion beyond iron Veild to the grav-
itational collapse of the core. Through a serious of preee#sis collapse
is turned into an explosion in which most of the star is ejgcédthough the
core is likely to form a neutron star or black hole. Obseoradily these
supernovae are classified as type Il, Ib and Ic (dependingearnounts of
hydrogen and helium they show in their spectra).

Supernova explosions are important as they inject a largeuatrof energy in
the interstellar medium of a galaxy, and also distributesiiedements formed in
the star and in the explosion, changing the so-called nmtgl{the amount of
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elements heavier than helium) of galaxies. The feedback &csupernova may
disrupt a star forming cloud, or it may actually trigger het star formation.

A supernova explosion will trigger a shock wave which wigivel for a long time

(~ 1 million years) and over large distances 60 pc) through the interstellar
medium. This phase of the expansion of the shock wave, aesupernova itself
has faded, is called the supernova remnant. There are mpey&wa remnants
known in the Milky Way. Some from historic supernovae (sushlgcho’s and

Kepler's from supernova observed on Earth in the 16th antd téntury, and

the Crab nebula from the supernova of 1054 AD, recorded by theeGé#), and

some from much older supernova (e.g. the Veil nebula fronparsiova explosion
between 5,000 and 8,000 years ago).

Figure 12: Composite image of the SN 1006 supernova remnaithws located
about 7000 light years from Earth. Blue: X-ray data from Chanhray Obser-
vatory. Yellow: optical data from the University of Michiga 0.9 meter Curtis
Schmidt telescope at the NSFs Cerro Tololo Inter-Americasediatory (CTIO).
Orange & lightblue: optical data from the Digitized Sky SeyvRed: radio data
from the NRAOs Very Large Array and Green Bank Telescope (VLBIE

The blast wave solution that we will study, has a number dfiaggions:

e The explosion only has energy, no mass. This means in peatttat it is
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only valid for periods in which the mass pushed aside by theosion is
much larger than the mass contained in the explosion. Fareapae this
means that the solution is not valid for the initial phases.

e The explosion is spherical and the environment is homogeekhis means
that the solution will be spherically symmetric.

e The pressure of the surrounding medium is negligible coetgty the post-
shock pressure, implying a strong shock. For supernovaésthiot valid at
later times, since the shock wave will slow down over time.

e Radiative losses are unimportant. For supernovae this igaliok at later
times; as the shock wave slows down, radiative losses becwreasinly
important.

These assumptions mean a severe simplification of the prnolbet it also means
that the problem only has two input parameters: the exphtosiergyFr and the
density of the environmeny,. The fact that it has only those two input parameters
leads to an interesting behaviour of the solution, namedyiths self-similar (see
below). This solution is called the Sedov-Taylor solution.

7.2 Sedov-Taylor solution

This solution for a strong explosion was found not in the eghof astrophysics,
but rather in the context of atomic weapons research. Gaoffrgram Taylor in
Britain and Leonid Ivanovitch Sedov independently discedahe solution. Tay-
lor used his solution to derive the energy released by theAmserican atomic
bomb using only photographs of the explosion published igamaes. This num-
ber was considered classified information, so the fact trae®ne could deduce
it from some photographs caused quite some consternatitve idS.

The Sedov-Taylor solution consists of two parts. The first [gathe expression
for how the shock front grows with time:

R(t) =& (i—i) ’ : (109)

whereg, is a constant. This part is easy to derive using dimensiagahaents.
The second part of the solution describes the internal tstreiof the blast wave
in terms of its density, velocity and pressure profiles. Ithisse profiles(r),
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u(r), p(r) which are self-similar: their shape is the same at all tirapsyt from

a stretching factor (due to the expansion of the blast wand)aa amplitude or
scaling factor. So for example, if the solution would be a §&an curve, it may
widen and the peak value may change, but it would always remabaussian
curve.

Written in terms of equations, a similarity solution can bé&ten down as follows

S(rt) = Si(HS(E) (110)
¢ = rf(t,problem parameteys (111)

where¢ is a dimensionless distance parameter, Argla combination of the time

t and the problem parameters, with dimension 1/length. Thetion S(¢) is
constant in time, but the scale fact®r(¢) is time dependent and the mapping of
¢ to the proper distanceis time dependent (the solution gets stretched in case of
an expansion).

Clarke & Carswell present the solution in two ways, first in S8ct.1 with an ap-
proximate method where they rely on some ad hoc assumptmigiabal conser-
vation principles (such as that the change in the total momnemust be equal to
the force, that is the pressure times the surface). Themitesgnt the self-similar
solution, spread out over two sections, first the expressitrow the shock front
grows (Eg. 109) in Sect. 8.1.2, then the full similarity d@u in Sect. 8.3.

Read Chapter 8 in Clarke & Carswell up to Section 8.4 to
learn about the Sedov-Taylor solution.

In Eq. (8.6) the book does the transformation from the shoakné to an ob-
server’s frame we described in Sect. 6.7. The post-shockirglin the observer’s
frame (@, in the notation of Sect. 6.7) is callédin the book.

Please note a few typographic errors in the text of Clarke & \Wealts

1. Their equation (8.38) is derived using Egs. (8.27) an@5Baccording to
the text. | suspect they mean Egs. (8.31) and (8.35).

2. Similarly, their Eg. (8.39) does not follow from Egs. (8)Zand (8.25), but
rather from Eq. (8.36).

3. Thep, in Eq. (8.39) should be a.
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Figure 13: The self-similar Sedov-Taylor solution for thadt wave problem.
Red curve: density, blue curve: velocity, green curve: pnessAll curves are
normalized to the value at the shock.

The actual form and derivation of the self-similar funcgdor the density, veloc-
ity and pressure (Sect. 8.3 in Clarke & Carswell) are instvadi» have seen, but
are not exam material. Figure 13 shows the self-similartgwis for p, u, and
p for the Sedov-Taylor problem (also shown in Fig. 8.8 in thek)o The differ-
ences between the three curves are interesting. The déesitynes really low in
the centre of the blast wave and so most of the material iskowar the edge of
the structure. The pressure is approximately constaneigehtre of the structure
and increases near the edge. The ratio of the pressure asitiderplies that the
centre of the blast wave is the hottest part. The velocityraglgally increasing
from the centre outward.

7.3 Validity of the Sedov-Taylor solution for supernovae

As also pointed out in the book, the Sedov-Taylor solutionas valid for the
early stages of a supernova explosion. This can be seen fi@sotution for the
velocity which diverges for — 0. Observations show that velocities for the actual
explosion are arounti)* km s}, so as long as the velocity of the Sedov-Taylor
solution is above this, the solution is not valid. Also, tles@mption is that the
amount of matter swept aside by the supernova explosionaiheumuch more
than the mass of the actual explosidr.(..., the “ejecta”). This means that when
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the explosion takes place in a medium of dengityhat

1

Me'ec a 3

R>>(§—JJL> (112)
4w po

The ejecta are typically several solar masses for coreps#laupernovae and of
order a solar mass for a thermonuclear supernova. Usingetisty value for the
book (pp = 1072! kg m~3) and an explosion energy af** J, one finds that the
supernova remnant has to be several 1000 years old to raacotidition.

Also for the later stages the Sedov-Taylor solution is nditlva his is described
in more detail in Sects. 8.4 and 8.5 of Clarke & Carswell. Theesessentially
two reasons why the solution becomes invalid:

1. At some point the shock speed becomes of order the soured sphich
is equivalent to saying that the blast wave presgyrbecomes similar to
the outside pressuyg. This signals the transition from a shock wave to a
normal sonic wave. For the typical parameters used in thk thi®@happens
when the blast wave reaches a size-0f00 pc.

2. The shocked gas starts to lose significant amounts of ydaggto radiative
cooling. This is because radiative losses depend stromgiiyeotemperature
of the gas. As the blast wave expands, the inside temperiatees going
down. Below a temperature 06° K radiative cooling becomes much more
efficient. The Sedov-Taylor solution assumes that radiatooling can be
negelected, so once radiative losses become importantltiteos changes.
For the typical parameters used in the book this happens Wieblast
wave reaches a size ef 20 pc. The new solution gives a slower increase
of size of the blast wav& o 3.

In addition the sphericity of the blast wave is more likelybi@ak down once it
grows to larger sizes as the blast wave reaches sizes cdmw#&rahe thickness
of a galactic disk.

Read Section 8.4 and 8.5 in Clarke & Carswell to learn
about the breakdown of the Sedov-Taylor solution.

7.4 Summary

The most important points from this chapter are
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A strong explosion into a low pressure environment can beacierized
with the explosion energy and density of the environmepg.

If these two are the only parameters of the problem, thereoisypical
length or time scale in the problem, but rather one can cocisér unique
dimensionless similarity variablgt? /(por®) relating length and time.

From this similarity variable one can directly show that sheck wave will
expand ag o t5,

It is also possible to derive similarity solutions for thendiy, velocity
and pressure which have the same functional form at all tinvéh time-
dependent scaling factors for the amplitude and the rad@idinate.

The Sedov-Taylor solution is an idealized solution to thebfgm of a su-
pernova explosion. It is not valid early on (when the masmftbe ejects
dominates), and itis not valid at later times (when radetiwoling becomes
important).
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8 Behind the shower curtain

The chapter deals with simple stationary solutions for e dynamic equations
without shocks. Stationary implies that all thédt terms are zero, butot that
the gas velocityu is zero.

8.1 Bernoulli equation

The first stationary ‘solution’ we consider is the one fourcady by Daniel
Bernoulli in the 18th century. In its full form it describes aamtity in a stationary,
barotropic f = p(p)) flow that is conserved along stream lines. This quantity is

1 d
H:—u2+/—p+\11, (113)
2 p
where the terny’ dp/p should be interpreted as the indefinite integral of that func
tion. As is shown later in the book our two standard casesahé&mal and
polytropic (p < p'*=) have the following expressions

(/ @> = cg Inp (114)
P isothermal

d
( / —p> — ne, (115)
P isothermal

The book uses here instead of to allow for an EOS which has the same form
as the adiabatic one (x p”), but which does not necessarily have the value for
the exponent given by thermodynamics. An example would be@atomic gas
(which has adiabatic index = 5/3) whose temperature through some heating &
cooling process is proportional to a power of the density, B.x p'/3. The ideal
gas law f  pT) in this case gives a barotropic EQSx p*/3, which implies a
polytropic index is:» = 3. However, they for this gas is still 5/3, since the intrinsic
properties of the gas particles have not changed. So for @eathe relation
between internal energy and pressure is still giverpy= p/(y — 1) = %p.
Because of this it is prudent to separate betweend~. In the astrophysical
literature this difference is often overlooked amds used for both (a potential
source of confusion).

Note that if the gas is adiabatic so that one camusehe EOS, thaf dp/p = ph,
whereh is the specific enthalpy introduced in Chapter 4 of these notes
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Read Chapter 9 of Clarke & Carswell up to Eq. (9.10) to
learn about Bernoulli's equation.

There are many applications of Bernoulli's equation and ithes @f this chapter
refers to one which is also mentioned in the book.

8.2 Vorticity and potential flow

In deriving Bernoulli’s equation the concept of vorticity svetroduced:
w=Vxu. (116)

The vorticity is in some cases a convenient quantity to woitk wEssentially it

is a measure of how much rotation or shear a flow contains. Menvene cannot
say that a fluid only has vorticity if it rotates: a fluid in sblbody rotation does
rotate but has zero vorticity. At the same time a fluid withansverse velocity
gradient does not rotate, but does have vorticity. The wdkitdk about vorticity

is to take a cross made of two little rods and place it in thelfllfi the rod starts
to rotate (change its orientation) as it is being carriech@loy the fluid, then the
fluid at that point has vorticity. To understand this bettes irecommended to
watch the video “Vorticity, Part 1” from the MIT Fluid Mechas Films (see the
link underResour ces/Ext ra i nf or mati on in the Mondo pages).

In many Earth-based fluid problems, the fluid (air or water) tta be approx-
imated as incompressible. In that case the only equationngad to solve is

Helmholtz equation

ow

EZVX(UXW) (117)
(Eg. (9.14) in Clarke & Carswell). For this case, it can also bews that if
an inviscid fluid does not have any vorticity to begin withwitl not develop any
(known as Kelvin’s vorticity theorem). This is also true fluids with a barotropic
EOS, so for example for an adiabatic flow. This thus opens ughioconcept of
irrotational fluids which have and keep= 0. For irrotational fluids one can write
the velocity as the gradient of some potential functign(sinceV x V& = ( for
all ). Clearly solving for a potential fiel@,, is easier than solving for a vector
u. If the flow vector field can be described by such a potentiad speaks of a
potential flow
For the Earth-based problems of incompressible fluidsettsethe second condi-
tion on the velocityV - u = 0. So for an irrotational and incompressible fluid,
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one obtains the equation
Ve, =0, (118)

which is Laplace’s equation which one also encounters iardiranches of physics
such as electrostatics and gravity in vacuum. Many teclasigxist for solving
this equation.

Read the rest of Section 9.1 of Clarke & Carswell to learn
about vorticity.

8.3 The de Laval nozzle

The second stationary solution we consider is that of a fler through a pipe
of varying cross section. This is a famous example from ezgging which actu-
ally has some relevance for astrophysics. If one constaupipe which initially

becomes narrower and then widens again, it can be used taldgnaocelerate
a fluid to supersonic velocities. This device is known as tthe Eaval nozzle”
as it was developed by the Swedish engineer and inventoaCdest_aval (1845
—1913), who founded the company which is now known as AlfaalLa¥he so-

lution of stationary flow through a pipe of varying cross gattshows that the
transition to supersonic flow can only happen at the narropaat of the pipe.

1=

Read Section 9.2 of Clarke & Carswell to learn about thg de

Laval nozzle solution.

8.4 Spherical accretion and stellar winds

Perhaps unexpectedly, the idea of the de Laval nozzle thatia sansition can
only happen at a special position (the narrowest part of ifhe ip the case of the
nozzle), carries over to spherical flows around heavy bo@iess). Depending
on whether the material is falling towards the star or flonawvgay from it (i.e.
the sign of the radial velocity component), we speak of (gphf accretion or
(spherical) stellar winds. In both cases the flow can acatddo become super-
sonic, but it can only do this at a very specific point, the albed sonic point. For
a stationary stellar wind the passage through the sonid pomequired for the
material to be able to escape from the star. This impliesalstellar wind will
always become supersonic.
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The equation describing a stellar wind (outflow) or sphérazretion (inflow)
around a body of mas¥ is

dlnu  2¢2 GM
2 2 S
("= <) r 7 l _2027‘} (119)
which has a critical point at
GM
=5 (120)

Read Sections 9.3 t0 9.5 of Clarke & Carswell to learn about
spherical accretion and stellar wind solutions.

Stellar winds are common in astrophysics. Our Sun has asteéihd (of low mass
flux) which does not affect the evolution of the Sun much, bhitly does however
have important effects on the planets and comets. Once thev@lves into a red
giant, it will develop a much more substantial stellar winklieth will carry away
about about half the Sun’s mass within less than 1 millioryeMassive stars
have stellar winds of high mass flux throughout their lifes.

The two main parameters of a stellar wind are its velocityaege distances from
the star (...) and the mass loss rat@f). For a steady stellar wind the mass loss
rate is constant, and since it is the rate of material pasbnogigh every radius,
it is related to the density and velocity as

M = 47r?p(r)u(r) . (121)

For large radii, the velocity becomes constant gt so a steady stellar wind will
have a density profile which varies 8&-2.

When a stellar wind interacts with a surrounding medium, aated stellar wind
bubble is formed. As we have seen a stellar wind will have toobee super-
sonic. This means that it will not be able to react to the pres®f a surrounding
medium, and a stellar wind bubble will always contain a shac¢ke stellar wind.
If the stellar wind is powerful enough, it will also triggére formation of a shock
in the surrounding medium. There will thus be two shocksaszted by a con-
tact discontinuity. The contact discontinuity separatescked material from the
surrounding medium from shocked stellar wind material,FSgel14.

Examples of stellar wind bubbles are so-called Ring Nebufaeral massive
stars, especially around stars known as Wolf-Rayet starshwapresent a phase
of the most intense mass loss in the life of massive stars.then@xample are

65



R inner Inner Shock

contact  coNtact Discontinuity

RSWB Outer Shock

Shocked
Stellar Wind

Shocked
Environment

Figure 14: Stellar Wind Bubble. The inner white area is the unshockesblyr
expanding stellar wind (I). The hatched area is the shockekbstwind (II), the
black area is the shocked material from the surrounding omadilll). Outside of
that sits the unshocked environment (1V). There are threeoditinuities separat-
ing these four areas: an inner shocki(...,), a contact discontinuityR.), and an
outer shock Rswg)

Planetary Nebulae, which form after low to intermediate srstars have lost a
large part of their mass as a red giant and have turned intavtite dwarfs with
fast stellar winds{ 2000 km s™!). In both these cases the stellar wind is not
actually colliding with the interstellar medium, but withatiter previously lost by
the star, that is a previous stellar wind phase. Especiddigd®ary Nebulae are
known for their wide variety of shapes, most of them beingam spherical.
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8.5

Summary

The following points summarize the most essential conceyteduced in this
chapter.

For stationary flows, the Bernoulli equation gives how theowy and
pressure vary along a streamline: the Bernoulli téfms constant along
a streamline.

The vorticity is defined asv = V x u. It is a measure of the amount of
shear in flows.

In an inviscid flow, vorticity cannot be generated. Flowshaitt vorticity
are called irrotational flows and their velocity field can lesctibed by a
scalar potential field; they are therefore known as potkihbias.

The De Laval nozzle with varying cross sectignand the equation for
stationary spherical accretion or outflow from a body of mékare both

examples of cases where a flow can make a smooth transitionsub- to

supersonic flow. However, this transition has to happen peeaial location.

In the case of the nozzle, at the narrowest point, in the chaespherical

inflow/outflow at the sonic poin%’.

For these flows the conditions at the sonic point determiaestiution for
the entire problem.
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9 Numerical Gas Dynamics: Is your method Good’enuf?

9.1 Introduction

Since analytical solutions to the fluid equations are onlssgae in a few limited,
idealized cases, the development of computers during ttendehalf of the 20th
century has led to a whole new branch of fluid studies. In fégitl problems
were among the first problems to be tackled with computensr(gthe Manhattan
project for the development of the atomic bomb).

Unfortunately, the complexity of the equations also makesrt hard to solve
numerically, especially in the case of compressible flowstaiaing shocks (as
is the usual case in astrophysics). This has led to a largetyaf methods for
doing computational fluid dynamics (CFD) which all have thienitations.

In this chapter we will look at some of the basic principlesichhshould give
you an impression of what CFD is about. The intention of thegesis to il-
lustrate howphysicalprinciples come back when trying to treat fluid problems
numerically.

9.2 Eulerian versus Langrangian

As we saw when studying the basic equations of fluid dynantiese are two
ways to look at a fluid: Eulerian (where one describes the gbsim a fluid at
given points in space) and Lagrangian (where one followsetlwdution of fluid
elements). These two ways have their equivalents in nualerniethods to study
fluid problems. Eulerian methods divide space intgpid of points, and solve for
the evolution of the density, velocity and pressure at tipasets. The area around
a grid point is called a grid cell. Below we will look at such Edan methods.
Lagrangian methods define fluid elements and follow theitugiam. As it turns
out to be very difficult to follow the evolution of fluid elemtsnof a given ini-
tial volume in multiple dimensions (because of the deforomadf these volumes
due to the flow), the only successful method uses fluid-likeiglas of a given
mass, velocity and pressure and follows these particldsegsnove around. This
technique is calle®mooth Particle Hydrodynamiag SPH and is widely used
in astrophysics. In SPH the local fluid quantities (dengitgssure) are defined
by smoothing the particles with a so-called smoothing Keumection (hence the
term smoothparticles). The smoothing kernel could for example be a Gauns
The local density is determined by the number of particles given region. One
can therefore regard the method as beadgptive particles concentrate in high
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density areas and consequently these areas are well sanffdedrsely, under-
dense regions are less well sampled.

SPH is described more extensively in the book by Michael Tisom (Sec. 6.7,
see the document with additional material). SPH works walisklf-gravitating
flows (where particles tend to collapse to form smaller andlEmnstructures of
higher and higher density), but has problems with largeitieosntrasts and steep
gradients such as found in shocks. In fact, the dissipaffeets of shocks have
to be explicitly added. SPH is very popular in cosmologicalbpems, as it is
easily combined with an N-body approach for dealing withdhavity from dark
matter. The most widely used package for SPH simulationsdeasloped by
Volker Springel and is calleGADGET

9.3 Upwind and CFL condition

For reaching some understanding of the techniques usedédoEtlerian ap-
proach, we start with the advection equation for a constatucity «, in one
dimension (1D). Although relatively simple, this equatmmns many of the basic
properties of the fluid dynamical equations:

ap ap

— — =0 122

ot + u@x (122)
To solve this numerically we introduce a discretizationafsd grid and time
steps):

r; = w9+ jAx (123)
n—1

tn = to+ Y Aty (124)
n'=0

If we then specify an initial condition fop(z;) we can follow its evolution by
stepping through time with time stegst,; (which can vary between time steps).
For now we take our spatial grid to be uniform: all points Are apart. A grid is
sometimes also referred to as a mesh; these two words aréentesexthangibly.
With this discretization we can write several recipes fodifig the density at the
end of a time stepy(x;, t,+1), to be written asp;‘“) from that at the beginning
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of the time stepA;). For example

n+1 n n n

Pji  — P Pjr1 — Pj
- 4 = 7 FTF 125
At YA 5 (125)
_ —u% FTBS (126)

X
P;L+1_P?_1

= FTCS 127
Y 2Ax ( )

where FTFS stands for Forward Time, Forward Space, FTBS fawadd Time,
Backward Space, and FTCS for Forward Time, Centered Space.e Hnesll
explicit methods in which the new soluticpjl+1 can be found directly from the
old solutionp?. If the new s,olutior)o;“L1 can be found from a combination of the
old and the new solution, the method is caliegplicit. In this case one needs to
iterate in order to find the new solution.

If one tries these three approaches one finds that

1. FTES is always unstable for> 0, and sometimes stable far< 0
2. FTBS is always unstable far< 0, and sometimes stable far> 0
3. FTCS is always unstable

4. FTFS foru < 0 and FTBS foru > 0 are only stable ii\t,, < Az/|ul

Results for the advection of a square wave using these thrmdseare shown in
Fig. 15, which were taken from the bo@omputational Gasdynamity Culbert
Laney.
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Figure 114 Linear advection of a square wave approximated by FTFS. Figure 11.5  Linear advection of a square wave approximated by FTBS.
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Figure 11.6 Linear advection of a square wave approximated by FTCS.

Figure 15: Figures the behaviour of the FTFS, FTBS and FTCSidigts for
the linear advection equation. The initial condition is a&® wave, as shown in
solid line in Fig. 11.5. The little circles show the numetisalution after 25 time
steps. The advection velocity is 1. Taken fr@omputational Gasdynamidsy

Culbert Laney.
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These results imply that

1. One must take into account tdeection of the flow (a concept known as
up-wingd).

2. One must choosAt, such that one cell only has time to communicates
with its direct neighbours. This is of course related togheedof the flow:

Conclusion 2 leads to the so-called Courant-Friedrich-Le8kyL() condition

At < BT (128)

max(|a)
whereq are all the flow speeds in the problem. One often writes

Azx

max(|a])

At = nerL (129)

with ncrr, < 1, the so-called CFL number of the calculation.
For the advection equatian= u. However for the Euler equations one also needs
to take into account the sound speed, as signals with tratietine sound speed:

a = max(|u — ¢l |u + ¢)) (130)

This connects to the concept of the domain of dependencs. tbalregion of
space-time bounded by the lines- ¢, andu + ¢, can be reached by the point
under consideration (see Fig. 16)Af > Atcpr,, pointz; should physically also
affectz;,, but the methods FTBS and FTFS do not accommodate this. Hence
their unstable character in this case.

The CFL condition is only necessary for explicit methods. iRrgplicit methods
(in which the new solution is found through iterating oveseif), the solution
knows about itself through the iteration process and the step can be larger
than given by the CFL condition.

Figure 16 illustrates something else: for the Euler equatibere is not aingle
flow direction. Depending on the valueswéandc,, the flow directions may be all
positive (needing FTBS), all negative (needing FTFS), orespositive and some
negative. Clearly a rather advanced method that can deabwith multiple flow
directions is needed for the Euler equations.
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Figure 16: Characteristic directions in space-time deiimgithe domain of de-
pendence.

9.4 von Neumann stability analysis

How can we easily analyze the stability of a given method3 €an be done using
the von Neumann stability analysis (a linear stability gsisl technique). Let's
consider our advection equation with the FTFS method (Ef), Bhd writep} as
Ctexp(ikjAx), i.e. a series of sine waves. This is the same approach asrused
the linear stability analysis when studying flow instakgkt (see Chapter 11), but
here it is implemented on a discrete mesh. The idea of the vamidn method

is to evaluate the rati® = |C;*'|/|C?|. If R is larger than 1 for all cases, the
solution will go to infinity for largen, and is unstable. The von Neumann stability
analysis is thus the computational equivalent of the usnehl stabiltiy analysis.
SubstitutingC} exp(ikjAx) into Eq. 125 gives

C;H—leiijx _ C;zeiijx -\ (C:€ik(j+1)Ax . Cgeiij:c) (131)
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where we wrote\ for uAt/Azx. So

Ottt = Cp — A (Cpe*tr — ) (132)
Cm—i—l )
B = 1—A(e*A"—1) (133)
Gy
= 1+ X — Acos(kAz) — idsin(kAx) (134)
Cn+1 2
’ Ckm = (14X —Acos(kAz))* + (Asin(kAz))® (135)
k
= 1+ 2X1+ AN)(1 — cos(kAx)) (136)

which is only always smaller than 1 fan(1 + \) <0, or

uAt
1< —X 137
<< <0 (137)
meaning that: has to be negative, and the CFL condition needs to hold, gxactl

the result given in Sect. 9.3.

9.5 Conservation

Let us look at the Euler equations which for a 1D, cartesiaradioatex can be

written as
OW  OF

ot " or
whereW = (p, pu, E)T is called the state arld = (pu, pu® + p, (E + p)u)T the
flux of the fluid. A more general case also accomodatesdarce terms

8W oF
ot 8x

whereS could be external source terms (force, heating, cooling),ebr geo-
metric source terms (due to a non-intertial frame of refeegourvilinear coordi-
nates).

If one defines a cell on our mesh to run fram , to z;,1 (with the cell centre
atz;), and a time interval from,, to ¢,,..;, one can wrlte the integral form of the
equations as

tn+1 T,1 1 tnt1 Tl 1 tnt1
—dacdt + —dxdt Y Sdrdt (140)

T, 1
2

=0 (138)

(139)

1 T, 1
2

l\.’J
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Figure 17: Contour of integration in discretized space-time

where the double integral is actually a closed curve in spiace (Fig. 17).
This gives

Z .
it

tn+1
W(z,t,11) — W(x, t,)dx +/ F(r; 1,t) = F(r;_1,t)dt =
in

3’ J=

tni1 :Ej 1
/ / " Sdadt (141)
tn x.

.
i3

Note that we can define the cell averaged state and the timagadflux as

(W, 1) — Aix * W(z, t)dz (142)

. 1 t]nij

F(x,thr%) = A 5 F(x,t)dt (143)
and with these defintions we can write

(W (), ta)) = (Wlagsta) + S Bl gtany) = Bl )|
+AH(S(25,1,,1)) (144)
which holdexactly

ForS = 0 this form is known as theonservative fornsince in this form the con-
served quantitieSV only change because they receive or give to their neighbours
The spatially integrated values remain constant. See Bdofan illustrative
sketch. The effect of the presence of a source term can ls&rdted as in Fig. 19.
The conservative form does provide us with a useful generaidla for describ-

ing a numerical method

F""

j—

n+1l __ n

a

NI o=

n+i n
~F ) + ALST (145)
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Figure 18: lllustration of the principle of conservative timads.

l—a
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Figure 19: lllustration of the principle of conservativetimads with a source term
added.

Ignoring S for now, this formula suggests that our task in designing memical

1

hydrodynamics method is about finding a good recipeFfjo_?f . Note that this
2
flux in the conservative form is a time-averaged flux

. 1 tn

Flogy) = 37 ) Flogy 0 (146)
F(z;,1,t,,1) + O(AL) (147)
F(z;,1,t) + O(At) (148)

So the more accurate results would be found for a flux valua fhee intermediate
time.
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Conservative methods are useful because they automatemailserve the con-
served quantities, and the conservative form is also valghacks (as we saw
when we derived the Rankine-Hugoniot conditions). Sincekbare discontinu-
ities, they are in fact a big challenge for many numericalhods.

9.6 Lax-Wendroff method

We now look at one of the earlier methods developed for CFD.fabethat we

needF(ijr%, n+%) = Fﬁf suggests the following simple, two step approxima-
2

tion

: n+3 1 n n At n n
n—&-% o n At n+% n—&-%
2.Corrector W% = Wi+ = (F777 —F77) (150)

whereF} = F(W?). This method is known as the Lax-Wendroff method, or
sometimes as the Richtmeyer method. It works well for smootkdf] but similar
to many other early methods gives oscillations near shoeiscantact disconti-
nuities. To avoid these the conceptasfificial viscositywas developed. Artificial
viscosity for the Lax-Wendroff method consists of replacstep 2 by
g B (F”*é _ F"*é) +e (W, —2W" + W™ ) (151)
J I Az i3 i+s j+1 j j—1

where the last term is the artificial viscosity term. It isledlartificial viscosity
because its form is identical to that of a real diffusion @ocasity, but its coeffi-
ciente is chosen purely for numerical reasons. An example of thispeance of
the Lax-Wendrof method is shown for a shock tube test probteRigs. 20 and
21 (taken from the book of Lané&y)

Although methods with artificial viscosity gave reasonalelgults, many felt un-
comfortable with the introducing an arbitrary, tunable amghysical coefficient
e. Note also that the above method ignores the lesson we tkémm the ad-
vection equation: we should take into account the direatifotine flow, or rather
(in case of the Euler equations), the sound waves. Methdaditheake this into
account are calledpwind methods

W

4The shock tube problem is the first problem in the computentalnitial condition consists of
two adjacent states one of high pressure and one of low peesBliese develop into an expansion
wave going left and a shock wave going right; in between liesrgact discontinuity.
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Figure 18.4 The Richtmyer method for Test Case 1.

Figure 20: Results of the standard shock tube test for the\Waneroff (or Richt-
meyer) method. The boxes show the pressure, velocity aretisgfesound. The
solid lines are the analytical solution, the circles shoe ¥alues found by the
numerical method. Fror@omputational Gasdynamidyy Culbert Laney.
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Figure 21: Results of the standard shock tube test for the\Waneroff (or Richt-
meyer) method. The boxes show the density, entropy and Mactber. From
Computational Gasdynamity Culbert Laney.
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Figure 22: The Riemann problem.

X

Figure 23: Dividing a mesh into Riemann problems.

9.7 Riemann solvers

A particular class of upwind methods are so-cafReemann solveror Reconstruction-
Evolution methods. This approach, first suggested by S&gdunov, uses the
idea that one can consider the discretized distributiorhemtesh as a series of
discontinuities. The initial value problem for any disdonity is known as the
Riemann problem,

. Wi |ffL‘<I0

(see Fig. 22) and has known analytical solutions for the iEedgiation. If the
CFL condition holds, each interface between two cells carobeidered to be an
isolated Riemann problem (Fig. 23). From the solution of thenfRinn problem
one finds directly how much mass, momentum and energy flowsaicell from
the interface under consideration:
1
F72 = F(Whiomann (2741t 1) (153)

it3

5The question whether your method is Godunov was the ingmirédr the title of this chapter
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Figure 18.20 Godunov’s first-order upwind method for Test Case 1.

Figure 24: Results of the standard shock tube test for the @mndomethod. The
boxes show the pressure, velocity and speed of sound. Emmputational Gas-
dynamicsy Culbert Laney.
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Figure 25: Results of the standard shock tube test for the @mdomethod. The
boxes show the density, entropy and Mach number. Reamputational Gasdy-
namicsby Culbert Laney.
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This idea was formulated by Godunov in the 1950s, but was dogpeitationally
expensive to implement. In the 1980s computers becamerfasgé, and also a
series of simpleapproximate Riemann solvensas found. These find an approx-
imate solution to the Riemann problem, good enough to obtztarate fluxes
(which is the only thing needed). The most popular approtefaemann solver,

is theRoe solveft. A version of the Riemann method popular in astrophysics is
known asPPM (piecewise parabolic method, Colella & Woodward 1984).

An example of the performance of a Riemann solver (Godungwignd method)

is shown in Figs. 24 and 25, taken from the book by Laney. Itfopmance for
this test problem is clearly much better than that of the Weadrof method.

9.8 Multiple dimensions

Up to this point we have only considered 1D methods. How abmulti-dimensional
methods? In fact, truly multiple dimensional methods are.raVhat is most
widely used is the technique of operator splitting (or mgpecsfically dimen-
sional splitting).
Suppose that the initial value problem to be solved is

of

5 = Lf (154)

with £ some operator that can be written as

L=1L1+Lo+Ls++ Lo (155)

Then the solution can be found by taking steps

frtm = Up(f", At) (156)
e = Uy(f™m, At (157)
frtm = Ug(f™m, At) (158)
etc... (159)

whereUy, is the solution fol0 f /0t = Ly f.
Since the two-dimensional fluid equations can be written as

oW OF  0G _
ot or Oy

5This solver is the one used in the computer programme fromdheuter lab.

0 (160)
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we can use the operator splitting approach by first solvinghfe changes in the
x direction, and then using that solution to solve for the ¢jegnin they direc-
tion. To avoid systematic effects, the order between theges £an be alternated
between time steps. Increased accuracy can be achievekihy teactional time
steps. For two operators:

5 = U, AL)2) (161)
5 = Uy(f™+5, At) (162)
U = U (R AL/2) (163)

This procedure is sometimes knownStsang splitting

9.9 Public codes

A number of public hydrodynamics codes exist to allow sirtiates without the
need of writing the code yourself. Well known examples ar&JBEFLASH,
NIRVANA and the PENCIL code using grid-based (Eulerian) noetthand GAD-
GET for SPH. However, the nature of the numerical solversilisssich that one
should be cautious when using them as so-called black begpscially for types
of problems for which they have not been used before.

9.10 Summary

The following concepts and ideas are the most essentialfooreghis chapter.

e Numerical methods for the fluid equations can be Euleriamgugrids, or
Lagrangian, using particles (SPH).

e The time step for explicit methods is limited by the CFL coiwtit Eq. 129.

o Numerical methods should take into account the directiothefflow of
information in the fluid (the so-called upwind condition).

e The stability of numerical algorithms can be tested with i@umann sta-
bility analysis, the discrete equivalent of the usual ditgbanalysis tech-
nique.

e Since the fluid equations are essentially conservationtemsa it is im-
portant that numerical methods keep conserved quantitesecved. If
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numerical algorithms can be formulated using fluxes (Eq.) 1dtey are
conservative.

¢ Non-upwind methods need an explicit artificial viscosityneo keep them
stable.

e An example of an upwind method is the concept of Riemann selirer
which the interface between cells is considered to be a Riempeoblem.
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10 Transport phenomena: the Honey Trap

10.1 Deviations from Maxwell-Boltzmann

When deriving the Euler equations in Chapter 2 we assumedhéalistribution
function can locally be described as the equilibrium Maxvaltzmann distri-
bution functionfyg. However, this is of course a simplification. Even if we have
two regions where this locally true, once exposed to eaatrotbllisions between
particles that belong to the two differefiig distributions will push the evolution
of the combined system towards a new equilibrifig.

The interaction of particles belonging to different distrion functions gives rise
to so-calledtransport phenomena As the Maxwell-Boltzmann distribution is
characterized by the gas velocilyand temperatur&’ we can expect the addi-
tional terms associated with these transport phenomeravtb do with spatial
differences inu andT'.

10.2 Chapman-Enskog expansion

We return to the Boltzmann equation, describing the evatuitthe distribution
function of particles in phase space,

of |, 0f 0 _

ot ox | ov
To proceed further we use the so-called Chapman-Enskog sxyparin this ex-
pansion we write the non-equilibrium distribution functig as a series of devia-
tions from the equilibrium Maxwell-Boltzmann distributi¢fi®) = fyms):

C, (164)

F=f04af®pa2f@ ... (165)

wherea is a measure of the role of collisions: = A\/L (\ being the mean free
path between collisions and the typical size of our system). For a collisional
fluid L > X\ and then’s are small numbers.

Since thea’s are small, a first approximation is to write ~ f© + af1) =
O + g, where we substituted for o f(). Putting this back into the Boltzmann
equation, and only keeping the first order terms gives

(0) (0) (0)
of -l—v-af +a of =

5 i el G VAR (166)
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whereC M (£ ¢) describes the collisions between particles from the duyitiiin
distribution (®) and non-equilibrium distributiop.
One can argue that an order of magnitude estimate for thesioollterm C'(™
should be

CY x vgong ~ Urelg _ 9 (167)

A T
wherer is the typical time between collisions ang, is the typical relative veloc-
ity between colliding particles. This argument suggestBIBK approximation
(Bhatnagar, Gross & Krook):
of© af© af© g f—fO

. —_— - 168
o TV xR oy ; _— (168)

which implies that the non-equilibrium distribution furant f relaxes exponen-
tially to the equilibrium valuef®) with a characteristic time.

Since f(¥) is a Maxwell-Boltzmann distribution, it only depends onu andT’,
which all only depend on timeand positionk. So we can write that

8f(0)_8_n8f(0> 8_Taf(0) a_u of©
ot 0t on ot oT ot  ou ’

and similar expressions féxrf© /0x;.
Putting fyus into Eq. (169) and the equivalent expressions for the dpdeidva-
tive, and then substituting these into Eq. (168), gives gumession fory

10T m 5, 9 m 1
= 7| ==w, | ——w? == A Wi — =2 ©) (17
q T [Taxlwz (2kBTw 2) + kBT i (wzw] 3(5sz >:| f ( O)
wherew = v — u, the random velocities of the particles, as before. The term
1 /0u; Ou;
ANy == : J 171

is a matrix giving the shear (velocity gradients perpenidicto the velocity direc-
tions) in the macroscopic velocity field.

(169)

10.3 Macroscopic quantities

We can now derive macroscopic quantities from this first oaggroximation for
the distribution functionf = f© + ¢. Many terms remain the same as before
(when f was f(©)) because integrals over terms that are odd;igive zero. This

is to be expected since the new terms should come &iffierencesn the flow.
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10.3.1 Heat conduction

We defined the heat flux as )
2

q=5p(ww) (172)

which was zero forf = (). Forg the 9T /0z;w; terms result in an integral over
w?, an even term im;. Evaluating

qzﬁ dwww?g 173)
2n
gives
q = —KVT (174)
_ af_m 2 5 o) _ 2 kl%_T 17
= or ) Vv (2/<;BTw Q)f — 2" (17%)

This is the transport of internal energy due to the exista@i@temperature gra-
dient: Heat conduction or thermal conduction. Clarke & Carswell treated this in
Sect. 4.4.2 as a process for energy transport. Here we daeithia fact a trans-
port phenomenon due to deviations from the Maxwell-Boltzmdistribution.
Heat conduction will strive to diminish temperature graée and as quite strong
temperature gradients can occur in astrophysical systi@snost extreme ones
associated with contact discontinuities, it is potengiath important effect. How-
ever, as also mentioned in Sect. 4.4.2 of the book, the rofeaf conduction in
astrophysics is normally assumed to be quite marginal. &asan for this is that
the presence of even a weak magnetic field and some chargedigsawill reduce
the time between collisions to such an extent that becomes very small. The
cause of this is that charged particles cannot move fredlyampresent of a mag-
netic field and will spiral around the field lines. Therefoneit mean free path
will be very limited.

10.3.2 Viscosity

In Chapter 2 we defined a tensBy; = p{w,w;) (EQ. 35). Forf = f© = fyg
we showed this tensor to be diagonal, and the diagonal eksrmt®be associated
with the gas pressure?; = pd;;. For f = £ + g, the A;; velocity shear term
in g adds non-zero off-diagonal terms, so we can whe= pj;; + o;; whereo;;
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contains all the off-diagonal terms. Working out the insdgives

ol = m/dwwiwjg (176)
_ Ty /dw w, _ L) o (177)
= knT Kl w;w; | wrw; 3 KW )

where the suffix notation is implied for the indicesind.

This ¢’ tensor is traceless (this means it has zeros on the diaggnat:0) and it
is symmetriCpgj = a}i, and proportional ta\,;. However,A; doeshave diagonal
terms since\,, = V - u, and so not necessarily zero. So to writen terms ofA
we need to subtract the divergence of the velocity:

1

where the second term between the brackets makes suredhatahexpression
is traceless.

The coefficienty must follow from the evaluation of the integral (Eq. 177) fo
example foro],

™m? 1
oy = _kB_TAkl/dWlUﬂUQ (wkwl — gékle) fO (179)
2
= —2ﬂA12/dww3w§f(0) (180)
kgT

since the integral is only non-zero whérand!/ are a combination of 1 and 2.
From this we find

Tm2

=T dww?w? fO = rnkgT (181)

n
The tensoro;; has to do with non-diagonal terms 4f;, so velocity variations
perpendicular to the velocity direction, an effect knowrslhsar The property of
fluids associated with this is known siscosity, ando;; is known as theviscous
stress tensqrandn is the viscosity coefficient. Interestingly, the above daion
shows that since = \/(v),

. 1 kaT
= 4a? T

(182)

89



independent of the density of the gas! This seems countgitive (many would
say that “denser fluids are more viscous”) but is in fact cardl by experiments.
The reason is that although a denser gas has more partidiemsport physical
guantities, the mean free path of these particles is shanerthey are thus less
efficient tranporters. Of course this independence of timsitieis only valid for
dilute gases, since we derived our equations under the assumof a dilute gas.
One also sees that < /T, which is understandable since with higher particle
velocity, physical quantities should be transported ferthNote that this tem-
perature dependence only holds for gases. As you probably klom personal
experience, in liquids the viscosity actually goes dowrhwémperature.

10.4 Navier-Stokes equations

These new effects, conduction and viscosity now have to bedtb the fluid
equations. The continuity equation does not change. Theentum equation
now has a more complicated tengymamelyP;; = —pd;; + o;; and after some
re-arranging can be written as

Jdpu 9 1

W—FV-(pu@u) =—-V-P+pa=—-Vp+n |Vu+ §V(V -u)|+pa (183)
Note that for some special fluids, there is also a so-cdliékl viscosity( which
is associated with & - u term:

Jpu 9 1

W#—V-(pu@u} =—-Vp+n|Vu-+ §V(V ‘u)| +¢(V(V-u)+pa (184)
This bulk viscosity is associated with diagonal elementstifi@ viscous stress
tensoro’, which do not follow from the ideal, monatomic gas-type aygwh we
used to derive’. The bulk viscosity is associated with internal degreesaddom
of the particles in a non-ideal gas, which can be excited eexa#ed through
volume changes. It is generally unimportant in astroplatspplications.
The energy equation becomes

oF

E%—V-(E%—E)U—V-(KVT):pu-a (185)

which by taking thepé;; part out of ;; can be written as

aa_?_i_v.(E+p)u+V-(g/u)—V-(KVT):pu-a (186)
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TheV - (K'VT) term only acts on the internal energg, but the complicated
V - (¢’u) term (remember that' is a tensor) has contributions both to the kinetic
and the internal energy. Manipulation of the equations shthvat theviscous
heating terms given by

1

and is an energy loss for kinetic energy, and an energy gathéanternal energy.
This shows that viscosity is an irreversible, dissipativecpss through which
kinematic energy is turned into internal energy. It is of'esmall term in the
equations.

The new set of equations for, u and E' is called the set of th&lavier-Stokes
Equations. They are similar to the Euler equations but contain extranseof
higher spatial derivatives of the velocity and the temperatureis Tilakes them
harder to solve, but also introduces the necessity for mouadary conditions.

10.5 Viscosity

Considering deviations from a local Maxwell-Boltzmann eguatgives rise to
the viscous terms in the momentum and energy equationsoaftgds often not
very important in astrophysics, and hence it is neglectadCHapter 12 we will
consider the only case where viscosity is essential in plsygics, namely in ac-
cretion discs. But as we will see even there itis not the “mabat (mircroscopic)
viscosity from Eqg. 182 which is important, but rather thecesity is used to de-
scribe small scale but macroscopic dissipative processbe idisc.

For many Earth-based applications viscosstymportant. The reason for this is
that we often have to deal with fluids interacting with somigddmody. For exam-
ple the flow around the wing of an airplane, or the flow of a ga&oid through
a pipe. Viscous shear will work to reduce the velocity deiece between surface
and the flow, so viscosity works like a kind of frictional fexcThe result is the
formation of a “boundary layer”. In Section 11.5 Clarke & Caedivealculate the
viscous stationary flow through a circular pipe and show tinatvelocity profile
is parabolic with zero velocity at the edge of the pipe andhigiest velocity in
the middle of the pipe (a solution known as the Coette flow).hdlit viscosity
the flow velocity would be constant across the a cross seofitime pipe, but the
viscous forces will “brake” the flow near the edge of the pipélieventually it
becomes zero there. So, although viscosity is not very itapom “free flow”, it
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becomes important once your gas flows around a solid body bodradary layer

is created.

The viscous terms in the Navier-Stokes equations containigtosity parameter

1. As we have seen abovegdepends on the temperature of the gas, so in principle
it can vary in a fluid. However, for many applications thesgatens are quite
small and the coefficient is assumed to be constant, so tleanibe taken out

of the differentials. When considering the equation for telwgity u rather than

the momentum densityu, a factorn/p appears. This is often written asand is
called the kinematic viscosity.

Read Sections 11.1 and 11.2 in Clarke & Carswell to learn
about viscosity and Navier-Stokes equations.

In Chapter 8 we defined the vorticity of a flow (Eq. 116) and shbeat for a
barotropic fluid one can write the time evolution of the vt with the Helmholtz
equation (Eq. (9.14) in Clarke & Carswell). If we now consides effect of vis-
cosity, the Helmholtz equation becomes

%—Y:Vx (u x w) + vVw, (188)
with an extra ternvV2w. This extra term invalidates Kelvin's vorticity’s theorem
a viscous fluid can create vorticity from nothing, and vatyican also disappear
from a viscous fluid. Only when = 0 is vorticity conserved.
The above example of the formation of a boundary layer is tepeexample of
this creation of vorticity. The viscous forces set up a sfflearalong the boundary
of a solid object (pipe, wing, etc.) even if it was not therédpe; and a shear flow
has vorticity.

Read Section 11.3 in Clarke & Carswell to learn about yor-
ticity and viscosity.

10.6 Reynolds number

When considering the equations for the evolution of the eibytione can derive
an interesting scaling relation.
We introduce scaling factors for the lengthand velocityl” such that

Vv

x=xL u=uV, t= t’é, w = W/Z : (189)
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This makesx’, u’ andw’ dimensionless numbers. We then substitute these rela-
tions into Eq. 188 to get a dimensionless version of that tgua

! 1
%‘Z = VX (0 X W) + VW (190)
whereV’ = LV, the scaled version of the spatial differentation and
RV s

the so-called Reynolds number. This is a dimensionless nuwiieh expresses
the importance of viscosity.

In the inviscid caser = 0 so thatl/R = 0. Then Eq. 190 does not contain
any scale; it is completely scale free. This means that favengflow pattern,
for example the flow around a sphere, if the velocity is inseshby a certain
factor, the flow pattern will not change (obviously this ohlglds as long as the
flow velocity remains subsonic). Also, the flow around a splikat is twice the
size, will look identical to the flow around the original spéeThere is no typical
length or velocity scale in the problem.

However, if there is viscosity, this is no longer true sinlce term1/R appears.
It is inversely proportional td.VV so now the flow does depend on the size and
velocity scales; the flow pattern around a two spheres, omadifis R, and one
of radius R; = Ry/2 will not be indentical if the flow has the same velocity.
However, if for two flows around a geometrically similar oftjghe Reynolds
number is identical, the flow pattern will be identical. Se flow pattern around
the two spherewill be identical if the flow velocity around sphekg is twice that
aroundR, (assuming the fluids have the same viscosity).

The other application of the Reynolds number is to estimaedtevance of vis-
cosity. For high Reynolds numbers the viscosity terms ardl smd do not play a
major role in the solution of the flow equations. For small Re#gia numbers the
viscosity terms dominate. So low Reynolds number flows arg wiscous flows.
We can estimate a typical Reynolds number for astrophysyséémis. The kine-
matic viscosityr = n/p, wheren is the viscosity of the gas, andits density.
Typical values fory of gasses ar@ ~ 10~* g cm! s, For length scales of
1 parsec, velocity scales of 1 km'sand number densities of orded? cm—3 we
obtain thatR ~ 10°. This is the reason why viscosity is almost never important
in astrophysical problems: the typical Reynolds numbergxziremely high.

The Reynolds number also plays a role when studying turbelefs we will see
in the next chapter, the relative scale of the energy diisipan turbulent media
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scales withl /R. This means that only high Reynolds number flows can become
fully turbulent. In practice the development of turbulemeguiresk > 3000.

10.7 Summary

The most important points from this chapter are

e Deviations from the Maxwell-Boltzmann distribution giveeito transport
phenomena

— Heat conduction, due to the transport of internal energytduandom
motions. This term is proportional to the temperature gradi

— Viscosity, due to shear flows (velocity gradients perpemdicto the
velocity direction), this term is proportional to the grewti of the ve-
locity divergence.

e Heat conduction in astrophysical flows is often inhibite@ doa weak and
tangled magnetic field.

e Viscosity is mostly unimportant in astrophysical flows da¢tte absence of
strong shear flows (as for example around solid objects).

e The importance of viscosity is expressed by the Reynolds egib= %
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11 The Big Mess

In earlier chapters we have considered stationary sokitiothe flow equations.
However, stationary solutions are only interesting if tlaeg stable. So, in prin-
ciple one should always investigate the stability of a gistationary solution. If
it turns out to be unstable, it will not be a flow solution thali wccur in nature

since any small disturbances will quickly destroy the flowtgra. Unstable flows
will very often evolve into turbulent flows and thus have vdifferent behaviour
from what may have been intended.

11.1 Instabilities

The presence of an instability means that a given situatroooafiguration is
very sensitive to small perturbations. If you perturb thafguration by a small
amount and it does not return to its original state, but ebteeeps moving away
from it, the configuration is said to be unstable.

This suggests that the way to analyze the stability of a sy&do calculate its re-
sponse to a small perturbation. This is essentially sinhdlavhat we did when we
derived the equation for sound waves. One imposes a smalljagion and tracks
what happens to it. If the pertubation grows, one has foundsdability. If it does
not grow, the system is stable. In the case we investigatesbid waves (a fluid
of constant density and pressure at rest) we found that taidessince the sound
waves represent small oscillating variations around theliegum solution.
Since one can start with very small perturbations, one cathidanalysis in the
linear regime, which means that you neglect all the termisciwatain products of
perturbed quantities.

As one can describe any function with a Fourier series, il9e austomary to
parametrize the perturbations using Fourier components

exp [i(k - x — wt)] . (192)

By substituting this in the linearized equations, one can énédlation between
k andw, the dispersion relation. From this dispersion relation one can find if a
given state is unstable, and one can even find which wave ngrdesthe fastest.

11.2 Linear stability analysis

The procedure of linear stability analysis is as follows
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1. Write down the equations in terms of the background sailutibich stabil-
ity you want to test plus a perturbation.

2. Linearize the equations so that only terms linear in thiupeed quantities
remain.

3. Insert the Fourier term for the perturbation and finds éiation betweern:
andw. This is called the dispersion relation.

4. Check whether for redl there are any imaginary solutions for If there
are, the solution is unstable since the Fourier term cositatp(—iwt)
which becomesxp(|w|t) forimaginaryw, an exponentially increasing term.

This is the short version, also described in Sect. 6.3 in @l&ICarswell.

11.3 Instabilities in stratified fluids

The most well known gasdynamic instabilities are assodiati¢h stratified flu-
ids, that is touching fluids of different densities. The twaidk are assumed to
be in pressure equilibrium, so the interface between theattigally a contact
discontinuity (see Section 6.9.1).

The two standard cases are

1. Classical Rayleigh-Taylor instability: a heavy fluid on twfa lighter fluid
in a gravitational field.

2. Kelvin-Helmholtz instability: two fluids which are slialy past each other
with different velocities. No gravity is needed.

There exist other important instabilities which we will monsider here. Some are
described in some detail Clarke & Carswell (convection, Jeestability, thermal
instability)

Since both the Rayleigh-Taylor and the Kelvin-Helmholtzafslity concern strat-
ified fluids one can actually derive a dispersion relationolhis valid for both of
them.

Read Section 10.1.2 in Clarke & Carswell up to the deriva-
tion of Eq. (10.33), the dispersion relation for stratifiad f
ids.
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11.4 Rayleigh—Taylor instability

The true Rayleigh—Taylor instability concerns a heavierdflkgsting on top of

a lighter fluid. Intuitively one can understand that this mswanstable situation.
The reverse situation, with the lighter fluid on top shouldskeble. Use of the
dispersion relation for stratified fluids shows that our it is right. If the
lightest fluid is on topg’ < p) the dispersion relation has only wave-like solutions,
oscillating around the equilibrium solution. These waves lenown as surface
gravity waves. They differ from sound waves as the wave spéadsurface
gravity waves of different wave lengths are different; theeves with the longest
wavelengths travel the fastest.

Read the section on Surface gravity waves in in Clarke &
Carswell (page 137).

If the heavier fluid is on topA > p), the dispersion relation has imaginary so-
lutions forw whenk is real, which means that the flow is unstable. Since in this
casev x 'k, the smallest wave length perturbations are the ones whish e
fastest.

It is rather rare that one ends up with a heavier fluid on toplwjtder one in the
gravitational field of a star or a planet. However, this ibgity also applies for
flows in which there is aeffectivegravity, that is in accelerating flows. These
are much more common. Considering the direction of the effegravity in an
accelerating flow, one can see that a decelerating dendérakielling into a lower
density medium (as is the case in the Sedov-Taylor solutiothe expansion of
a supernova explosion), is equivalent to a denser fluichgitn top of a lighter
fluid; this configuration is unstable. As can be seen fromitieges of supernova
remnants, the shells do look rather filamentary, indicativan instability.

Read the section on Static stratified fluid under gravity in
Clarke & Carswell (page 137 & 138).

11.5 Kelvin—Helmholtz instability

If the two fluids are stable in the sense thak p, but flow past each other with

a relative velocityU — U’, the dispersion relation shows that the flow will be
unstable for some values bf This is known as the Kelvin—Helmholtz instability.

Also here the most unstable wave lengths are the smallest ddewever, for
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the Kelvin—Helmholtz instability above some wave lengté waves are actually
stable.

The most familiar case of a Kelvin—Helmholtz instabilityeathe condensation
trails behind airplanes. One can actually see how the iilisyatbevelops along
the trails. Also in astrophysics the Kelvin—Helmholtz adsitity is quite common.
An example can be seen in Fig. 9 in Chapter 6 of these notes.orttaat discon-
tinuity in the backflow region of the jet initially is quitegalar but becomes more
and more unstable.

Read the section on Kelvin—Helmholtz instability in Clarke
& Carswell (page 138).

The linear stability analysis above only tells you that theagion is unstable and
gives an indication on which modes are the ones which staitgtability. How-
ever, as soon as the instability starts to really develaplitiear description brakes
down. It for example becomes possible for one instabilityrigger another, as
the heavier fluid starts sliding into the lighter fluid duehe Rayleigh—Taylor in-
stability, the velocity difference induced by the instékimay trigger the Kelvin—
Helmholtz instability. Unstable flows can become very camand often develop
into turbulent flows.

11.6 Turbulence

Instabilities and perturbations may ultimately lead toaesof random density,
velocity and pressure variations, known as turbulencebdiance is important in
astrophysics and earth-based applications, but turnsodag £xtremely difficult
to describe. In fact, no general theory for turbulence yeitex

Since we are talking about random variations, a theory diufence has to be
statistical. In some sense one can argue that one has tourestother layer of
statistics on top of the microscopic picture of a fluid cotsgsof particles

v=wt+u=w+u+u (193)

wherev are the particle velocitiesy are the random velocities of the particles,
u the gas velocity (mean velocity of the particleg)the average gas velocity in
the turbulent flow andi’ the turbulent velocities. Since by constructiah= 0,
analysis of turbulence is about higher order tenms (just as it was aboui?

in the statistical treatment of particle velocities). Asasis of thew? term led
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I

N-viscosity

Figure 26: Sketch of a hierarchy of turbulent eddies next nooael calculation
of two-dimensional turbulence (Held, I. M., R. T. Pierrehwertb S. T. Garner,
and K. L. Swanson, 1995: Surface quasi-geostrophic dyreandmurnal of Fluid
Mechanics, 282, 1).

to the pressure or internal energy of the gas, also turbalstuies focus on the
turbulent energy, represented oy’
Unlike the random particle velocities, turbulence has #eseaeaning that turbu-
lent flows have structure. The image often used is that oltart ‘eddies’. An
eddy is swirly or vortex-like flow pattern. Turbulence sedameonsist of a hierar-
chy of bigger eddies containing smaller eddies, that agamsist of even smaller
eddies, down to the small scales where dissipative proseggeear. This image
led to theKolmogorovpicture of the distribution of turbulent energy over length
scales

E(k) = C&/3k=/3 (194)

wheree in the energy input rate per unit mass, a@n the Fourier wavelength,
27t /1, with [ the length scale. This relation was derived by Andrey Kolorog
in 1941 from heuristic and dimensional arguments, but r&atdy enough seems
to give a fairly accurate description of the energy spectoirfully developed
turbulence.

The dissipation process that removes the turbulent eneogy the flow in the
smallest eddies are viscous processes. One can thereétieeuReynolds num-
ber to analyze a turbulent flow. As we defined before (Sec6)1fie Reynolds
numberR for a system of siz€., velocity IV and kinematic viscosity is given
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by

R = % (195)
Dissipative processes dominate for length and velocitiesaghereR ~ 1. For a
turbulent hierarchy of eddies this means tRawill be large for the largest eddies
(LV/v > 1if L andV are the size and velocity of the large scale flow), and
smaller and smaller for the smaller eddies. At some lengtiiegg one reaches
the condition/,u,/v ~ 1 and the turbulent energy is dissipated through viscous
processes.
To connect the largest scales to the dissipation scales we tbaconsider the
energy cascade from largest to smallest scales. Sinceyecangot pile up at a
given length scale, there has the be a steady energy ratesealas. If the energy
is fed in at the largest scalésandV at a rate per unit masgSl! units J s* kg—1),
then a steady flow of energies from large to small scalesregjthat at every scale
[ (where the typical velocity is)

€~ u’/l (196)

(from dimensional arguments). This implies that- (¢[)'/3. At the scale of the
system (., V) this should also hold, defining the input energy rate persnuizst
ase ~ V3/L. At the dissipation scall we haveluy ~ v, and sdy ~ v3/4¢=1/4
andug ~ (ve)'/4. This then implies that

L
o~ R4 (197)
W

o R4 (198)

WhereR is the Reynolds number at the largest scale of the turbulestelsy
(LV/v). So given the Reynolds number of the system the dissipati&le and ve-
locity can be found. For example a system of large scale Rdgmaimber 10,000
and sizeL and turbulent velocity” will have smallest eddies of size/10% and
typical velocityV/10.

To get the energy spectrufii(k), one should realize that that~ [~!. At scalek
the energy is given by

E(k)dk ~ E(k)k ~ u® ~ (el)?/® ~ (¢/Ek)*/? (199)

which then gives the Kolmogorov energy spectrum, Eq. 194 €am also derive
this from dimensional analysis assuming thdt) only depends ok ande. Ob-
viously, the spectrum will be cut off at smdll(large/) because of the size of the
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system () and at highk (small/) because the dissipation scale is reachigil (
Experiments for many different systems show the Kolmogoetation to be valid
and surprisingly universal.

Figure 27: The Kolmogorov energy spectrum for turbulendee AT's correspond-
ing to the size of the system and the dissipation scale aleddal andk, respec-
tively.

SinceR is large for most astrophysical systems, turbulence ociracpiently.
Some examples are

turbulent convection in stars

turbulence in molecular clouds

turbulent boundary layers around jets

atmospheric turbulence causing astronomical seeing

11.7 Summary

The most important points from this chapter are

e The stability of a stationary flow pattern can be analyzedgibnear pertur-
bation analysis. The key result of such an analysis is thpedsson relation
between the wave numbgrand the frequency. If real £’s can give imag-
inary ws, the flow is unstable.
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e The Rayleigh-Taylor instability occurs when a heavier flutd en top of a
lighter fluid in a gravitational field or in an deceleratingvilo

e The Kelvin-Helmholtz instability occurs when a two fluidpseated by the
contact discontuinity slide over each other.

e Turbulent flows occur in high Reynold number flows and thus erguent
in astrophysical settings. The turbulent energy is typhyadilstributed over
the length scales in the flow according to the Kolmogorov spet
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12 Accretion Disks

Gravity is the dominant force in astrophysics. When a heawylsuch as a
star or a black hole starts collecting gaseous material fteranvironment, we
call this process accretion. Usually the accreting mdtedatains some angular
momentum, which will cause the accreting material to starbtate around the
accretor. Conservation of angular momentum means that tagoo velocity will
be higher the closer the material gets to the accretor. Ttagimg material will
thus collect in a disc-like form around the accretor.

Examples of such accretion discs are

e discs around protostars (so-called protoplanetary diseghich planets are
thought to form).

e discs around neutron stars or black holes in binary systeimesd& objects
are known as x-ray binaries, as the discs produce copiousr@sof x-rays.

e discs around supermassive black holes in the centres aofigalalf the
discs are massive enough, the system is called an Activect&alucleus
(AGN).

Gas falls in and settles in a plane defined by the mean angualisremtum vector
of the gas supply, since shocks and dissipation will dampetioms in the other
directions. This will happen on a free fall timg; = (Gp)‘%, usually quite a
short time.

Once settled in a rotating discs, the gas will orbit the abj@ad not fall in, being
kept in place by the centrifugal force. The velocities in thsc will thus fol-
low from this balance between gravitational pull and céngal force, just as the
velocities of the planets orbiting a star

Angular velocity Q2 =S Kepler's 3rd law (200)
Orbital velocity u, = (S4)? (201)

whereR is the cylindrical radius. Now for a gas this is a shear flowcs(2 is a

function of R. Without viscocity this would be a stable situation, as ths yould

not feel the shear flow. With viscosity the faster rotatingeinregions will lose
angular momentum to the outer regions. As they do, they witbsin, and thus
some sort of viscosity is needed for a disc to baecretiondisc.
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Read the beginning of Chapter 12 of Clarke & Carswelljup
to Section 12.1 to learn about accretion discs and theirshea
flows.

12.1 Evolution of accretion discs

It is important to realize that the angular momentum densély unit masg. is
given by

L = Ruy = (GMR)? (202)
so for equal mass the inner regions have a lower angular mtomethan the outer.
However, as we saw above, they do have a higher velocity. difiesence in the
dependence of rotation velocity and angular momentum whigitirgg a massive
body can confuse one’s intuition when considering orbitathanics problems.
For example, if a space vehicle wants to overtake anotheesghicle in the same
orbit, it shouldbrake not accelerate. By braking it loses angular momentum and
moves to a lower orbit where it has a higher velocity with whiccan overtake
the other space vehicle.
For a gas one can work with the angular momentum dewsityiven by

L = pRuy = p(GMR)? . (203)

The evolution of accretion discs is best described by censid the evolution of
the angular momentum of the gas. As you should remember fasic Imechan-
ics, angular momentum is conserved unless there is a toajurgaThe same is
true in accretion discs, the angular momentum will be coresgrthat is the ma-
terial will not change its orbit and not accrete, unlessdhgia torque acting. The
torque acting in an accretion disc is the viscous torque fitmarshear flow.

We will consider thin discs, which means that we can integoser thez. This
means that we will be working with surface densities, rathan volume densities
so for the mass:

5 = / pdz (204)

and similarly the angular momentum per unit areas RXu,. The book derives
an equation for the evolution df (without actually using this symbol) from the
equations of gas dynamics in cylindrical coordinates.

Read Section 12.1 of Clarke & Carswell to learn about|the
angular momentum and surface density evolution in an ac-
cretion disc.
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12.2 Viscosity in accretion discs

To understand how viscosity makes an accretion disc woi&,useful to derive
the solution for the evolution of an initially infinitely thiring. The viscous forces
will spread this ring out. The full mathematical solutiorriginally found by
Jim Pringle) is given in Section 12.2 of Clarke & Carswell. Thedails of the
derivation are not so important, but the result is: the ringwiden with most of
the material in the ring moving in; the small amount of matiemoving out takes
with it the angular momentum of the ring (see Fig. 12.3 in GdagkCarswell).
The typical time scale for accretion from an initial radidgis found to be

tvisc = Ro/V (205)

also known as the viscous time scale. From this we see thaigher the viscosity
the quicker the material accretes.

From observed discs we can obtain an idea of the amount ofrialagecreting
to the central object. Since the accretion is driven by tlseasity, this gives us
an estimate of value of this viscosity. It turns out that tratue is much higher
than can be provided by normal molecular viscosity (due tbsgans between
particles of different distribution functions, as consetkin Chapter 10). As is
argued in Sect. 12.2.1 of Clarke & Carswell, the Reynolds nurabtre flow in
the disc is enormous, which makes it more or less inevitdtaethe disc will be
turbulent. This means that there will be a lot of turbulenkimg and it is this
process which acts as an effective viscosity. One still a¢egrovide the energy
input for the turbulence (“drive the turbulence”), so somegess is needed to
provide this energy. The currently most popular idea is thetis ultimately a
magnetohydrodynamic process called the magnetorotatimstability (MRI).

viscosity in accretion discs.

Read Section 12.2.1 of Clarke & Carswell to learn aTout

As the cause of the viscosity is not really known, a paramation of the viscosity
was suggested by Shakura and Sunyaev (1973):

v=acH (206)

wherea is a parameter; the sounds speed in the disc aHdits vertical scale
height. This parametrization allows for a handy analyticison of the structure
of the accretion disc, the so-called-tliscs”.
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12.3 Steady solution

The last thing to consider is a steady solution for the ammedisc. From the
steady solution one once again finds that for a given densdfile >(R) the
accretion rate is proportional to the viscosity Furthermore one can derive the
temperature structure of the accretion disc. As viscosiy dissipative process,
part of the orbital energy lost as the material accretes ridwgaes into heating
the disc. The inner parts will thus generally be hotter thenduter parts. As is
shown in Clarke & Carswell if one considers the gravitatiorakeptial energy of
the accreting material it turns out that half of it is coneerinto heat and half into
kinetic energy. This is in fact another manifestation of gl Theorem.

Read Section 12.3 of Clarke & Carswell to learn about|the
steady solution and the disc heating due to viscous dissipa-
tion.

12.4 Summary

The most important points to remember from this chapter are
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