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1 Introduction

This course is about the dynamical behaviour of gas in astrophysical systems. It is
one of the fundamental pieces of physics needed in astrophysics, as at least 90%
of all (baryonic) matter in the Universe can be described as agas. The other fun-
damental physical processes governing astrophysical systems are gravity and the
interaction between radiation and matter. Most astrophysical systems can there-
fore be described as a gas interacting with radiation under the influence of gravity.
The major constituents of the Universe consist all of gases.In order of increasing
size scale they are

• Stars: not solids, but self-gravitating gaseous bodies.

• Interstellar medium (ISM): gas inside galaxies consistingof a mix of cold
molecular clouds, cool HI clouds, warm ionized gas, hot (> 106 K) gas
(multiphase ISM). In the Milky Way the ISM makes up∼ 20% of the mass.

• Intergalactic gas: low density gas between galaxies. Inside clusters of galax-
ies (intracluster medium or ICM): dominant part of cluster mass (hot X-ray
emitting gas); Outside clusters (intergalactic medium or IGM): substantial
part of the mass in the Universe.

What is a gas? The practical answer is that it is a collection ofmicroscopic par-
ticles whose properties can be described by macroscopiccontinuumquantities
(density, velocity, pressure, temperature, entropy, etc.). In this sense gas is afluid,
just as liquids are fluids. However, unlike liquids, gases are compressible (the
density can vary). For gas on Earth the compressability is typically low (and often
neglected), but for astrophysical gases it is high. The reason for the compress-
ability of gases is that the gas particles are relatively farapart compared to the
particles in a liquid.
Gases and liquids are not the only systems that can be described as a continuum.
Other examples are

• Stellar systems consisting of stars

• Dust systems (e.g. Saturn’s rings) consisting of dust particles

• Radiation consisting of photons

• Traffic systems consisting of cars
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In all of these systems the particles interact with each other, but not continuously,
that is the interactions can be described as ‘collisions’. In some systems these
collisions are rather rare (stellar systems, dust systems), and they are referred to
collisionless. In normal gases collisions are important, and such collisional gases
are the subject of this course.
There are a number of other terminologies being used for gas dynamics. It is
good to be aware of this in order to prevent confusion. Gas dynamics is often
referred to ashydrodynamics, fluid dynamics, or aerodynamics. The latter term
is only used in Earth-based applications. ‘Hydrodynamics’is officially defined to
be the dynamics of liquids, but in astrophysics it is often used to mean dynamics
of gases. The term ‘Fluid dynamics’ covers both liquids and gases, but often it is
used for gases alone (as in the title of the course book “Principles of Astrophysical
Fluid Dynamics”).
When the gas consists of ions and electrons, the particles caninteract with any
magnetic and/or electric fields present, as well as with eachother. This is situa-
tion is most generally described byplasma physics, or its less general varietymag-
netohydrodynamics(MHD). In this course we will not consider magnetic fields,
but it is good to remember that magnetic fields are present in most astrophysical
systems and a more complete description should take them into account.
The study of fluid dynamics has a considerable history with a lot of activity in the
18th and 19th centuries. We will encounter names such as Bernoulli, Euler, La-
grange, Navier, Stokes, von Helmholtz, Kelvin. In the 20th century the theoretical
interest diminished as focus shifted to relativity and quantum physics. However,
this period also saw the development of many new applications of fluid dynamics:
flight (sub– and supersonic), atomic bomb explosions, re-entry of space vehicles.
Also plasma physics and magnetohydrodynamics was first developed in the 20th
century, a key figure being the Swede Hannes Alfvén. Important applications of
magnetohydrodynamics have been the development of nuclearfusion reactors, as
well as studies of the Earth’s ionosphere. Another remarkable development has
been the possibility to study solutions of the flow equationsusing numerical tech-
niques. This enabled the study of flows in a lot more detail than in the laboratory.
Even though gas and fluid dynamics are no longer at the forefront of theoretical
physics, this does not mean that every aspect is fully understood. Our theoretical
understanding of processes such as turbulence and convection are only limited and
at the fundamental mathematical level it has not been proventhat given an initial
condition inR3 there are smooth solutions for the gas dynamic equations forall
future times. This is one of the sevenMillenium Prize Problemsas chosen by the
Clay Mathematics Institute of Cambridge, Massachusetts in 2000.
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Read pages 1 – 4 (up to Section 1.2) of Clarke & Carswell.

1.1 Properties of gases

Gases consists of particles which interact with each other through collisions. Through
these collisions, the particles act as a collective, and a continuum description is
possible. One can thus say that there is a microscopic view ofa gas (particles)
and a macroscopic view (continuum). The typical quantitiesused to characterize
a gas are the macroscopic ones: density, pressure, temperature, velocity, entropy,
etc. These are the types of quantities you have worked with inthermodynamics.
To be able to describe a collection as particles as a continuum fluid, it needs to
fulfill certain criteria. First of all one needs to be able to define regions calledfluid
elementswhich

• are large enough to construct a meaningful average macroscopic quantity
from the microscopic properties of the individual particles. This means that
if the number density of particles isn, the size of the region should satisfy

nℓ3region ≫ 1 . (1)

In other words the region should contain many particles.

• are small enough that we can ignore variations in macroscopic quantities
across them. This means that the size of the regionℓregion is much smaller
than a scale length for any variations in quantityq. Or

ℓregion ≪ ℓscale ∼
q

|∇q| . (2)

In addition, a collisional fluid needs to fulfill the conditions that the interaction
scale or mean free path between collisions of particlesλ, is much less than the
size of the fluid element:

λ ≪ ℓregion . (3)

The cases we will consider in this course are all collisionalfluids. The effect of
the collisional fluid condition is that the particles withina fluid element collide so
often with each other that they have reached a unique equilibrium distribution in
their velocities. This allows us to define alocal velocity, temperature and pressure.
An example of a non-collisional fluid problem would be collision of two stellar
systems (galaxies). Since the stellar densities are low, the individual stars do
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not interact with each other during the collision, but only react to the collective
gravitational potential of all the stars together. The result is that the galaxies will
fly through each other. In a given region of space there will thus be stars moving
in one direction (belonging to galaxy 1) and stars moving in another direction
(belonging to galaxy 2). Averaging the stellar velocities in this region is not useful,
since you will find, for example in a head-on collision, a verylow average velocity,
whereas there are large systematic motions in the region. Inorder to describe this
region you have to know from which galaxy the stars came, or inother words you
need to know their initial conditions.
As an aside it can mentioned that we see concrete evidence that stars do act this
way. Even today one can find ‘stellar streams’ in the Milky Waywhich are rem-
nants of collisions which happened long ago.
Gas particles have a much higher space density than stars andin a collision be-
tween galaxies any gas contained in the galaxies will therefore react very differ-
ently from the stars. In our simplified example of a head-on collision, the gas will
attain a very low average velocity, but with a large random motion component of
the gas particles, or in other words a high gas temperature. The many collisions
that have happened between the gas particles have also erased any information
on where they originally came from. The motions of the gas particles are now
characterized by the local temperatureT and not by their initial conditions.
This difference between the collisional behaviour of gas and collisionless be-
haviour of other materials has been used as a proof of the existence of dark matter.
In the collision of two clusters of galaxies, the collisionless dark matter particles
moved through each other, whereas the gas particles in the two clusters collided
and remained stuck in the middle, reaching high temperatures. Mapping the dark
matter through gravitational lensing and the gas through x-ray observations, this
effect was seen in the so-called Bullet cluster (Fig. 1).
The equilibrium distribution achieved by the particles’ velocities corresponds to
a state of maximum entropy. For a stationary collection of particles of identical
massm this distribution is theMaxwell-Boltzmann distribution function

nMB(v)dv = n

(

m

2πkBT

)3/2

exp

[

− mv2

2kBT

]

4πv2dv , (4)

wheren is the number density of particles,v is the particle speed (absolute ve-
locity) andT is the temperature. The constantkB is the Boltzmann constant,
connecting energy and temperature. For a Maxwell–Boltzmanndistribution the
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Figure 1: The Bullet cluster (1E 0657-56). The purple colour indicates the x-ray
emission from the gas (observed with the Chandra x-ray telescope), whereas the
blue colour indicates the distribution of gravitational matter (mostly dark matter),
mapped using gravitational lensing.
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Figure 2: The Maxwell-Boltzmann distribution of absolute velocities for a hydro-
gen gas of temperature104 K. The most probable velocity is1.20 × 106 cm s−1.
The area under the curve between two speeds is equal to the fraction of gas parti-
cles in that range of speeds.

most probable velocity of a particle is

vmp =

√

2kBT

m
(5)

implying that the most probably kinetic energy of a particleis kBT . However,
some particles have much lower and some much higher velocities and energies
(see Fig. 2).
As we will see, the fact that the particles follow this particular distribution, al-
lows us to find a relation between the density, temperature and pressure (p) of
the particles, the so-called Equation of State (EOS). For the Maxwell-Boltzmann
distribution, this EOS is

p = nkBT , (6)

also known as the ideal gas law.
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1.2 Mathematical concepts

As we will see the basic equations of gas dynamics are partialdifferential equa-
tions involving three-dimensional vectors. It is therefore useful to review the
mathematics of 3D vector operations. A separate document called VECTOR CAL-
CULUS: USEFUL STUFFgives an overview of this.

Read throughVECTOR CALCULUS: USEFUL STUFF.

Make sure you understand the use of the various vector operations. Which op-
erations turn vectors into scalars? Which turn scalars into vectors? Which turn
vectors into vectors? Pay special attention to the operatorF · ∇ which may be
new to you, but which we will encounter often. It is also knownas thecomoving
derivative; (F ·∇)A is the derivative of vectorA along vectorF. Also make sure
to familiarize yourself with thesuffix notationas we will frequently encounter it.
In addition to what is contained in that document, please note the following:

• We will follow the usual convention that aboldface symbol represents a
vector. On the board I may use the alternative notation~a. Tensors may be

represented using capitals in a sans serif font,A, or by ~~A on the board.

• The book uses the symbol∧ where we use×. So the outer product of two
vectors in the book is written asa ∧ b, but we will use the more usual form
a× b. The same goes for the curl operator: where the book uses∇ ∧ a we
use∇× a.

• The suffix notationis sometimes known as the (Einstein) summation con-
vention (Clarke & Carswell use this terminology). We will use latin sym-
bols such asi andj, implying summation from 1 to 3. In relativity greek
symbols are used (α, β) to imply summation from 0 to 3, where 0 represents
the temporal dimension.

• We will also encounter the use of curvilinear coordinates (cylindrical and
spherical coordinates). Appendix A.2 of Clarke & Carswell summarizes
in very general terms how the vector operators change when one is using
curvilinear coordinates. The hand-outDIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATESdoes this more explicitly for cylindrical
polar and spherical polar coordinates. You can consult thisdocument once
we encounter the curvilinear coordinates.
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• We will also encounter the so-called dyadic operator which turns two vec-
tors into a two-dimensional tensor:

a⊗ b =





axbx axby axbz
aybx ayby aybz
azbx azby azbz



 . (7)

8



2 Crowd Control

2.1 Introduction

Any gas consists of particles (atoms, ions), and considering the properties of these
particles is called the microscopic view. Properties of particles are

1. Number of particlesN

2. Position of a particlex

3. Velocity of a particlev

4. Other intrinsic particle properties (mass, charge, etc.).

When we measure gas properties in a lab, we instead are considering measurable,
collective properties of the particles. What macroscopic quantities define the state
of a gas?

1. How much there is, so the mass densityρ, or the number densityn.

2. How it moves, so the gas velocityu, or momentum densityρu (systemic or
average motion of the particles).

3. The pressurep it exerts external objects (e.g. a wall or a container)p, which
is as we know from thermodynamics connected to the temperature T , or
internal/thermal energyρE or the gas through the Equation of State (EOS):

p = nkBT (8)

p = (γ − 1)ρE , (9)

whereγ is the so-called adiabatic index, connected to the number ofdegrees
of freedom of the particles; it is 5/3 for a monatomic gas.

4. Other quantities, such as composition, magnetic field, etc..

The minimum set is the first three (ρ, u, p), so in order to study the dynamics of
a gas, one need to derive a set of equations describing the time evolution of these
quantities. In other words we need to derive mathematical expressions for∂ρ/∂t,
∂ρu/∂t and∂p/∂t.
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2.2 Ways to derive the fluid equations: conservation principles

To arrive at these equations there are different ways. One isto use conservation
principles (for mass, momentum, energy) and concepts from thermodynamics.
This derivation relies partly on thedivergence theoremor Gauss’ theoremfrom
fundamental calculus.
Gauss’ theorem states that if one has a vectorU then for a volumeV enclosed by
a surfaceS, the following equality holds

∮

S

U · dS =

∫

V

∇ ·UdV . (10)

This is a purely mathematical theorem, that has a strong connection to physics,
especially gas dynamics.
Now if we have quantityQ of something in volumeV , let us say massM , then
we define the mass densityρ through

M =

∫

V

ρdV , (11)

the mass in volumeV is the volume integral over the mass density. This mass may
be changing because the gas is moving with a velocityu. Obviously the change in
mass must be the difference between the amount of material that flows in and out
of V . If we now divide the surfaceS of V into small sectionsdS then themass
flux across such a section will beρu · dS, since only the component ofu into or
out ofV matters (that is, the component ofu perpendicular todS). If ρu · dS is
positive, material is flowing out ofV .
Thus the rate by which is the mass is changing insideV is given by the integral
over all small sectionsdS of the entire surfaceS:

∂M

∂t
= −

∮

S

ρu · dS (12)

where the minus sign makes sure that inflow will increase the mass. Using Gauss’
theorem this becomes

∂

∂t

∫

V

ρdV =

∫

V

∇ · (ρu)dV , (13)

which being true for all volumes, becomes

∂ρ

∂t
+∇ · (ρu) = 0 , (14)
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describing the time evolution of the mass densityρ. This equation is known as the
continuity equation.
Obviously, this equation holds for any other quantity whichcan only change be-
cause of being transported by the flow. An example is the number of particlesn
or partial densities (such as the density of helium in a gas consisting of a mix of
elements). Below we will see another example of the continuity equation in the
context of density in what is known as six-dimensionalphase space.
Clarke & Carswell describe in somewhat more detail how conservation principles
lead to the fluid equations.

Read Chapter 2 of Clarke & Carswell to see how the fluid
equation can be derived from conservation principles em-
ploying the divergence theorem. Please note that we will
treat Lagrangian versus Eulerian points of view below.

2.3 Ways to derive the fluid equations: statistical mechancis

The other way to derive the fluid equations is to use the tools of statistical me-
chanics, i.e. considering a gas as a collection of particles. Because the latter gives
us a better insight in when the equation of gas dynamics apply, and the fact that
gas consists of particles is conceptually important in astrophysical contexts, these
lecture notes provide a sketch of how the derivation is done in statistical mechan-
ics. If you are eager to learn more, a more detailed description of how to derive
the gasdynamic equations using statistical mechanics can for example be found in
the textbookThe Physics of Fluids and Plasmaby A. R. Choudhuri.

2.3.1 Distribution function

Consider a collection ofN gas particles of equal massm. This is the microscopic
view of a gas. Each particle has a positionx and a velocityv. We can thus put it in
a 6-dimensionalphase space(which we callµ) of position and velocity, and count
the number of particles in the 6-dimensional volume(x − δx/2 : x + δx/2,v −
δv/2 : v + δv/2). Doing this gives us thedistribution functionf(x,v, t):

N(x− δx/2 : x+ δx/2,v − δv/2 : v + δv/2), t) = f(x,v, t)δxδv . (15)

The distribution function is effectively a particle numberdensity in the six-dimensional
µ-space.
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You may have encountered distribution functions before. Famous distribution
functions are the Bose-Einstein and Fermi-Dirac distribution functions, for bosons
and fermions respectively. Since we are not dealing with quantum effects, we can
use that other famous distribution function, theMaxwell-Boltzmann distribution
function

fMB(v) = n

(

m

2πkBT

)3/2

exp

[

−m(v − u)2

2kBT

]

, (16)

which gives the distribution of the particles over velocities in an equilibrium sys-
tem at temperatureT . Note that Eq. 16 gives the form for the distribution of the
three-dimensional velocityv, whereas the Eq. 4 gave it for the absolute veloc-
ity v. The Maxwell-Boltzmann distribution function does not depend on position
because the system is at equilibrium and the particles have the same velocity dis-
tribution at all positions. The microscopic quantities arethe particle massm and
velocityv, and the macroscopic quantities are the temperatureT , the number den-
sity of particlesn, and the gas velocityu (mean velocity of the particles).kB is
the Boltzmann constant, connecting energy and temperature.
In general, the macroscopic quantities that we are after (gas density, velocity, and
energy) can be derived from the distribution functionf by integrating over the
particle velocities:

ρ(x) =

∫

mf(x,v)dv (17)

u(x) =

∫

vf(x,v)dv/

∫

f(x,v)dv (18)

E(x) =

∫

1

2
mv2f(x,v)dv/

∫

f(x,v)dv . (19)

These are actually the 0th, 1st and 2nd moments of the distribution function over
the velocities.
To find the time evolution of these quantities we need to find the evolution off :
df/dt, which we will address in the following sections.

2.3.2 Collisionless systems

What isdf/dt? Sincef is a function oft, x andv, we can start by considering
the partial derivatives.

df

dt
=

∂f

∂t
+

∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

(20)
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Let us now consider the case of no collisions, a so-called collisionless system,
where the only force working on the particles is a possible outside one. From
classical mechanics we know that such a system can be described by a Hamilto-
nianH(x,v, t) equal toH = v2/2+φ(x), whereφ is the potential describing the
outside forces1. The equations of motion follow from

v̇ = a = −∇H

ẋ = v = ∇vH , (21)

where∇v is the gradient in the velocity coordinate:(∂/∂vx, ∂/∂vy, ∂/∂vz).
The evolution off in this case is particularly simple, given bydf/dt = 0. This
can be shown by realizing thatf is a density in phase-space, and hence must obey
the equation of continuity (Eq. 14, derived from the principle of mass conserva-
tion: no particles are created or destroyed, they just move around in phase space).
This means that

∂f

∂t
+∇ · fuf = 0 , (22)

whereuf is the ‘velocity’ for the densityf . In µ-space this ‘velocity’ is the six-
dimensional vector(v, a), so the continuity equation can be written as

∂f

∂t
+

∂

∂x
· (fv) + ∂

∂v
· (fa) = 0 . (23)

This can be rewritten as

∂f

∂t
+

∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

+ f (∇ · v +∇v · a) = 0 . (24)

From the Hamilton relations (Eq. 21) it follows that

∇ · v +∇v · a = ∇ · (∇vH)−∇v · (∇H) = 0 . (25)

So, the evolution off can be written as

df

dt
=

∂f

∂t
+

∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

=
∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0 , (26)

an equation known as theCollisionless Boltzmann Equation. This equation can
be used for all kinds of systems consisting of particles for which collisions are

1If the forces on a particle depend on neighbouring particles, for example due to collisions, we
cannot find anH which depends only onx andv.
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unimportant, for example low density stellar systems such as galaxies (but not the
cores of the much denser globular clusters).
If we consider a volumeδxδv in phase space, then it will containN = fδxδv
particles (Eq. 15). Following these particles, they will ata later time be contained
in a volumeδx′δv′. However, for a collisionless system,f will not have changed
in this volume (sincedf/dt = 0), and since particle numberN is conserved, this
implies thatδxδv = δx′δv′, i.e. the shape of the volume can change, but not
its total value. This is generally true for a system which canbe described by a
Hamiltonian and is known as Liouville’s theorem.

2.3.3 Collisions

For a typical gas, collisionsare important, so Eq. 26 has to be modified. An
important parameters when considering collisions is the mean free path between
collisions, given by

λ−1 =
√
2πa2n , (27)

for spherical particles of number densityn and particle sizea. As we saw in
Sect. 1.1, Eq. 3, for collisions to be important we require that λ ≪ L, the size
of our system. To be able to consider collisions to be a pertubation (rather than a
permanent condition of the collection of particles), they should be rather rare, so
we needλ ≫ a. In this case we speak of a ‘dilute gas’ as the particles can travel
many times their own size before colliding with another particle. This is the usual
case in astrophysics.
For this dilute case, the effects of collisions can be added as a perturbation to
the case of no collisions. Most of the time particles move around in phase space
following continuous trajectories set by their velocity and acceleration, but every
now and then they jump to another trajectory due to a collision (see Fig. 3). The
collisions are thus short range, and also binary (for a dilute gas we do not need to
consider collisions of three or more particles). We therefore rewrite Eq. 26 as

df

dt
=

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C(f) , (28)

whereC(f) depends on the distribution functionf(x,v, t) and describes the ef-
fects of collisions. If we can find a good mathematical description for C we
have a full description of the time evolution off . The description of the effects
of collisions on the distribution function was the major achievement of Ludwig
Boltzmann (1844–1906). We will not give the form of the collision term here (it
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Figure 3: The effect of collisions on the distribution function. On the left: trajecto-
ries without collisions. On the right: a collision suddenlychanges the trajectories
of two particles.

can for example be found in the book by Choudhuri), but simply represent it with
the symbolC. With the expression forC found by Boltzmann, Eq. 28 is known
as theBoltzmann Equation.

2.3.4 Stationary solution of the Boltzmann equation

It is useful to first consider the solution of the Boltzmann equation for the sta-
tionary case, without outside forces. For this casef does not change in time, so
∂f/∂t = 0 and does not depend on positionf(x,v, t) = f(v), so∂f/∂x = 0.
Without outside forcesa = 0.
All of this implies that the left hand side of Eq. 28 is zero, sothe total collisional
termC should also be zero. Boltzmann could show that for his expression for C
this meant thatf should be the Maxwell-Boltzmann distribution function,fMB,
given in Eq. 16.
The result is thus that the stationary solution for the Boltzmann equation is the
Maxwell-Boltzmann distribution function. This is the reason why fMB is so use-
ful. Any initial condition left to itself will evolve to thisdistribution. Note how-
ever that its derivation relies on binary short range collisions, and the absence of
non-conservative forces. When these conditions not hold,fMB will not necessarily
be the equilibrium solution.
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Boltzmann could then also show thatfMB represents the state of maximum en-
tropy, and thus that entropy always increases as a given initial state evolves to-
wards the equilibrium solutionfMB. This is known as Boltzmann’s H-theorem,
and is of course closely related to the 2nd law of thermodynamics, which says
that in a closed system, the entropy can never go down. The fact that he was able
to derive an irreversible relation from essentially reversible processes (binary col-
lisions between particles), impressed many people and played an important part
in convincing the scientific community of the correctness ofBoltzmann’s particle
view (which was far from being universally accepted in the 19th century). There
are however a number of subtleties connected to this derivation which have not
stopped to generate discussions.

2.3.5 Macroscopic quantities

As mentioned above, we can derive macroscopic quantities such as density and
energy from moments of the distribution functionf (Eqs. 17–19). Let us consider
a microscopic quantityQ and its mean value〈Q〉 defined by

n〈Q〉 ≡
∫

Qfdv . (29)

The time evolution ofQ can be found by multiplying both sides of the Boltzmann
equation withQ and integrating overdv

∫

Q

(

∂f

∂t
+

∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

)

dv =

∫

QCdv . (30)

If χ is a quantity which is conserved in binary collisions, one can show that
∫

χCdv = 0 . (31)

This expresses the fact that sinceχ is conserved in collisions, the collisions cannot
changeχ. Using this and some manipulation of the LHS of Eq. 30, we can rewrite
Eq. 30 as

∂

∂t
n〈χ〉+ ∂

∂xi

n〈viχ〉 − n

〈

vi
∂χ

∂xi

〉

− n

〈

ai
∂χ

∂vi

〉

− n

〈

∂ai
∂vi

χ

〉

= 0 . (32)

Here have used the suffix notation (see Sect. 1.2) to deal withthe vectorsx, u and
a. For an acceleration due to a conservative force, the last term (∂ai/∂vi) is also
zero.2

2For a conservative force, the force and acceleration do not depend on the velocity of the
particle.
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We will now consider the three microscopic quantities conserved in binary con-
ditions: mass, momentum and energy and from these find the equations for the
evolution of macroscopic mass density, momentum density and energy density.

Mass
Forχ = m the mass of the particles Eq. 32 gives

∂ρ

∂t
+

∂

∂xi

ρui =
∂ρ

∂t
+∇ · ρu = 0 . (33)

This is thecontinuity equation, which we already found above from mass conser-
vation principles (Eq. 14). Here we have defined the mass density ρ = nm and the
mean (or bulk) velocity of the particles asu = 〈v〉, the macroscopic gas velocity.

Momentum
Forχ = mvj the particle momentum in thej direction we get

∂ρ〈vj〉
∂t

+
∂

∂xi

(ρ〈vivj〉)− ρaj = 0 . (34)

Now 〈vj〉 = uj, the macroscopic gas velocity, but〈vivj〉 6= uiuj. Let us define
the difference between a particle velocity and the mean velocity aswi = vi − ui.
Obviously〈wi〉 = 0. We then construct a tensorP as

Pij = ρ〈wiwj〉 = ρ(〈vivj〉 − uiuj) . (35)

We can then write

∂ρuj

∂t
+

∂

∂xi

ρuiuj = −∂Pij

∂xi

+ ρaj . (36)

This is known as themomentum or Euler equation.
The tensorP contains the information about the microscopic random velocities
of the particles. As we will see below, in the equivalent macroscopic quantity is
the pressurep. Note that Clarke & Carswell define a stress tensorσij (Sect. 2.2,
Eq. 2.9) which is related toP by σij = ρ〈vivj〉 = Pij + ρuiuj.

Energy
For χ = 1

2
mv2 the kinetic energy of the particles, it makes sense to dividethis

into the energy connected with the mean velocity1
2
mu2 and the remainder which

can be written asmu ·w + 1
2
mw2. As 〈u ·w〉 = u · 〈w〉 = 0 since〈w〉 = 0, the

equation becomes

∂

∂t

1

2
ρ(u2 + 〈w2〉) + ∂

∂xi

1

2
ρ〈(ui + wi)|u+w|2〉 = ρu · a . (37)
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The〈(ui + wi)|u+w|2〉 term can be written out as follows

〈(ui + wi)(ui + wi)
2〉 = u2ui + 2u · 〈wwi〉+ ui〈w2〉+ 〈wiw

2〉 . (38)

We define the internal energy density of the gas asρE = 1
2
ρ〈w2〉 (the kinetic

energy contained in the random motions of the particles; this is equal to half the
trace of the tensorP) and define a vectorq to beρ〈1

2
w2w〉 (this will turn out to be

the heat flux due to conduction). We can then write

∂

∂t

(

1

2
ρu2 + ρE

)

+
∂

∂xi

ui

(

1

2
ρu2 + ρE

)

+
∂qi
∂xi

+
∂

∂xi

ujPij = ρu · a , (39)

the energy equation. We will call the sum of the kinetic energy density and the
internal energy density1

2
ρu2 + ρE the total energy densityE.

2.3.6 Closure relation

We have thus obtained three general equations describing the evolution of mass,
momentum and energy in a gas:

∂ρ

∂t
+∇ · ρu = 0 (40)

∂ρui

∂t
+∇ · (ρuiu) = −(∇ · P)i + ρai (41)

∂E

∂t
+∇ · (E + P)u+∇ · q = ρu · a (42)

These three equations are general but not a closed set since we have 5 equations,
but 13 quantities3: ρ, u, E , andP.
What can we do with the excess unknowns? In order to get a set of solvable
equations we need to get rid of them. They seem to be related tothe microscopic
behaviour of the fluid, and so we need the distribution function to say something
about them. For a gas which is at equilibrium, this isfMB, but such a gas would not
evolve any more. Instead, let us assume a situation in which the gaslocally has
a Maxwell-Boltzmann distribution. This means that the gas consists of regions
(‘fluid elements’ as we called them in Sect. 1.1) which each have a Maxwell-
Boltzmann distribution, but which can differ inn, T andu. For this assumption

3Note thatρE =
1

2
ρ〈w2〉 and thatPij = ρ〈wiwj〉, so that

∑

i

Pii = 2ρE , thus we have 13

quantities, not 14.
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to hold there need to be enough collisions within such a region. As we saw above,
this means that the mean free pathλmfp should be smaller than the size of the
regionL: λmfp ≪ ℓ.
We can now evaluate the tensorP using the Maxwell-Boltzmann distribution
function and thus reduce the number of unknowns. SincePij = ρ〈wiwj〉 and
〈Q〉 =

∫

Qfdv/n, we find that locally

Pij = ρ

(

m

2πkBT

)3/2 ∫

dwwiwj exp

(

−mw2

2kBT

)

. (43)

Since we integrate symmetrically overall velocities, both positive and negative,
the off-diagonal terms, being asymmetric around zero, giveno contribution under
the integral overw, and we are left with only the diagonal terms, for which the
integral gives

Pij = nkBTδij , (44)

a diagonal matrix. As we know from thermodynamics, the termnkBT is the gas
pressurep. SoPij = pδij. Since we definedρE to be 1

2
ρ〈w2〉, we also find that

ρE = 3
2
nkBT , showing that only the temperature determines the specific internal

energy densityE of the gas, asρ = nm. We have thus recovered the Equation of
State for an ideal gas by averaging over the Maxwell-Boltzmann distribution.
Similar considerations show that for the Maxwell-Boltzmanndistribution function
the heat conduction fluxq found in the energy equation, is equal to zero (since it
involves a symmetric integral over the asymmetric functionwiw

2).
We have thus removed the excess unknowns and obtained a closed set of equa-
tions, known as the set ofEuler equations for an inviscid fluid. The word invis-
cid means without viscosity:

∂ρ

∂t
+∇ · ρu = 0

∂ρui

∂t
+∇ · ρuiu = −∇ip+ ρai (45)

∂E

∂t
+∇ · (E + p)u = ρu · a .

These equations are not the full fluid equations, since they assume thatf = fMB

everywhere (although not necessarily thesamefMB everywhere). Obviously in
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real fluids there will be deviations fromfMB, and these give rise to so-called
‘transport phenomena’ such as viscosity and thermal conduction. However, in as-
trophysics these transport phenomena are often unimportant and many astrophys-
ical systems can be described with the set of Euler equations. We will later return
to consider the terms introduced by deviations from a local Maxwell-Boltzmann
distribution (Chapter 8).
It is important to realize that we have removed the information about the motions
of the individual particles through the introduction of thetensorP, which in the
Euler equations is represented by the pressure terms. So, you could say that the
appearance of pressure terms is our punishment for not wanting to deal with the
motions of individual particles.

2.4 Summary

The following points summarize the most essential conceptsintroduced in this
chapter.

• When considering the state of gas from the microscopic point of view (as
a collection of particles), we introduce the so-called distribution function
which specifies how many particles have a certain position and velocity.
The 6-dimensional space of position and velocity is known asphase space.
The distrubution function is thus a density function in phase space.

• The time evolution of the distribution function for a dilutegas is given by
the Boltzmann equation (Eq. 28).

• The Boltzmann equation has a collision termC which contains the effects
of collisions between particles. The equilibrium solutionof the Boltzmann
equation is the Maxwell-Boltzmann distribution function (Eq. 16), which is
also the state of maximum entropy.

• Position-dependent macroscopic gas quantities can be recovered by inte-
grating the distribution function over velocity space. Thetime evolution of
these macroscopic quantities can be found by taking momentsof the Boltz-
mann equation. For the collisionally invariant quantities(mass, momentum
and kinetic energy) these moments result in the equation of gas dynamics.

• To obtain a closed set of equations from the moment equations, one needs
to define a closure relation.
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• The equation of gas dynamics simplify into the Euler equations for inviscid
flow if one assumes for a closure relation that the gas is everywhere inlocal
equilibrium (i.e. it consists of fluid elements which each have a Maxwell-
Boltzmann distribution).
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3 Equations is Power?

We have now obtained a set of equations which describe the time evolution of a
gas (Eqs. 45). Before proceeding it is good to consider this set of equations.
It is a set ofpartial differential equationsin (x, t). The equations in the set are
coupled in the sense that for example to solve for the time evolution of ρ you
need to knowu which has its own equation for its time evolution. In addition the
equations are non-linear due to the double appearance ofu in the∇ · ρuiu term
in the momentum equations. These properties make the equations hard to solve
in the most general cases, but at the same time make for interesting solutions.
Consider a complex flow pattern which you may have seen in a river: this is a
solution of these equations (or at least some equations verysimilar to them).
Since it is hard to find solutions in general cases, most analytical solutions for the
gas dynamic equations are for very simplified cases. We will encounter a number
of these solutions later. As you will notice, the simplifications often take the shape
of a reduction of the dimensionality of the problem (using assumed symmetries
in the flow) or a reduction in the number of quantities to solvefor (by assuming
simple relations between different quantities, for example between pressure and
density).
Because of the very limited set of possible analytical solutions, the development of
techniques to find numerical solutions to the fluid equationshas revolutionized the
field. Computational gas dynamic simulations allows one to consider much more
complex cases, such as star formation, galaxy formation, etc. One has however
constantly to be aware of the limitations of the numerical solutions which will
always have a finite resolution. Chapter 7 will introduce someof the concepts of
computational fluid dynamics.

3.1 Advection

It can be seen that all five equations of the set of Euler equations for inviscid flow
have some terms in common. Each of them can be written as

∂Q

∂t
+∇ ·Qu = other terms (46)

The first term is the change ofQ at positionx and the second term has to do with
the flow velocityu. If the “other terms” are zero one can show mathematically
that this equation represents a quantityQ being carried along by the flowu. This
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Figure 4: The concept of advection. After a time∆t the pattern in quantity Q has
been carried to the right by the flow.

process is known asadvection and therefore the term∇ · Qu is known as the
advection term.
Figure 4 illustrates how a pattern in the quantityQ is carried along by a flow. In
this case the velocityu is the same at all positions and the pattern is simply shifted
to the right. Ifu would be different at different positions, the pattern would be
shiftedanddeformed, either compressed or stretched, depending on theshape of
u(x).
One could thus write the Euler equations thus

∂

∂t





ρ
ρui

E



 +∇·





ρu
ρuiu

Eu



 =





0
−∇ip+ ρai

−∇ · (pu) + ρa · u



 (47)

change in time advection other processes

The other processes here are the pressure forces and the acceleration due to exter-
nal forces.

3.2 Momentum or velocity?

The equations of fluid dynamics are coupled, and therefore itis also possible to
write them in many different forms. As an example one can consider the momen-
tum equation which describes the time evolution of the momentum densityρu.
One might prefer to write this as an equation for the time evolution of the velocity
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u instead. This is possible by using the chain rule and the continuity equation.
Since

∂ρui

∂t
= ρ

∂ui

∂t
+ ui

∂ρ

∂t
, (48)

and
∂ρ

∂t
= −∇ · (ρu) , (49)

one finds that

ρ
∂ui

∂t
+ ρ(u ·∇)ui = −∇ip+ ρai . (50)

The latter equation is found in Clarke & Carswell as Eq. (2.17) on page 17. How-
ever, there it is written foru instead of for velocity componentui. Because of this
the second term becomes ambigious: it is unclear how the termu ·∇u should be
interpreted. Equation 50 shows how it should be interpreted.
Up to now we have written the momentum equation as an equationfor the velocity
componentui. If one wants to write the momentum equation as an equation for
the velocity vectoru, one should introduce the dyadic tensoru⊗u (see Sect. 1.2).
With it one can then write

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+ ρa , (51)

where the divergence operator∇· now works on a two-dimensional tensor, reduc-
ing it to a vector.

3.3 Eulerian versus Lagrangian

When following the time evolution of gas quantities such as the density, pressure
and velocity, there are two different points of view one can take. These are

1. Eulerian description: one defines a fixed coordinate grid in space and fol-
lows how the gas quantities are changing at a given position.This is the
perspective of someone sitting at one position and making measurements.
If a steadily moving density wave is passing, a time evolution of the den-
sity is found. When considering the time derivative in this description, the
symbol∂ is used. This is the point of view which we have used up to now.

2. Lagrangian description: one chooses a fluid element in the fluid and fol-
lows how its properties change. This is the perspective of someone moving
with the fluid and making measurements. In this case a steadily moving
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density wave would not be described as having a time evolution as we now
have the perspective of someone “riding the wave”. When considering the
time derivative in this description, the symbolD is used.

The two point of views are related through the following expression (for a general
quantityQ):

DQ

Dt
=

∂Q

∂t
+ u ·∇Q . (52)

This expression can be derived by following a fluid element over infinitesimally
small time stepδt. If it starts at positionr at timet, then at timet + δt it will be
at positionr+ δr. The Lagrangian derivative is thus

DQ

Dt
= lim

δt→0

[

Q(r+ δr, t+ δt)−Q(r, t)

δt

]

. (53)

The numerator can be written as

Q(r+ δr, t+ δt)−Q(r, t) =

Q(r, t+ δt)−Q(r, t) +Q(r+ δr, t+ δt)−Q(r, t+ δt) , (54)

which to first order inδt andδr equals

=
∂Q(r, t)

∂t
δt+ δr ·∇Q(r, t+ δt) . (55)

The second term can then be expanded as

δr ·
[

∇Q(r, t) +
∂∇Q

∂t
δt . . .

]

(56)

For δt andδr → 0 the time derivative of the gradient ofQ disappears, as it is a
second order term. Realizing that the fluid velocityu = δr/δt, we thus obtain
Eq. 52.
It is instructive to transform the fluid equations to their Lagrangian form, since
this provides us with the perspective of fluid elements. Applying Eq. 52 to the
continuity equation, the Lagrangian form becomes

Dρ

Dt
=

∂ρ

∂t
+ u ·∇ρ = −∇ · (ρu) + u ·∇ρ = −ρ∇ · u , (57)

or
Dρ

Dt
+ ρ∇ · u = 0 (58)
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This equation shows that the density of a fluid element only changes when∇ ·
u 6= 0. So-called incompressible flows have the propertyDρ/Dt = 0 and as a
consequence their velocity field has to obey∇ · u = 0, i.e. it must be divergence
free. It is a useful exercise to try to reason why this must be the case; consider
what velocity differences mean for the volume of a fluid element...
The Lagrangian form can be seen to remove the advection term since one is mov-
ing with the fluid. This sometimes means that the Lagrangian form is the simplest
one. It is for example possible to rewrite the momentum equation in Lagrangian
form as

ρ
Du

Dt
= −∇p+ ρa , (59)

from which the connection with Newton’s 2nd law becomes apparent

ma = F . (60)

It is therefore one sometimes speaks of pressure forces working on the fluid. Note
however that it would be more appropriate to speak of pressuregradientforces.

3.4 Particle paths

Even though the Lagrangian form may be sometimes easier to deal with, one
should realize that for a full solution, one still needs to solve for the paths the fluid
elements are taking. If one wants to trace the trajectories of fluid elements one
needs to solve the equation

dr

dt
= u(r, t) , (61)

which describes the path of a fluid element, or a so-called particle path.

3.5 Gravity

Up to now we have carried along an external acceleration denoted bya. In prac-
tice this external acceleration is almost always a gravitational one. Therefore we
replace the symbola by g.
Since gravity is a conservative force, it can be described bya scalar potential field
Ψ such that

g = −∇Ψ (62)

Since it is only the gradient that matters, an arbitrary scalar can always be added
to the field. Usually the field is normalized this way so thatΨ(∞) = 0.
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The gravitational field may be completely external, for example the field imposed
by a planet or a star on its surroundings, or it may be internal. The latter case is
usually calledself-gravity: a gas cloud feels the gravitational field produced by
its own mass. To find the gravitational field of a mass distribution ρ one needs to
solve the Poisson equation:

∇2Ψ = 4πGρ , (63)

whereG is the gravitational constant. The Poisson equation is completely equiva-
lent to the equation of the electric potential of a charge density field, familiar from
electromagnetism. A derivation can be found in Clarke & Carswell (Sect. 3.2).
Solving the Poisson equation is rather complicated as it is asecond order differen-
tial equation. Even quite simple density distributions canproduce rather compli-
cated potentials. If you are interested to see some examples, you can read Chapter
3 of Clarke & Carswell.
A useful theorem related to the self-gravitating systems isthe Virial Theorem.
Since gravity is only an attractive force, a collection of self-gravitating particles
needs to have some internal motions in order not to collapse.However, if the
velocities of the particles are too large, the collection will disperse. The Virial
Theorem specifies the amount of kinetic energy that is neededfor a collection of
particles not to collapse and not to fly apart. IfT is the total kinetic energy of
the particles andΩ their collective gravitational potential energy, then theVirial
Theorem states that

2T + Ω = 0 . (64)

Note thatT is the total kinetic energy, so for a gas it consists of the kinetic energy
of the mean motion, and the kinetic energy contained in random motions, that is,
the internal energy of the gas.

Read Sections 3.5 and 3.6 of Clarke & Carswell to learn
more about the Virial Theorem.

The Virial Theorem is an important concept in astrophysics.It relates the grav-
itational potential energy and the kinetic energy of any self-gravitating systems
in equilibrium. This includes gas clouds, but also stellar systems and galaxy sys-
tems. Since the gravitational potential energy of the system is proportional to its
mass squared, it becomes possible to ‘weigh’ systems by measuring their kinetic
energy content. This was for example used in the 1930s to find the mass of galaxy
clusters. These measurements provided the first indicationthat a large part of the
mass of galaxy clusters is ‘dark’. In current cosmology thisis interpreted as being
due to the presence of dark matter in the Universe.
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3.6 Summary

These are the most important points addressed in this chapter

• The set of fluid equations is a set of couples, partial and non-linear differen-
tial equations. Analytical solutions are only available for simpler problems.

• The term∇ · Qu found in all five equations describes the advection of
quantityQ.

• The Eulerian description of a fluid gives the evolution of thefluid quantities
at fixed pointsr in space. It is associated with the differential symbol∂.
The Lagrangian description gives the evolution of the fluid quantities in
fluid elements which are carried along by the flow. It is associated with the
differential symbolD.

• The gravitational accelerationg can be calculates from the gravitational
potentialΨ. If the gas is self-gravitating,Ψ must be calculated from the
Poisson equation.

• For a self-gravitating system to be in equilibrium the Virial Theorem hold
which states that twice the kinetic energy of the system should equal -Ω, the
gravitational potential energy of the system.
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4 Finding order in chaos

In Chapter 2 we derived the energy equation from the microscopic view, showing
that for the inviscid flow it is given by

∂E

∂t
+∇ · (E + p)u = ρu · g , (65)

with E = 1
2
ρu2 + ρE . The first term inE is the kinetic energy density of the flow,

corresponding to the mean motion of the particles, the second term is the internal
energy density of the flow, corresponding to the random motions of the particles.
Since only the total energy of the particles is conserved, for the most general case
one has to consider the evolution of the sum of these two energy densities. As we
will see later, flows can convert one type of energy into the other.
The internal energy of a gas is sometimes also called the thermal energy. It is
the internal energy which is a key concept in thermodynamics, where most of the
time the motion of the gas is not considered. In this chapter we deal with several
concepts connected with the internal energy of a gas, concepts which may already
be known to you from studying thermodynamics.

4.1 Energy equation and relation to thermodynamics

When in Chapter 2 we assumed that the distribution function of the particles is lo-
cally a Maxwell-Boltzmann distribution function, this alsoimplied that the gas is
ideal. For an ideal gas the specific internal energyE is only a function of temper-
ature, andnot of the density. This relation betweenE and other thermodynamic
quantities is called theequation of state(EOS). As we saw in Chapter 2, the spe-
cific internal energy and the pressure for a monatomic gas arerelated through
E = 3

2
p/ρ, so instead of the internal energy, the EOS is usually given as a relation

between the pressure and the other thermodynamic quantities of the gas. In fact,
the assumption of a Maxwell-Boltzmann state of the gas already gave us an EOS:
p = nkBT . This is the EOS of an ideal gas. It shows that for an ideal gas the
internal energyE is only a function of the temperature:Eideal = Eideal(T ).
If E starts to depend on other quantities, such as the density, the gas is no longer
considered to be ideal. From the course on stellar structureyou may remember
that the cores of stars can consist of a degenerate gas. If thegas is fully degenerate,
the internal energy dependsonly on the density (p ∝ ρ

5

3 ) and no longer on the
temperature, so this is a very non-ideal gas.
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Read the beginning of Chapter 4 up to Section 4.2 of Clarke
& Carswell to learn about the the equation of state.

As given in Sect. 4.1 of Clarke & Carswell, for ideal gas the equation of state can
be written as

p =
R∗

µu

ρT (66)

whereR∗ = 8300 J K−1 kmole−1 (and equals 1000R, the gas constant) andµu

is the mean molecular weight in atomic mass number (1/12 of the mass of12C,
or 1.661 × 10−27 kg). The Boltzmann constant is connected to the gas constant
throughkB = R/NA, whereNA is Avogadro’s number (6.022 × 1023 mole−1).
This form of the equation of state is the usual form for Earth-based applications.
However, in astrophysics, hydrogen is by far the dominant element and it is more
usual to use the mass of hydrogen as the unit mass (mH = 1.672 × 10−27 kg). In
this case the the equation of state is usually written as

p =
kB
µmH

ρT , (67)

whereµ is the molecular weight expressed inmH. Sinceρ is the mass density of
the gas, this is equivalent top = nkBT since the mass and number density of gas
particles are connected through

ρ = µmHn . (68)

4.2 Barotropic equations of state

The energy equation Eq. 65 is the most general equation for the evolution of the
total energy density of a gas (consisting of internal + kinetic energy density).
However, in many cases it is not actually necessary to solve the energy equation
because the pressure is only a function of density,p = p(ρ). Since the pressure
givesE , both can then be derived from the solution of the density. The kinetic
energy can always be found from the momentum equation. Ifp = p(ρ), the EOS
is calledbarotropic. There are two main cases of such a barotropic EOS

1. isothermal EOS: the temperature is (locally) constant, andp ∝ ρ. This
can happen if other processes than the flow dominate the thermal state of
the gas. These other processes (heating and cooling, for example through
radiative processes) can act as athermostat, keeping the temperature of the
gas constant despite changes in the gas.
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2. adiabatic EOS: the gas only undergoes reversible changes and the entropy
of fluid elements is conserved. In this casep ∝ ργ whereγ is the adiabatic
index.

Read the Section 4.2 of Clarke & Carswell to learn about
these two cases of barotropic EOS.

The adiabatic index for a monatomic gas isγ = 5
3
, and for a gas made of diatomic

molecules it isγ = 7
5
.

As we wrote above, for an ideal gas the specific internal energy E only depends on
the temperature. How can it then be that for that same ideal gas we now find that
the pressure (proportional toρE) depends onργ? The answer is thatE still only
depends on the temperature, but that the temperature has to follow the density
(T ∝ ργ−1) when the entropy is conserved. So the dependency ofE on the density
is an indirect one, not a direct one (as it is for the case of a fully degenerate gas
that was mentioned above).

4.3 Deriving the energy equation from thermodynamics

When one starts with the macroscopic theory of thermodynamics, one can also
derive the energy equation. This is done by considering the 1st law of thermody-
namics, which states that energy is conserved. Thermodynamics only considers
the internal energy of the gas (E), whereas the particle perspective considers the
total energy of the gas, the sum of kinetic and internal energy. However, the evo-
lution of the kinetic energy can be found from the momentum equation and then
be added to the evolution of the internal energy.
The first law of thermodynamics can be written as

dE + pdV = dQ , (69)

stating that the internal energyE can only change due to heat being added or
removed (dQ) or through work done by the gas when it changes its volume (pdV
term). All these term actually come back in the enery equation. ThepdV term
is contained in the∇ · (pu) term which can be split intop∇ · u (internal energy
change due to compression/expansion; as we saw above in the Lagrangian version
of the continuity equation,∇ · u corresponds to volume changes in the flow) and
u ·∇p (kinetic energy change due to pressure gradients).
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The Q term is new for us, since it represents external processes which add or
remove energy from the gas. Below we will consider this term ina little bit more
detail.

Read the Section 4.3 of Clarke & Carswell to learn about
how the energy equation derives from the 1st law of ther-
modynamics.

There is one small difference between the book and the derivation from Chapter 2.
The book defines the total energy density as1

2
ρu2 + ρE + ρΨ, where the last term

is the potential energy term. If we call this definition of thetotal energy density
E∗, the energy equation becomes

∂E∗

∂t
+∇ · (E∗ + p)u = ρ

∂Ψ

∂t
,

as shown in Eq. (4.32) of Clarke & Carswell. This formulation iscompletely
equivalent to Eq. 65 as can be seen from some manipulation:

• The termρ∂Ψ/∂t occurs on both sides of equation and thus cancels.

• In the advection term forE∗ there is a∇ · (Ψu) which can be rewritten as
ρg · u, sinceg = −∇Ψ. This is the term we had in the energy equation for
E.

• The remaining termsΨ∂ρ/∂t andΨ∇ · (ρu) cancel each other due to the
continuity equation.

So we can conclude that the two versions of the energy equation are equivalent.
This is another example of how the fluid equations can be rewritten in different
forms. A further example is writing down separate equationsfor the evolution of
the internal and kinetic energy density, a problem which we consider in one of the
exercises.

4.4 Heating and cooling processes

The energy equation Eq. 65 describes the situation when onlyfluid processes
change the energy density. However in astrophysics the energy density is often
modified by other processes, such as radiative processes. Toaccommodate this in
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the equation, Clarke & Carswell introduce a term−ρQ̇cool which when added to
our energy equation gives

∂E

∂t
+∇ · (E + p)u = ρu · g − ρQ̇cool .

If Q̇cool > 0 this represents energy loss and ifQ̇cool < 0 it represents energy gain.
It is important to realize thaṫQcool only affectsE , the (specific) internal energy,
and obviously not the kinetic energy of the gas.
Clarke & Carswell describe four processes that can contributeto energytransport

1. Cosmic Rays

2. Conduction

3. Convection

4. Radiation

Of these only cosmic rays and radiation are actual heating and cooling processes
that contribute toQ̇cool. As we will see in Chapter 8,conductionis a fluid process
that is caused by deviations from the assumption of a local Maxwell-Boltzmann
distribution. It is therefore aninternalfluid process, not an external source or sink
of energy.
Convectionis a complex macroscopic fluid process, which is in principlealready
described by the fluid equations. Because of its complexity itis sometimes added
to the equations in a parametrized form, which is why Clarke & Carswell group it
under energy transport processes.

Read the Section 4.4 of Clarke & Carswell to learn about
energy transport processes. The details of the various radi-
ation processes described on pages 42 – 45 are optional.

The interaction between gas and radiation is more fully treated in the course on the
Interstellar Medium, and therefore not part of this course.The main message to
remember here is that there can be aQ̇cool term in the energy equation representing
energy gains and losses due to interactions with cosmic raysand radiation. Often
this interaction works as a thermostat, fixing the temperature of the gas, allowing
the use of the isothermal EOS (see Sect. 4.2). It is for example often a good
assumption that a gas being photo-ionized and heated by a hotstar is isothermal
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at a temperature of∼ 104 K, as the photons can easily heat the gas to temperatures
above104 K, but radiative cooling processes will reduce the temperature to values
below which radiative cooling becomes inefficient, which happens to be∼ 104 K.
Radiative cooling is a very importent process in astrophysics. The reason is that
under many circumstances the density of the gas is so low thatif due to collisions,
a molecule, atom or ion gets excited, it is more likely to de-excite by sending out
a photon then through another collision. If this photon doesnot get absorbed,
it will leave the gas, carrying with it some energy. In fully ionized gases, the
main cooling process is the electrodynamic interaction between charged parti-
cles, mostly between electrons and ions. This is known as free-free emission or
bremsstrahlung (this concept will come back in the computerlab).
Radiative heating is mostly through ionization processes, either through photons
or collisions with cosmic rays. The excess energy beyond theionization energy
needed to release the electron, is given to the electron who then through collisions
can share this with the rest of the particles in the gas. Another path for radiative
heating is through dust grains. They can absorb photons and increase their tem-
perature. Interaction with gas phase particles then leads to a heating of the entire
mixture of gas and dust.

4.5 Adiabatic flow and entropy

When the gas has an adiabatic EOS,p ∝ ργ, the entropy of fluid elements is
conserved. This implies that the entropy of a fluid element isa function ofpρ−γ.
A more thorough analysis shows that the thermodynamic quantity of entropy is
given by

s = CV ln

(

p

ργ

)

+ s0 (70)

whereCV is the specific heat capacity at constant volume ands0 is a normalization
constant. The adiabatic index is given byγ = Cp/CV, whereCp is the specific
heat capacity at constant pressure.
Saying that the entropy is conserved is equivalent to sayingthat no irreversible
processes are affecting the gas. This follows from rewriting the first law of ther-
modynamics in terms of the entropy.
Irreversible processes can be external processes that add energy to or remove en-
ergy from the gas, processes contained in theQ̇cool term. However, even when
no external heating and cooling processes are operating, irreversible changes can
happen in a fluid due to shock waves. We will treat shocks in more detail in Chap-
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ter 6. We will see that in shocks kinetic energy is converted into thermal energy,
which is an irreversible process that increases the entropy. So, across a shock
entropy is not conserved.
Further irreversible processes are those connected with transport processes, to be
treated in Chapter 10. These processes are associated with viscosity and heat
conduction. If these are important, the gas will also not conserve entropy.
The summary is thus that if a gas is inviscid (no viscosity andconduction) and
external heating and cooling processes are unimportant, then away from shocks,
the gas will have an adiabatic EOS (as explained above in Sect. 4.2). In this case
it is not necessary to solve the energy equation, since the pressure (internal en-
ergy) can be derived from the density and the kinetic energy from the momentum
density.

4.6 Pressure, internal energy and enthalpy

The adiabatic relation also allows us to derive the connection between pressurep
and internal energyE . If the flow is adiabatic, the first law of thermodynamics can
be written as

dE + pdV = 0 , (71)

and we also know that for this condition

p = Kργ , (72)

with K some constant. Combining them gives

dE = −pdV = Kργd
(

ρ−1
)

=
K

γ − 1
dργ−1 =

1

γ − 1
dp/ρ (73)

⇒
dE = d

p/ρ

γ − 1
(74)

⇒
E =

p/ρ

γ − 1
(75)

Although derived from the assumption of adiabatic conditions, the internal energy
E of a fluid is an intrinsice property of the fluid, not dependingon the actual
conditions. So this relation forE is generally valid. In fact, for a monatomic gas,
γ = 5/3 and thusE = 3

2
p/ρ, something we already found in Chapter 2.
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Another energy related quantity which is sometimes used is the enthalpy. The
specific enthalpy is defined as

h = E + p/ρ . (76)

Using Eq. 75 this can also be written as

h =
γ

γ − 1
p/ρ . (77)

4.7 Summary

The most important points to remember from this chapter are

• The general form of the EOS for an ideal gas is Eq. 67.

• The adiabatic indexγ (ratio of the specific heat capacitiesCp/CV ), connects
the specific internal energy densityE , pressure and density through the re-
lationρE = p/(γ−1). It also occures in the definition of the entropy which
is proportional toln (pρ−γ).

• Under some circumstances, the pressure can be written as a function of
the density (barotropic EOS), removing the need to solve forthe energy
equation.

• The two well-known cases of barotropic flow are isothermal (p ∝ ρ) and
adiabatic (p ∝ ργ).

• External processes (mostly radiative) can add or remove internal energy
from the gas.
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5 Spherical Cows

There is a well-known joke which says that if a theoretician would be asked to
study how a cow produces milk, they would start by assuming a spherical cow
(see Fig. 5). In this chapter we will look at some simple, static solutions of the
gas dynamic equations, some of which assume spherical symmetry. In the rest
of the course we will encouter other examples of “spherical cows” since reducing
the dimensionality of the equations is one way to simplify them so that finding
analytical solutions becomes possible.

Figure 5: A typical spherical cow model.

5.1 Non-cartesian coordinates

We have been writing the Euler equations for inviscid flow in general terms with-
out specifying the coordinate system to be used, employing the nabla symbol∇
to represent the differential operators. The equations areof course valid in any co-
ordinate system, and thus writing them in general terms is appropriate. However,
when one starts to look for solutions for specific cases (supernova explosion, an
accretion disk, a stellar wind), one has to choose a certain coordinate system. The
mathematically simplest one is of course the cartesian coordinate system, usually
denoted withx, y, z. In this type of coordinate system the various vector and
tensor operators have their simplest form.
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However, in many cases the symmetry of the problem one is trying to solve sug-
gests other, so-called curvilinear coordinate systems. The two most common ones
are cylindrical coordinates (more fully described as cylindrical polar coordinates),
often represented by the symbols(R, φ, z) and spherical coordinates (spherical
polar coordinates), often represented by the symbols(r, θ, φ). These systems are
called curvilinear coordinate systems because at least onecoordinate follows a
curvedpath in a cartesian representation.
For example, an idealized supernova explosion proceeds spherically, and the wind
from a spherical star will also travel radially outward. In these cases it is more
appropriate and even simpler to use a spherical coordinate system. Similarly, it is
easier to use cylindrical coordinates to describe a cylindically symmetric accretion
disk.
Because of the inherent curvature in curvilinear coordinates, the vector and tensor
operators obtain different forms. The hand-outDIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATESgives an overview of these forms for the cylin-
drical and spherical cases. One thing to keep in mind when looking at these forms
is that the angles do not have dimension of length, so for dimensional reasons
differentials with respect to angle have to be divided by some quantity of dimen-
sion length. Also note that some of the operators contain terms which arenot
differentials.
We will consider the case of cylindrical polar coordinates in a later chapter when
we will look at accretion disks, which we will describe as two-dimensional ob-
jects in (R, φ). The purpose of using curvilinear coordinates is to make useof
possible symmetries in a system, and this often means that one does not use the
full three-dimensional set; a symmetry allows one to reducethe dimensionality
of the system. One often occuring symmetry issphericalsymmetry. In this case
the only coordinate is the spherical radiusr. The Euler equations for spherical
symmetry become

∂ρ

∂t
+

1

r2
∂

∂r

(

r2ρur

)

= 0

∂ρur

∂t
+

1

r2
∂

∂r

(

r2ρu2
r

)

= −∂p

∂r
+ ρ

∂Ψ

∂r
(78)

∂E

∂t
+

1

r2
∂

∂r

(

r2(E + p)ur

)

= ρur
∂Ψ

∂r
.
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5.2 Hydrostatic equilibrium

The simplest solutions for the gas dynamic equations are those in which the gas
is in hydrostatic equilibrium. Even for those simplest solutions, a reduction of
the dimensionality is often applied. Hydrostatic equilibrium means that the gas
velocity is zero (static) and that the time derivatives are also zero (equilibrium).
This implies that if one assumes a barotropic EOS,p = p(ρ), of all the fluid
equations one only needs to solve for a simplied form of the momentum equation
where the pressure gradient is balanced by a force field

∇p = ρg = −ρ∇Ψ (79)

Read Chapter 5 up to Section 5.1 to learn about hydrostatic
solutions.

The book considers a number of classical cases

1. The isotermal self-gravitating slab. This employs “slabsymmetry” which
means that one considers an slab which is infinite in two of thethree carte-
sian coordinates. Only one needs to consider one of the cartesian coordi-
nates (z).

2. The isothermal atmosphere. This also employs the slab symmetry, but the
gravitational force field is external.

3. Self-gravitating spheres. This employs spherical symmetry. These types of
solutions are known aspolytropesand are useful as simplified models for
stars. The differential equation that needs to be solved is called the Lane-
Emden equation. With one exception (see Sect. 5.4) we will not consider
them in this course.

5.3 Isothermal slabs and atmospheres

Read Sections 5.2 and 5.3 to learn about the isothermal slab
and atmosphere solutions.

In one of the exercises we will consider a variation of the isothermal atmosphere,
namely an isothermal atmosphere around a spherical body.
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5.4 Self-gravitating spheres

While we will not be looking at the general case of self-gravitating spheres, we
will look at one case. This case is a simple model of an interstellar cloud which is
about to form a star, rather than a model of an already formed star. This solution
is known as theSingular Isothermal Sphere.
The will assume that the gas is globally isothermal, sop = Aρ, whereA is a
constant (proportional to the temperature). With this expression for the pressure,
the condition for hydrostatic equilibrium becomes

A

ρ

∂ρ

∂r
= A

∂ ln ρ

∂r
= −∇Ψ , (80)

and the Poisson equation is

∇2Ψ =
1

r2
∂

∂r

(

r2
∂Ψ

∂r

)

= 4πGρ . (81)

We can substitute∂Ψ/∂r in the Poisson equation using the hydrostatic equilib-
rium equation, to give

1

r2
∂

∂r

(

r2
∂ ln ρ

∂r

)

= −4πG

A
ρ . (82)

If we assume that the solution forρ is a power law and thatρ = 0 for r → ∞, the
solution is

ρ(r) =
A

2πGr2
(83)

which is singular forr = 0, and therefore called the Singular Isothermal Sphere
solution. Even though this solution is singular atr = 0 and of infinite mass if one
lets the radius go to infinity, it has a finite mass within a specified radius (so the
singularity atr = 0 does not make it diverge). Also, measurements of so-called
dense clouds that are close to forming stars (so-called prestellar cores) often show
a1/r2 density distribution, at least over part of the core. So thissolution provides
a reasonable description of the structure of a large part of those pre-stellar cores
and is often use to derive properties of such cores from observations.
Non-singular solutions can be found by changing the boundary conditions, for
example by specifying a central density and a constant density beyond a certain
radius. These solutions are more realistic as the cloud willhave a finite central
density and a finite extent. They are known as Bonnor-Ebert spheres. However,
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although it is possible to calculate such solutions numerically, it is not possible
to write them down in the form of an equation. Figure 5.2 in Clarke & Carswell
shows such a Bonnor-Ebert solution, comparing it to the derived density structure
of an observed cloud. The best fitting part of the solution is in fact very close to
following the1/r2 of the singular isothermal sphere.

5.5 Summary

The main points of this chapter are

• Hydrostatic solutions are static (u = 0) solutions in a gravitational field.
The equation to be solved is that of the balance of the pressure gradient
with the gravitational acceleration.

• Examples of hydrostatic solutions are the exponential atmosphere and self-
gravitating spheres, also known as polytropes.
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6 The Perfect Wave

This chapter is about waves. Wave phenomena are important influid dynamics as
they are the means by which disturbances travel through a gas. We are intimately
familiar with wave phenomena in gases, as sound is a wave phenomenon in atmo-
spheric gas. From this we also know by experience that the wave speed is not at
all the same as the material speed. Sound travels with about 300 m/s at the surface
of the Earth, but this does not mean that this is the wind speed.
As we will see below, and as you probably already know, sound (and thus waves)
travel with the so-called sound speed. This means that any disturbance will travel
with the speed of sound and the use of the sound speed allows usto estimate how
quickly one region can respond to another: there has to be time for sound waves
to travel from the one region to the other.

Read the introduction of Chapter 6 in Clarke & Carswell.

6.1 Acoustic waves

To describe how waves travel in a uniform medium, one performs what is known
as alinear perturbation analysis, where one considers small deviations from an
equilibrium solution. We take a medium of constant density (ρ0), at rest (u = 0)
and in pressure equilibrium (at pressurep0) and study the effect of perturbations
in the density, pressure and velocity

p = p0 +∆p (84)

ρ = ρ0 +∆ρ (85)

u = ∆u (86)

When substituting these perturbations into the fluid equations (continuity and mo-
mentum equations), only keeping 1st order terms in the perturbed quantities and
assuming a barotropic EOS, one obtains the classical wave equation. This shows
that perturbations travel as waves through a fluid.
To use the equations:

∂ρ0 +∆ρ

∂t
+∇ · [(ρ0 +∆ρ)∆u] = 0 , (87)

which can be linearized as

∂∆ρ

∂t
+ ρ0∇ ·∆u = 0 . (88)
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Similarly, the momentum equation can be linearized as

∂∆u

∂t
= − 1

ρ0
∇∆p . (89)

If we now assume that the gas has a barotropic EOS, we can writethe pressure as
a function of density, and thus

∇∆p =
dp

dρ
∇∆ρ (90)

We can thus replace∆p with ∆ρ in Eq. 89 and by taking∂
∂t

of Eq. 88 minusρ∇·
of Eq. 89 we obtain

∂2∆ρ

∂t2
=

dp

dρ
∇2∆ρ , (91)

which is a wave equation for waves with wave speed
√

dp/dρ. This wave speed
is called thesound speed, symbolcs.
The general solution of this equation is

∆ρ = ∆ρ0 exp(ik · r− iωt) , (92)

wherek is the wave number vector (its absolute valuek is equal to2π/λ with λ the
wave length) andω is the angular frequency (equal to2πν if ν is the frequency).
Substituting Eq. 92 into 91 gives that

ω2 = c2s |k|2 , (93)

which is known as adispersion relation, giving the relation between the wave
numberk and the angular frequencyω. It can be used to calculate the phase and
group velocities of the waves

vphase =
ω

|k| (94)

vphase =
dω

dk
. (95)

In the case of sounds waves, the velocities are constant and do not depend on
frequency, making sound wavesnon-dispersive.
From the relations above we can also see that

c2s =
dp

dρ
(96)
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from which follows that

∆p = ∆ρ0c
2
s exp(ik · r− iωt) , (97)

and from Eq. 89 it can be deduced that

∆u =
∆ρ0c

2
s

ρ0ω
k exp(ik · r− iωt) =

∆ρ0
ρ0

cs
k

|k| exp(ik · r− iωt) . (98)

This last equation shows two things. First, the waves are longitudinal, that is their
velocity has the same direction as their wave vectors. Second, the amplitude of
the velocity variations is∆ρ0

ρ0
times the propagation speed of the wave, that is the

wave travels much faster than individual fluid elements.

Read Section 6.1 upto the last paragraph on page 66 in
Clarke & Carswell to see how the wave equation is found
from small perturbations.

Clarke & Carswell correctly point out that if there are variations in the fluid, one
should perform the linear perturbation analysis in the Lagrangian frame. However,
since we are considering the case of a constant density and pressure medium,
the distinction between the Lagrangian and Eulerian framesis not important. If
one wants to do the same analysis in a stratified medium, such as an exponential
atmosphere, one does need to perform the analysis in the Lagrangian frame. This
particular example is presented in Sect. 6.2 of Clarke & Carswell.

6.2 Sound speed

As we showed above, the sound speed depends on how the pressure reacts to
density changes, or rather since we assumed a barotropic EOS, on the form of that
barotropic EOS. As we saw in Sect. 4.2, there are two main versions of such EOS,
namely adiabatic and isothermal. There are thus also two versions of the sound
speed the adiabatic

cs =

√

γ
p

ρ
=

√

γ
kBT

µmH

, (99)

and the isothermal one

cs =

√

p

ρ
=

√

kBT

µmH

, (100)
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equal to the adiabatic one when one takesγ = 1. Which one is the relevant one
depends on the conditions. If the gas is truly isothermal, that is it can cool on time
scales smaller than those associated with the sound waves (ω−1, it is the latter
expression forcs. At the surface of the Earth this is actually not the case. There
is cooling, but it is not efficient enough to make sounds wavesisothermal. In
this case it is the adiabatic sound speed which should be used. Forγ = 7/5 and
appropriate values forT andµ one obtains∼ 330 m s−1 as the sound speed on
Earth.

Read the rest of Section 6.1 (page 67) on page 66 in Clarke
& Carswell to learn about the sound speed.

As was explained in the introduction, the sound speed is important when consid-
ering fluid problems, as it connects length and time scales. Therefore it is useful
to consider what are typical sound speeds for different astrophysical systems. As
was shown in the book, the sound speed depends on the temperature. If we take
the adiabatic sound speed for a monatomic hydrogen gas (γ = 5/3, µ = 1) the
numbers are like this

T (K) cs (km/s)
10 0.29
100 0.91
104 9.1
106 91
108 9.1102

These combinations of temperature and velocity often go together. Systems that
have velocities of the order of those listed above will oftenalso contain tempera-
tures of this order. For example, a stellar wind of∼ 1000 km/s will blow a bubble
in the surrounding gas which is filled with a hot gas of∼ 108 K.
Because the sound speed is equivalent to the temperature of the gas, for the
isothermal case it can be used to write the relation between pressure and density
as follows

p = ρc2s isothermal EOS. (101)

This means that theA that we used in Sect. 5.4 and in Sects. 5.2-3 of Clarke &
Carswell (and theK that was used in their Sect. 5.6) actually is equal toc2s .
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6.3 Shock waves

The momentum equation is non-linear containing a term proportional to the ve-
locity squared. This means that velocity variations will tend to steepen as the
faster moving fluid is transported faster than the slower moving fluid. When the
faster moving fluid is overtakes the slower moving fluid, something has to happen
as they cannot both exist in the same place. This something isa shock, in which
the faster moving fluid almost instantaneously brakes, converting a large part of
its kinetic energy into thermal energy.
An alternative way to look at shocks is by considering that all perturbations in a
fluid travel with the sound speed. Imagine a wall and a gas flowing towards the
wall. If the gas has a velocity lower than the sound speed, small perturbations
generated at the wall will travel upstream into the gas and communicate to the gas
that there is a wall up ahead. This will allow the flow to smoothly adjust to the
existence of the obstruction.
If the fluid is moving supersonically towards the wall, the perturbations travelling
still at the sound speed, cannot flow upstream as they are carried along by the fluid
faster than they can travel upstream. The supersonically moving flow does not
‘know’ that there is an obstruction ahead and cannot adjust and will collide with
the wall at its full speed. In the collision it will almost instantaneously convert its
high velocity to a low one, converting the kinetic energy into internal energy.

Read the introduction of Chapter 7 upto the middle of page
79 in Clarke & Carswell.

6.4 Rankine-Hugoniot relations

Shocks are regions in which the collisions between particles convert kinetic en-
ergy into internal energy. This happens in a region which hasthe size of the
mean free pathλ between particle collisions. This implies that inside the actual
shock region the distribution function of the particles is strongly non-Maxwell-
Boltzmann. However, the size of the region is very small compared to the rest of
the fluid, namely only about a mean free path. It therefore makes sense to treat
it as an infinitely thin transition region or a discontinuity. Using this assumption
and the fluid equations it is possible to find the relations between the conditions
on either side of the shock. The relations are known as the Rankine-Hugoniot
relations.
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They can be derived from the fluid equations by realizing thatin one (cartesian)
dimension and in the absence of an external force and radiative cooling, all five
equations can be written as

∂C

∂t
+

∂F

∂x
= 0 (102)

with

C =













ρ
ρux

ρuy

ρuz

E













and F =













ρux

ρu2
x + p

ρuyux

ρuzuz

(E + p)ux













, (103)

whereF are the so-called fluxes. If any of the quantities inC is a region is
constant, then the flux into and out of that region should be equal. Therefore in a
frame of reference in which the shock is stationary, the flux flowing into the shock
should be the same as the flux flowing out of the shock, otherwise there would be
either a pile up or an emptying of any of the quantitiesC. Therefore if “1” refers
to the material flowing into the shock region and “2” to material flowing out of
the shock region, we obtain (writingu for ux and for the moment not considering
the velocitiesuy anduz):

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (104)

1

2
u2
1 +

γp1/ρ1
γ − 1

=
1

2
u2
2 +

γp2/ρ2
γ − 1

,

where in the last relation we divided out a factorρu and used that(γ−1)E = p/ρ.

Read Section 7.1 starting in the middle of page 79 in Clarke
& Carswell to learn about the Rankine-Hugoniot relations.
Note that the contents of the paragraph about the relation
between pressure and internal energy (bottom of page 81
and top of page 82) is not specific to shocks and was already
described in Sect. 4.6 of these lecture notes.

The conditions before the shock (unshocked gas,ρ1, u1, p1) are known as the
pre-shock conditions; the conditions after the shock (shocked gas,ρ2, u2, p2) are
known as the post-shock conditions. Note that shocks arenot reversible so it is
easy to tell pre- from post-shock conditions: the density and pressure are always
higher in the post-shock region.
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6.5 Shock jump conditions

There are various ways to write the shock relations. A very common way (butnot
given in the book) is to express it in terms of the shock’s MachnumberM1, given
by u1/c1 whereu1 is the pre-shock velocity, measured in the shock frame.
The Rankine-Hugoniot conditions can then be manipulated into a form

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

=
u1

u2

(105)

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
. (106)

Since the sole parameter determining the magnitude of the jumps inρ, u andp is
M1, this number is often used to express the strength of the shock, for example
as in “a Mach 10 shock”. Note that the Mach number is always given as positive,
so one should really writeM1 = |u1|/c1.
SinceM1 has to be larger than 1 for there to be a shock, one sees thatu1 has to be
supersonic, and that the density and pressure go up, and the velocity goes down
as the flow passes through the shock. From the relations aboveone can also see
the maximum density ratio of(γ + 1)/(γ − 1) for M1 → ∞, and that there is no
such maximum for the pressure change. Furthermore the post-shock velocityu2

is subsonic, i.e. less than the sound speed in the post-shockgas.

u

u

1

2

shock

uy,1

ux,1

ux,2

uy,2

Figure 6: A shock refracting the velocity vector.
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Figure 7: The relation between the observer’s and shock frames of reference.

6.6 Refraction across shocks

The velocity component perpendicular to the shock is the onewhich is reduced
across the shock front. The velocity components parallel toa shock donotchange
across the shock, as can be seen from going back to Eq. 103, which for constant
mass fluxρux (Eq. 105) give thatuy,1 = uy,2 anduz,1 = uz,2. This means that
a shock in thex-direction changes the flow direction (i.e. the velocity vector) if
there arey andz components to the velocity vector. This is illustrated in Fig. 6.
This is known as shock refraction, as it is reminiscent of therefraction of light
rays at when they travel into a medium of different density.
Shock refraction is especially important for the case of curved shocks. Such
shocks may have different post-shock conditions as the angle between the pre-
shock velocity vector and the shock surface is changing.

6.7 Frames of reference

We derived the Rankine-Hugoniot relations for the so-calledshock frame, i.e. the
frame of reference in which the shock does not move and where the pre-shock
material flows into the shock and the post-shock material flows out of the shock.
This gives the simplest form for the shock jump conditions. However, one often
needs to calculate results in another reference frame, for example that of a star,
or a medium at rest into which a shock wave is travelling. Thisis then called the
observer’s or lab frame. In this frame the shock may be moving.
Let’s call the shock velocity in the lab framevsh, the pre- and post-shock velocities
in the lab frameu′

1 andu′

2, and the pre- and post-shock velocities in the shock
frameu1 andu2. Then obviously,u1,2 = u′

1,2 − vsh. See Fig. 7.
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Since the shock jump conditions can be conveniently writtenin terms of the pre-
shock Mach number in the shock frameM1, it is also good to realize thatM1 =
|u′

1 − vsh|/c1 (here we dropped the subscript 1 for the Mach number of the again,
see Sect. 6.5).
One should also remember that in the lab frame the shock may move in any di-
rection. It could move in direction of the shocked material,and in the direction
of the unshocked material. This also means that in the lab frame, the flow on
both sides of the shock may be supersonic, even though in the shockframe, the
pre-shock material has to be super- and the post-shock material sub-sonic. In this
sense shock waves are true wave phenomena: they have their own velocity vsh
with which they travel.

6.8 Isothermal shocks

If there are no energy losses (Q̇cool = 0), the temperature in the post-shock region
will be high. Very often this higher temperature will trigger (radiative) cooling
processes in the gas and as the gas is moving away from the shock, its temperature
will drop (see Fig. 7.4 in Clarke & Carswell). If the cooling processes are so
efficient that the temperature returns to the same value it had in the pre-shock
region within a distance much smaller than any length in the system, the shock is
called an isothermal shock.

Read Section 7.2 in Clarke & Carswell to learn about
isothermal shocks.

Isothermal shocks correspond to the caseγ = 1 in the shock jump conditions. This
means that much higher compression factors are possible across an isothermal
shock.

6.9 Other discontinuities/waves

Apart from shock waves there are other characteristic wavesthat occur in fluids.
The book does not look at these, even though they are quite essential in some
astrophysical contexts.
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Figure 8: Collision of two flows, leading to the formation of three discontinuities.

6.9.1 Contact discontinuities

Looking back at the Rankine-Hugoniot conditions (Eq.105) one can see that they
allow another, seemingly trivial solution:

u1 = u2 = 0 (107)

p1 = p2 (108)

andnocondition on the densities. This solution does correspond to a physical phe-
nomenon, called acontact discontinuity: a surface without pressure or velocity
differences, butwith a density jump. A contact discontinuity never forms spon-
taneously, but always originates from an initial discontinuity. Since the pressure
is the same on either side, but the density is not, contact discontinuities separate
areas of different temperature and entropy. Because of this they are sometimes
referred to as entropy waves.
An example of a contact discontinuity is a fast flow hitting a slow flow, as schemat-
ically shown in Fig. 8. In this example the fast flow has a lowerdensity. The
collision leads to three discontinuities: a shock in the fast flow, a shock in the
slow flow, and a contact discontinuity separating the areas of shocked fast and
slow flow. The origin of the discontinuity in this case is the initial discontinuity
between the fast and slow flows.
Since there is no flow across the contact discontinuities, there are no jump condi-
tions that can be written for them. The jumps in density and temperature can in
principle be arbitrarily high.
Contact discontinuities are found in a number of astrophysical problems. One is
the interaction of a stellar wind with a surrounding medium.As the stellar wind
is pushing the medium aside, there will be a region of shockedstellar wind and
a region of shocked environment. These two regions are separated by a contact
discontinuity. A similar situation occurs when a supersonic jet is running into a
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Figure 9: Visualization of a computer simulations of an astrophysical jet from
Camenzind & Krause (2001). The figures show density contours.The main jet
beam is running along the x-axis (the cylindrical symmetry axis of the problem).
The contact discontinuity is mostly clearly visible in the early phases before the
flow becomes turbulent. It is the thick pile up of contour lines, indicating a large
jump in density. The outermost contours is the so-called bow-shock of the jet,
through which the surrounding medium is shocked.

medium, see Fig. 9. You will also encounter contact discontinuities in the collid-
ing flows that are part of the computer lab.

6.9.2 Expansion waves

Shock waves can be said to be compression waves: material gets compressed as it
goes through the shock. Contact discontinuities are entropywaves, through which
no material travels. The third kind of wave is the so-calledexpansion wave, which
is basically the reverse of a shock wave: material streams inwith a high density,
low velocity and high pressure, and leaves with a low density, high velocity and
low pressure. They are also known asrarefaction waves, as the density is lowered
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Figure 10: The impossible expansion shock.

when passing through them.
Mathematically, expansion waves could also be discontinuities. However, this
would mean that in such an expansion shock internal energy would be converted
into bulk kinetic energy, or equivalently, that the entropywould be lowered (see
Fig. 10). This goes against the 2nd law of thermodynamics.
As a result expansion waves are not discontinuities, but smooth transition waves,
in which bothρ andp change while conserving entropy.
Expansion waves for example occur when you pull out a piston,and the gas has
to adjust to the new larger volume (Fig. 11). The head of the wave is the position
where the density starts to drop. Since it is a smooth, entropy conserving wave,
the velocity of an expansion wave is always the speed of soundc, or if the medium
has a velocityu+ c or u− c.

ρ

ρPiston wave
Expansion

Figure 11: An example of an expansion wave.
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6.10 Summary

The most important points from this chapter are

•

•

•
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7 Blast from the Past

The classical astrophysical example of the use of shock physics is the solution
for an idealized explosion, the so-called spherical blast wave, also known as the
Sedov-Taylor problem. This solution is relevant for supernova explosions, al-
though not for the very early phases and not for the very late phases.

7.1 Supernova explosions

Supernova explosions are among the most energetic phenomena in the Universe.
In a short period energies of around1051 ergs (1044 J) are released. Since this
amount of energy is released in a relatively short time, the peak luminosity of a
supernova can be comparable to that of a whole galaxy.
The origin of the explosion is one of two types of stars.

• Thermonuclear supernova:these are the former cores of low to intermedi-
ate mass stars (Minitial < 8 or 9 M⊙) which through nuclear fusion and mass
loss have evolved into compact white dwarfs (WD) of mass∼ 1 M⊙ con-
sisting of carbon and oxygen. If such a WD through mass accretion from a
companion star reaches the so-called Chandrasekhar mass of 1.4 M⊙ it will
start to collapse and initiate carbon fusion in an explosiveway which will
disrupt the whole star. Observationally these supernovae are classified as
type Ia.

• Core collapse supernova: these are massive stars (Minitial > 8 or 9 M⊙)
which through different stages of nuclear fusion have builtup a central core
consisting of elements of the iron group. Nuclear fusion involving elements
heavier than iron no longer produces energy, but rathercostsenergy. As the
star tries to keep a high pressure in the core to counteract its own gravity,
initiating another stage of nuclear fusion beyond iron willlead to the grav-
itational collapse of the core. Through a serious of processes this collapse
is turned into an explosion in which most of the star is ejected, although the
core is likely to form a neutron star or black hole. Observationally these
supernovae are classified as type II, Ib and Ic (depending on the amounts of
hydrogen and helium they show in their spectra).

Supernova explosions are important as they inject a large amount of energy in
the interstellar medium of a galaxy, and also distribute heavy elements formed in
the star and in the explosion, changing the so-called metallicity (the amount of
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elements heavier than helium) of galaxies. The feedback from a supernova may
disrupt a star forming cloud, or it may actually trigger further star formation.
A supernova explosion will trigger a shock wave which will travel for a long time
(∼ 1 million years) and over large distances (∼ 50 pc) through the interstellar
medium. This phase of the expansion of the shock wave, after the supernova itself
has faded, is called the supernova remnant. There are many supernova remnants
known in the Milky Way. Some from historic supernovae (such as Tycho’s and
Kepler’s from supernova observed on Earth in the 16th and 17th century, and
the Crab nebula from the supernova of 1054 AD, recorded by the Chinese), and
some from much older supernova (e.g. the Veil nebula from a supernova explosion
between 5,000 and 8,000 years ago).

Figure 12: Composite image of the SN 1006 supernova remnant, which is located
about 7000 light years from Earth. Blue: X-ray data from Chandra X-ray Obser-
vatory. Yellow: optical data from the University of Michigans 0.9 meter Curtis
Schmidt telescope at the NSFs Cerro Tololo Inter-American Observatory (CTIO).
Orange & lightblue: optical data from the Digitized Sky Survey. Red: radio data
from the NRAOs Very Large Array and Green Bank Telescope (VLA/GBT).

The blast wave solution that we will study, has a number of assumptions:

• The explosion only has energy, no mass. This means in practice that it is
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only valid for periods in which the mass pushed aside by the explosion is
much larger than the mass contained in the explosion. For supernovae this
means that the solution is not valid for the initial phases.

• The explosion is spherical and the environment is homogeneous. This means
that the solution will be spherically symmetric.

• The pressure of the surrounding medium is negligible compared to the post-
shock pressure, implying a strong shock. For supernovae this is not valid at
later times, since the shock wave will slow down over time.

• Radiative losses are unimportant. For supernovae this is notvalid at later
times; as the shock wave slows down, radiative losses becomeincreasinly
important.

These assumptions mean a severe simplification of the problem, but it also means
that the problem only has two input parameters: the explosion energyE and the
density of the environmentρ0. The fact that it has only those two input parameters
leads to an interesting behaviour of the solution, namely that it is self-similar (see
below). This solution is called the Sedov-Taylor solution.

7.2 Sedov-Taylor solution

This solution for a strong explosion was found not in the context of astrophysics,
but rather in the context of atomic weapons research. Geoffrey Ingram Taylor in
Britain and Leonid Ivanovitch Sedov independently discovered the solution. Tay-
lor used his solution to derive the energy released by the first American atomic
bomb using only photographs of the explosion published in magazines. This num-
ber was considered classified information, so the fact that someone could deduce
it from some photographs caused quite some consternation inthe US.
The Sedov-Taylor solution consists of two parts. The first part is the expression
for how the shock front grows with time:

R(t) = ξ0

(

Et2

ρ0

)
1

5

, (109)

whereξ0 is a constant. This part is easy to derive using dimensional arguments.
The second part of the solution describes the internal structure of the blast wave
in terms of its density, velocity and pressure profiles. It isthese profilesρ(r),
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u(r), p(r) which are self-similar: their shape is the same at all times,apart from
a stretching factor (due to the expansion of the blast wave) and an amplitude or
scaling factor. So for example, if the solution would be a Gaussian curve, it may
widen and the peak value may change, but it would always remain a Gaussian
curve.
Written in terms of equations, a similarity solution can be written down as follows

S(r, t) = S1(t)S̄(ξ) (110)

ξ = rf(t, problem parameters) (111)

whereξ is a dimensionless distance parameter, andf is a combination of the time
t and the problem parameters, with dimension 1/length. The function S̄(ξ) is
constant in time, but the scale factorS1(t) is time dependent and the mapping of
ξ to the proper distancer is time dependent (the solution gets stretched in case of
an expansion).
Clarke & Carswell present the solution in two ways, first in Sect. 8.1.1 with an ap-
proximate method where they rely on some ad hoc assumptions and global conser-
vation principles (such as that the change in the total momentum must be equal to
the force, that is the pressure times the surface). Then theypresent the self-similar
solution, spread out over two sections, first the expressionof how the shock front
grows (Eq. 109) in Sect. 8.1.2, then the full similarity solution in Sect. 8.3.

Read Chapter 8 in Clarke & Carswell up to Section 8.4 to
learn about the Sedov-Taylor solution.

In Eq. (8.6) the book does the transformation from the shock frame to an ob-
server’s frame we described in Sect. 6.7. The post-shock velocity in the observer’s
frame (u′

2 in the notation of Sect. 6.7) is calledU in the book.
Please note a few typographic errors in the text of Clarke & Carswell

1. Their equation (8.38) is derived using Eqs. (8.27) and (8.25) according to
the text. I suspect they mean Eqs. (8.31) and (8.35).

2. Similarly, their Eq. (8.39) does not follow from Eqs. (8.28) and (8.25), but
rather from Eq. (8.36).

3. Thep0 in Eq. (8.39) should be aρ0.
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Figure 13: The self-similar Sedov-Taylor solution for the blast wave problem.
Red curve: density, blue curve: velocity, green curve: pressure. All curves are
normalized to the value at the shock.

The actual form and derivation of the self-similar functions for the density, veloc-
ity and pressure (Sect. 8.3 in Clarke & Carswell) are instructive to have seen, but
are not exam material. Figure 13 shows the self-similar solutions for ρ, ur and
p for the Sedov-Taylor problem (also shown in Fig. 8.8 in the book). The differ-
ences between the three curves are interesting. The densitybecomes really low in
the centre of the blast wave and so most of the material is found near the edge of
the structure. The pressure is approximately constant in the centre of the structure
and increases near the edge. The ratio of the pressure and density implies that the
centre of the blast wave is the hottest part. The velocity is gradually increasing
from the centre outward.

7.3 Validity of the Sedov-Taylor solution for supernovae

As also pointed out in the book, the Sedov-Taylor solution isnot valid for the
early stages of a supernova explosion. This can be seen from the solution for the
velocity which diverges fort → 0. Observations show that velocities for the actual
explosion are around104 km s−1, so as long as the velocity of the Sedov-Taylor
solution is above this, the solution is not valid. Also, the assumption is that the
amount of matter swept aside by the supernova explosion should be much more
than the mass of the actual explosion (Mejecta, the “ejecta”). This means that when
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the explosion takes place in a medium of densityρ0 that

R ≫
(

3Mejecta

4πρ0

) 1

3

(112)

The ejecta are typically several solar masses for core collapse supernovae and of
order a solar mass for a thermonuclear supernova. Using the density value for the
book (ρ0 = 10−21 kg m−3) and an explosion energy of1044 J, one finds that the
supernova remnant has to be several 1000 years old to reach this condition.
Also for the later stages the Sedov-Taylor solution is not valid. This is described
in more detail in Sects. 8.4 and 8.5 of Clarke & Carswell. There are essentially
two reasons why the solution becomes invalid:

1. At some point the shock speed becomes of order the sound speed, which
is equivalent to saying that the blast wave pressurep1 becomes similar to
the outside pressurep0. This signals the transition from a shock wave to a
normal sonic wave. For the typical parameters used in the book this happens
when the blast wave reaches a size of∼ 100 pc.

2. The shocked gas starts to lose significant amounts of energy due to radiative
cooling. This is because radiative losses depend strongly on the temperature
of the gas. As the blast wave expands, the inside temperaturekeeps going
down. Below a temperature of105 K radiative cooling becomes much more
efficient. The Sedov-Taylor solution assumes that radiative cooling can be
negelected, so once radiative losses become important the solution changes.
For the typical parameters used in the book this happens whenthe blast
wave reaches a size of∼ 20 pc. The new solution gives a slower increase
of size of the blast waveR ∝ t0.3.

In addition the sphericity of the blast wave is more likely tobreak down once it
grows to larger sizes as the blast wave reaches sizes comparable to the thickness
of a galactic disk.

Read Section 8.4 and 8.5 in Clarke & Carswell to learn
about the breakdown of the Sedov-Taylor solution.

7.4 Summary

The most important points from this chapter are
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• A strong explosion into a low pressure environment can be characterized
with the explosion energyE and density of the environmentρ0.

• If these two are the only parameters of the problem, there is no typical
length or time scale in the problem, but rather one can construct a unique
dimensionless similarity variableEt2/(ρ0r

5) relating length and time.

• From this similarity variable one can directly show that theshock wave will
expand asr ∝ t

2

5 .

• It is also possible to derive similarity solutions for the density, velocity
and pressure which have the same functional form at all times, with time-
dependent scaling factors for the amplitude and the radial coordinate.

• The Sedov-Taylor solution is an idealized solution to the problem of a su-
pernova explosion. It is not valid early on (when the mass from the ejects
dominates), and it is not valid at later times (when radiative cooling becomes
important).
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8 Behind the shower curtain

The chapter deals with simple stationary solutions for the gas dynamic equations
without shocks. Stationary implies that all the∂/∂t terms are zero, butnot that
the gas velocityu is zero.

8.1 Bernoulli equation

The first stationary ‘solution’ we consider is the one found already by Daniel
Bernoulli in the 18th century. In its full form it describes a quantity in a stationary,
barotropic (p = p(ρ)) flow that is conserved along stream lines. This quantity is

H =
1

2
u2 +

∫

dp

ρ
+Ψ , (113)

where the term
∫

dp/ρ should be interpreted as the indefinite integral of that func-
tion. As is shown later in the book our two standard cases of isothermal and
polytropic (p ∝ ρ1+

1

n ) have the following expressions
(∫

dp

ρ

)

isothermal

= c2s ln ρ (114)
(∫

dp

ρ

)

isothermal

= nc2s , (115)

The book usesn here instead ofγ to allow for an EOS which has the same form
as the adiabatic one (p ∝ ργ), but which does not necessarily have the value for
the exponent given by thermodynamics. An example would be a monatomic gas
(which has adiabatic indexγ = 5/3) whose temperature through some heating &
cooling process is proportional to a power of the density, e.g.T ∝ ρ1/3. The ideal
gas law (p ∝ ρT ) in this case gives a barotropic EOSp ∝ ρ4/3, which implies a
polytropic index isn = 3. However, theγ for this gas is still 5/3, since the intrinsic
properties of the gas particles have not changed. So for example the relation
between internal energy and pressure is still given byρE = p/(γ − 1) = 3

2
p.

Because of this it is prudent to separate betweenn andγ. In the astrophysical
literature this difference is often overlooked andγ is used for both (a potential
source of confusion).
Note that if the gas is adiabatic so that one can useγ in the EOS, that

∫

dp/ρ = ρh,
whereh is the specific enthalpy introduced in Chapter 4 of these notes.
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Read Chapter 9 of Clarke & Carswell up to Eq. (9.10) to
learn about Bernoulli’s equation.

There are many applications of Bernoulli’s equation and the title of this chapter
refers to one which is also mentioned in the book.

8.2 Vorticity and potential flow

In deriving Bernoulli’s equation the concept of vorticity was introduced:

w = ∇× u . (116)

The vorticity is in some cases a convenient quantity to work with. Essentially it
is a measure of how much rotation or shear a flow contains. However, one cannot
say that a fluid only has vorticity if it rotates: a fluid in solid body rotation does
rotate but has zero vorticity. At the same time a fluid with a transverse velocity
gradient does not rotate, but does have vorticity. The way tothink about vorticity
is to take a cross made of two little rods and place it in the fluid. If the rod starts
to rotate (change its orientation) as it is being carried along by the fluid, then the
fluid at that point has vorticity. To understand this better it is recommended to
watch the video “Vorticity, Part 1” from the MIT Fluid Mechanics Films (see the
link underResources/Extra information in the Mondo pages).
In many Earth-based fluid problems, the fluid (air or water) can to be approx-
imated as incompressible. In that case the only equation youneed to solve is
Helmholtz equation,

∂w

∂t
= ∇× (u×w) (117)

(Eq. (9.14) in Clarke & Carswell). For this case, it can also be shown that if
an inviscid fluid does not have any vorticity to begin with, itwill not develop any
(known as Kelvin’s vorticity theorem). This is also true forfluids with a barotropic
EOS, so for example for an adiabatic flow. This thus opens up for the concept of
irrotational fluids which have and keepw = 0. For irrotational fluids one can write
the velocity as the gradient of some potential functionΦu (since∇×∇Φ = 0 for
all Φ). Clearly solving for a potential fieldΦu is easier than solving for a vector
u. If the flow vector field can be described by such a potential, one speaks of a
potential flow.
For the Earth-based problems of incompressible fluids, there is the second condi-
tion on the velocity∇ · u = 0. So for an irrotational and incompressible fluid,
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one obtains the equation
∇2Φu = 0 , (118)

which is Laplace’s equation which one also encounters in other branches of physics
such as electrostatics and gravity in vacuum. Many techniques exist for solving
this equation.

Read the rest of Section 9.1 of Clarke & Carswell to learn
about vorticity.

8.3 The de Laval nozzle

The second stationary solution we consider is that of a fluid flow through a pipe
of varying cross section. This is a famous example from engineering which actu-
ally has some relevance for astrophysics. If one constructsa pipe which initially
becomes narrower and then widens again, it can be used to smoothly accelerate
a fluid to supersonic velocities. This device is known as the “de Laval nozzle”
as it was developed by the Swedish engineer and inventor Gustaf de Laval (1845
– 1913), who founded the company which is now known as Alfa Laval. The so-
lution of stationary flow through a pipe of varying cross section shows that the
transition to supersonic flow can only happen at the narrowest point of the pipe.

Read Section 9.2 of Clarke & Carswell to learn about the de
Laval nozzle solution.

8.4 Spherical accretion and stellar winds

Perhaps unexpectedly, the idea of the de Laval nozzle that a sonic transition can
only happen at a special position (the narrowest part of the pipe in the case of the
nozzle), carries over to spherical flows around heavy bodies(stars). Depending
on whether the material is falling towards the star or flowingaway from it (i.e.
the sign of the radial velocity component), we speak of (spherical) accretion or
(spherical) stellar winds. In both cases the flow can accelerate to become super-
sonic, but it can only do this at a very specific point, the so-called sonic point. For
a stationary stellar wind the passage through the sonic point is required for the
material to be able to escape from the star. This implies thata stellar wind will
always become supersonic.
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The equation describing a stellar wind (outflow) or spherical accretion (inflow)
around a body of massM is

(u2 − c2s )
d ln u

dr
=

2c2s
r

[

1− GM

2c2sr

]

(119)

which has a critical point at

rs =
GM

2c2s
(120)

Read Sections 9.3 to 9.5 of Clarke & Carswell to learn about
spherical accretion and stellar wind solutions.

Stellar winds are common in astrophysics. Our Sun has a stellar wind (of low mass
flux) which does not affect the evolution of the Sun much, but which does however
have important effects on the planets and comets. Once the Sun evolves into a red
giant, it will develop a much more substantial stellar wind which will carry away
about about half the Sun’s mass within less than 1 million years. Massive stars
have stellar winds of high mass flux throughout their lifes.
The two main parameters of a stellar wind are its velocity at large distances from
the star (u∞) and the mass loss rate (Ṁ ). For a steady stellar wind the mass loss
rate is constant, and since it is the rate of material passingthrough every radiusr,
it is related to the density and velocity as

Ṁ = 4πr2ρ(r)u(r) . (121)

For large radii, the velocity becomes constant atu∞, so a steady stellar wind will
have a density profile which varies as1/r2.
When a stellar wind interacts with a surrounding medium, a so-called stellar wind
bubble is formed. As we have seen a stellar wind will have to become super-
sonic. This means that it will not be able to react to the presence of a surrounding
medium, and a stellar wind bubble will always contain a shockin the stellar wind.
If the stellar wind is powerful enough, it will also trigger the formation of a shock
in the surrounding medium. There will thus be two shocks, separated by a con-
tact discontinuity. The contact discontinuity separates shocked material from the
surrounding medium from shocked stellar wind material, seeFig. 14.
Examples of stellar wind bubbles are so-called Ring Nebulae around massive
stars, especially around stars known as Wolf-Rayet stars, which represent a phase
of the most intense mass loss in the life of massive stars. Another example are
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Figure 14: Stellar Wind Bubble. The inner white area is the unshocked, freely
expanding stellar wind (I). The hatched area is the shocked stellar wind (II), the
black area is the shocked material from the surrounding medium (III). Outside of
that sits the unshocked environment (IV). There are three discontinuities separat-
ing these four areas: an inner shock (Rinner), a contact discontinuity (Rc), and an
outer shock (RSWB)

Planetary Nebulae, which form after low to intermediate mass stars have lost a
large part of their mass as a red giant and have turned into hotwhite dwarfs with
fast stellar winds (∼ 2000 km s−1). In both these cases the stellar wind is not
actually colliding with the interstellar medium, but with matter previously lost by
the star, that is a previous stellar wind phase. Especially Planetary Nebulae are
known for their wide variety of shapes, most of them being farfrom spherical.
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8.5 Summary

The following points summarize the most essential conceptsintroduced in this
chapter.

• For stationary flows, the Bernoulli equation gives how the velocity and
pressure vary along a streamline: the Bernoulli termH is constant along
a streamline.

• The vorticity is defined asw = ∇ × u. It is a measure of the amount of
shear in flows.

• In an inviscid flow, vorticity cannot be generated. Flows without vorticity
are called irrotational flows and their velocity field can be described by a
scalar potential field; they are therefore known as potential flows.

• The De Laval nozzle with varying cross sectionA and the equation for
stationary spherical accretion or outflow from a body of massM are both
examples of cases where a flow can make a smooth transition from sub- to
supersonic flow. However, this transition has to happen at a special location.
In the case of the nozzle, at the narrowest point, in the case of a spherical
inflow/outflow at the sonic pointGM

2c2s
.

• For these flows the conditions at the sonic point determine the solution for
the entire problem.
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9 Numerical Gas Dynamics: Is your method Good’enuf?

9.1 Introduction

Since analytical solutions to the fluid equations are only possible in a few limited,
idealized cases, the development of computers during the second half of the 20th
century has led to a whole new branch of fluid studies. In fact,fluid problems
were among the first problems to be tackled with computers (during the Manhattan
project for the development of the atomic bomb).
Unfortunately, the complexity of the equations also makes them hard to solve
numerically, especially in the case of compressible flows containing shocks (as
is the usual case in astrophysics). This has led to a large variety of methods for
doing computational fluid dynamics (CFD) which all have theirlimitations.
In this chapter we will look at some of the basic principles which should give
you an impression of what CFD is about. The intention of these notes is to il-
lustrate howphysicalprinciples come back when trying to treat fluid problems
numerically.

9.2 Eulerian versus Langrangian

As we saw when studying the basic equations of fluid dynamics,there are two
ways to look at a fluid: Eulerian (where one describes the changes in a fluid at
given points in space) and Lagrangian (where one follows theevolution of fluid
elements). These two ways have their equivalents in numerical methods to study
fluid problems. Eulerian methods divide space into agrid of points, and solve for
the evolution of the density, velocity and pressure at thosepoints. The area around
a grid point is called a grid cell. Below we will look at such Eulerian methods.
Lagrangian methods define fluid elements and follow their evolution. As it turns
out to be very difficult to follow the evolution of fluid elements of a given ini-
tial volume in multiple dimensions (because of the deformation of these volumes
due to the flow), the only successful method uses fluid-like particles of a given
mass, velocity and pressure and follows these particles as they move around. This
technique is calledSmooth Particle Hydrodynamicsor SPH and is widely used
in astrophysics. In SPH the local fluid quantities (density,pressure) are defined
by smoothing the particles with a so-called smoothing kernel function (hence the
termsmoothparticles). The smoothing kernel could for example be a Gaussian.
The local density is determined by the number of particles ina given region. One
can therefore regard the method as beingadaptive: particles concentrate in high
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density areas and consequently these areas are well sampled. Reversely, under-
dense regions are less well sampled.
SPH is described more extensively in the book by Michael Thompson (Sec. 6.7,
see the document with additional material). SPH works well for self-gravitating
flows (where particles tend to collapse to form smaller and smaller structures of
higher and higher density), but has problems with large density contrasts and steep
gradients such as found in shocks. In fact, the dissipative effects of shocks have
to be explicitly added. SPH is very popular in cosmological problems, as it is
easily combined with an N-body approach for dealing with thegravity from dark
matter. The most widely used package for SPH simulations wasdeveloped by
Volker Springel and is calledGADGET.

9.3 Upwind and CFL condition

For reaching some understanding of the techniques used for the Eulerian ap-
proach, we start with the advection equation for a constant velocity u, in one
dimension (1D). Although relatively simple, this equationowns many of the basic
properties of the fluid dynamical equations:

∂ρ

∂t
+ u

∂ρ

∂x
= 0 (122)

To solve this numerically we introduce a discretization (spatial grid and time
steps):

xj = x0 + j∆x (123)

tn = t0 +
n−1
∑

n′=0

∆tn′ (124)

If we then specify an initial condition forρ(xj) we can follow its evolution by
stepping through time with time steps∆tn′ (which can vary between time steps).
For now we take our spatial grid to be uniform: all points are∆x apart. A grid is
sometimes also referred to as a mesh; these two words are usedinterchangibly.
With this discretization we can write several recipes for finding the density at the
end of a time step (ρ(xj, tn+1), to be written asρn+1

j ) from that at the beginning

69



of the time step (ρnj ). For example

ρn+1
j − ρnj
∆tn

= −u
ρnj+1 − ρnj

∆x
FTFS (125)

= −u
ρnj − ρnj−1

∆x
FTBS (126)

= −u
ρnj+1 − ρnj−1

2∆x
FTCS (127)

where FTFS stands for Forward Time, Forward Space, FTBS for Forward Time,
Backward Space, and FTCS for Forward Time, Centered Space. These are all
explicit methods in which the new solutionρn+1

j can be found directly from the
old solutionρnj . If the new solutionρn+1

j can be found from a combination of the
old and the new solution, the method is calledimplicit. In this case one needs to
iterate in order to find the new solution.
If one tries these three approaches one finds that

1. FTFS is always unstable foru > 0, and sometimes stable foru < 0

2. FTBS is always unstable foru < 0, and sometimes stable foru > 0

3. FTCS is always unstable

4. FTFS foru < 0 and FTBS foru > 0 are only stable if∆tn < ∆x/|u|

Results for the advection of a square wave using these three methods are shown in
Fig. 15, which were taken from the bookComputational Gasdynamicsby Culbert
Laney.
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Figure 15: Figures the behaviour of the FTFS, FTBS and FTCS algorithms for
the linear advection equation. The initial condition is a square wave, as shown in
solid line in Fig. 11.5. The little circles show the numerical solution after 25 time
steps. The advection velocity is 1. Taken fromComputational Gasdynamicsby
Culbert Laney.
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These results imply that

1. One must take into account thedirection of the flow (a concept known as
up-wind).

2. One must choose∆tn such that one cell only has time to communicates
with its direct neighbours. This is of course related to thespeedof the flow:
∆x/|u|.

Conclusion 2 leads to the so-called Courant-Friedrich-Lewy (CFL) condition

∆t <
∆x

max(|a|) (128)

wherea are all the flow speeds in the problem. One often writes

∆t = ηCFL
∆x

max(|a|) (129)

with ηCFL < 1, the so-called CFL number of the calculation.
For the advection equationa = u. However for the Euler equations one also needs
to take into account the sound speed, as signals with travel with the sound speed:

a = max(|u− cs|, |u+ cs|) (130)

This connects to the concept of the domain of dependence: only the region of
space-time bounded by the linesu − cs andu + cs can be reached by the point
under consideration (see Fig. 16). If∆t > ∆tCFL, pointxj should physically also
affectxj+2, but the methods FTBS and FTFS do not accommodate this. Hence
their unstable character in this case.
The CFL condition is only necessary for explicit methods. Forimplicit methods
(in which the new solution is found through iterating over itself), the solution
knows about itself through the iteration process and the time step can be larger
than given by the CFL condition.
Figure 16 illustrates something else: for the Euler equations there is not asingle
flow direction. Depending on the values ofu andcs, the flow directions may be all
positive (needing FTBS), all negative (needing FTFS), or some positive and some
negative. Clearly a rather advanced method that can deal withsuch multiple flow
directions is needed for the Euler equations.
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Figure 16: Characteristic directions in space-time delimiting the domain of de-
pendence.

9.4 von Neumann stability analysis

How can we easily analyze the stability of a given method? This can be done using
the von Neumann stability analysis (a linear stability analysis technique). Let’s
consider our advection equation with the FTFS method (Eq. 125), and writeρnj as
Cn

k exp(ikj∆x), i.e. a series of sine waves. This is the same approach as usedin
the linear stability analysis when studying flow instabilities (see Chapter 11), but
here it is implemented on a discrete mesh. The idea of the von Neuman method
is to evaluate the ratioR = |Cn+1

k |/|Cn
k |. If R is larger than 1 for all cases, the

solution will go to infinity for largen, and is unstable. The von Neumann stability
analysis is thus the computational equivalent of the usual linear stabiltiy analysis.
SubstitutingCn

k exp(ikj∆x) into Eq. 125 gives

Cn+1
k eikj∆x = Cn

k e
ikj∆x − λ

(

Cn
k e

ik(j+1)∆x − Cn
k e

ikj∆x
)

(131)
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where we wroteλ for u∆t/∆x. So

Cn+1
k = Cn

k − λ
(

Cn
k e

ik∆x − Cn
k

)

(132)

Cn+1
k

Cn
k

= 1− λ(eik∆x − 1) (133)

= 1 + λ− λ cos(k∆x)− iλ sin(k∆x) (134)
∣

∣

∣

∣

Cn+1
k

Cn
k

∣

∣

∣

∣

2

= (1 + λ− λ cos(k∆x))2 + (λ sin(k∆x))2 (135)

= 1 + 2λ(1 + λ)(1− cos(k∆x)) (136)

which is only always smaller than 1 for2λ(1 + λ) ≤ 0, or

−1 ≤ u∆t

∆x
≤ 0 (137)

meaning thatu has to be negative, and the CFL condition needs to hold, exactly
the result given in Sect. 9.3.

9.5 Conservation

Let us look at the Euler equations which for a 1D, cartesian coordinatex can be
written as

∂W

∂t
+

∂F

∂x
= 0 (138)

whereW = (ρ, ρu, E)T is called the state andF = (ρu, ρu2 + p, (E + p)u)T the
flux of the fluid. A more general case also accomodates forsource terms

∂W

∂t
+

∂F

∂x
= S (139)

whereS could be external source terms (force, heating, cooling, etc.), or geo-
metric source terms (due to a non-intertial frame of reference, curvilinear coordi-
nates).
If one defines a cell on our mesh to run fromxj− 1

2

to xj+ 1

2

(with the cell centre
at xj), and a time interval fromtn to tn+1, one can write the integral form of the
equations as
∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

∂W

∂t
dxdt+

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

∂F

∂x
dxdt =

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

Sdxdt (140)
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Figure 17: Contour of integration in discretized space-time.

where the double integral is actually a closed curve in space-time (Fig. 17).
This gives
∫ x

j+1
2

x
j− 1

2

W(x, tn+1)−W(x, tn)dx+

∫ tn+1

tn

F(xj+ 1

2

, t)− F(xj− 1

2

, t)dt =

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

Sdxdt (141)

Note that we can define the cell averaged state and the time averaged flux as

〈W(xj, t)〉 =
1

∆x

∫ x
j+1

2

x
j− 1

2

W(x, t)dx (142)

F̂(x, tn+ 1

2

) =
1

∆t

∫ tn

tn

F(x, t)dt (143)

and with these defintions we can write

〈W(xj, tn+1)〉 = 〈W(xj, tn)〉+
∆t

∆x

[

F̂(xj− 1

2

, tn+ 1

2

)− F̂(xj+ 1

2

, tn+ 1

2

)
]

+∆t〈Ŝ(xj, tn+ 1

2

)〉 (144)

which holdexactly.
ForS = 0 this form is known as theconservative form, since in this form the con-
served quantitiesW only change because they receive or give to their neighbours.
The spatially integrated values remain constant. See Fig. 18 for an illustrative
sketch. The effect of the presence of a source term can be illustrated as in Fig. 19.
The conservative form does provide us with a useful general formula for describ-
ing a numerical method

Wn+1
j = Wn

j +
∆t

∆x

(

F
n+ 1

2

j− 1

2

− F
n+ 1

2

j+ 1

2

)

+∆tSn
j (145)
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Figure 18: Illustration of the principle of conservative methods.
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Figure 19: Illustration of the principle of conservative methods with a source term
added.

IgnoringS for now, this formula suggests that our task in designing a numerical

hydrodynamics method is about finding a good recipe forF
n+ 1

2

j− 1

2

. Note that this

flux in the conservative form is a time-averaged flux

F̂(xj+ 1

2

) =
1

∆t

∫ tn

tn

F(xj+ 1

2

, t)dt (146)

≈ F(xj+ 1

2

, tn+ 1

2

) +O(∆t2) (147)

≈ F(xj+ 1

2

, tn) +O(∆t) (148)

So the more accurate results would be found for a flux value from the intermediate
time.
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Conservative methods are useful because they automaticallyconserve the con-
served quantities, and the conservative form is also valid at shocks (as we saw
when we derived the Rankine-Hugoniot conditions). Since shocks are discontinu-
ities, they are in fact a big challenge for many numerical methods.

9.6 Lax-Wendroff method

We now look at one of the earlier methods developed for CFD. Thefact that we

needF(xj+ 1

2

, tn+ 1

2

) = F
n+ 1

2

j+ 1

2

suggests the following simple, two step approxima-

tion

1.Predictor W
n+ 1

2

j+ 1

2

=
1

2

(

Wn
j +Wn

j+1

)

+
∆t

2∆x

(

Fn
j − Fn

j+1

)

(149)

2.Corrector W
n+ 1

2

j = Wn
j +

∆t

∆x

(

F
n+ 1

2

j− 1

2

− F
n+ 1

2

j+ 1

2

)

(150)

whereFn
j = F(Wn

j ). This method is known as the Lax-Wendroff method, or
sometimes as the Richtmeyer method. It works well for smooth flows, but similar
to many other early methods gives oscillations near shocks and contact disconti-
nuities. To avoid these the concept ofartificial viscositywas developed. Artificial
viscosity for the Lax-Wendroff method consists of replacing step 2 by

W
n+ 1

2

j = Wn
j +

∆t

∆x

(

F
n+ 1

2

j− 1

2

− F
n+ 1

2

j+ 1

2

)

+ ǫ
(

Wn
j+1 − 2Wn

j +Wn
j−1

)

(151)

where the last term is the artificial viscosity term. It is called artificial viscosity
because its form is identical to that of a real diffusion or viscosity, but its coeffi-
cientǫ is chosen purely for numerical reasons. An example of the performance of
the Lax-Wendrof method is shown for a shock tube test problemin Figs. 20 and
21 (taken from the book of Laney)4.
Although methods with artificial viscosity gave reasonableresults, many felt un-
comfortable with the introducing an arbitrary, tunable andunphysical coefficient
ǫ. Note also that the above method ignores the lesson we learned from the ad-
vection equation: we should take into account the directionof the flow, or rather
(in case of the Euler equations), the sound waves. Method that do take this into
account are calledupwind methods.

4The shock tube problem is the first problem in the computer lab. Its initial condition consists of
two adjacent states one of high pressure and one of low pressure. These develop into an expansion
wave going left and a shock wave going right; in between lies acontact discontinuity.
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Figure 20: Results of the standard shock tube test for the Law-Wendroff (or Richt-
meyer) method. The boxes show the pressure, velocity and speed of sound. The
solid lines are the analytical solution, the circles show the values found by the
numerical method. FromComputational Gasdynamicsby Culbert Laney.
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Figure 21: Results of the standard shock tube test for the Law-Wendroff (or Richt-
meyer) method. The boxes show the density, entropy and Mach number. From
Computational Gasdynamicsby Culbert Laney.
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Figure 22: The Riemann problem.
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Figure 23: Dividing a mesh into Riemann problems.

9.7 Riemann solvers

A particular class of upwind methods are so-calledRiemann solvers, or Reconstruction-
Evolution methods. This approach, first suggested by SergeiGodunov5, uses the
idea that one can consider the discretized distribution on the mesh as a series of
discontinuities. The initial value problem for any discontinuity is known as the
Riemann problem,

W =

{

WL if x < x0

WR if x > x0
(152)

(see Fig. 22) and has known analytical solutions for the Euler equation. If the
CFL condition holds, each interface between two cells can be considered to be an
isolated Riemann problem (Fig. 23). From the solution of the Riemann problem
one finds directly how much mass, momentum and energy flows into a cell from
the interface under consideration:

F
n+ 1

2

j+ 1

2

= F(WRiemann(xj+ 1

2

, tn+ 1

2

)) (153)

5The question whether your method is Godunov was the inspiration for the title of this chapter
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Figure 24: Results of the standard shock tube test for the Godunov method. The
boxes show the pressure, velocity and speed of sound. FromComputational Gas-
dynamicsby Culbert Laney.
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Figure 25: Results of the standard shock tube test for the Godunov method. The
boxes show the density, entropy and Mach number. FromComputational Gasdy-
namicsby Culbert Laney.
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This idea was formulated by Godunov in the 1950s, but was too computationally
expensive to implement. In the 1980s computers became fast enough, and also a
series of simplerapproximate Riemann solverswas found. These find an approx-
imate solution to the Riemann problem, good enough to obtain accurate fluxes
(which is the only thing needed). The most popular approximate Riemann solver,
is theRoe solver6. A version of the Riemann method popular in astrophysics is
known asPPM (piecewise parabolic method, Colella & Woodward 1984).
An example of the performance of a Riemann solver (Godunov’s upwind method)
is shown in Figs. 24 and 25, taken from the book by Laney. Its performance for
this test problem is clearly much better than that of the Lax-Wendrof method.

9.8 Multiple dimensions

Up to this point we have only considered 1D methods. How aboutmulti-dimensional
methods? In fact, truly multiple dimensional methods are rare. What is most
widely used is the technique of operator splitting (or more specifically dimen-
sional splitting).
Suppose that the initial value problem to be solved is

∂f

∂t
= Lf (154)

with L some operator that can be written as

L = L1 + L2 + L3 + · · ·+ Lm (155)

Then the solution can be found by taking steps

fn+ 1

m = U1(f
n,∆t) (156)

fn+ 2

m = U2(f
n+ 1

m ,∆t) (157)

fn+ 3

m = U3(f
n+ 2

m ,∆t) (158)

etc... (159)

whereUk is the solution for∂f/∂t = Lkf .
Since the two-dimensional fluid equations can be written as

∂W

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (160)

6This solver is the one used in the computer programme from thecomputer lab.
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we can use the operator splitting approach by first solving for the changes in the
x direction, and then using that solution to solve for the changes in they direc-
tion. To avoid systematic effects, the order between these steps can be alternated
between time steps. Increased accuracy can be achieved by taking fractional time
steps. For two operators:

fn+ 1

3 = U1(f
n,∆t/2) (161)

fn+ 2

3 = U2(f
n+ 1

3 ,∆t) (162)

fn+1 = U1(f
n+ 2

3 ,∆t/2) (163)

This procedure is sometimes known asStrang splitting.

9.9 Public codes

A number of public hydrodynamics codes exist to allow simulations without the
need of writing the code yourself. Well known examples are ZEUS, FLASH,
NIRVANA and the PENCIL code using grid-based (Eulerian) methods and GAD-
GET for SPH. However, the nature of the numerical solvers is still such that one
should be cautious when using them as so-called black boxes,especially for types
of problems for which they have not been used before.

9.10 Summary

The following concepts and ideas are the most essential onesfrom this chapter.

• Numerical methods for the fluid equations can be Eulerian, using grids, or
Lagrangian, using particles (SPH).

• The time step for explicit methods is limited by the CFL condition, Eq. 129.

• Numerical methods should take into account the direction ofthe flow of
information in the fluid (the so-called upwind condition).

• The stability of numerical algorithms can be tested with vonNeumann sta-
bility analysis, the discrete equivalent of the usual stability analysis tech-
nique.

• Since the fluid equations are essentially conservation equations, it is im-
portant that numerical methods keep conserved quantities conserved. If

84



numerical algorithms can be formulated using fluxes (Eq. 145), they are
conservative.

• Non-upwind methods need an explicit artificial viscosity term to keep them
stable.

• An example of an upwind method is the concept of Riemann solvers in
which the interface between cells is considered to be a Riemann problem.
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10 Transport phenomena: the Honey Trap

10.1 Deviations from Maxwell-Boltzmann

When deriving the Euler equations in Chapter 2 we assumed that the distribution
function can locally be described as the equilibrium Maxwell-Boltzmann distri-
bution functionfMB. However, this is of course a simplification. Even if we have
two regions where this locally true, once exposed to each other, collisions between
particles that belong to the two differentfMB distributions will push the evolution
of the combined system towards a new equilibriumfMB.
The interaction of particles belonging to different distribution functions gives rise
to so-calledtransport phenomena. As the Maxwell-Boltzmann distribution is
characterized by the gas velocityu and temperatureT we can expect the addi-
tional terms associated with these transport phenomena to have to do with spatial
differences inu andT .

10.2 Chapman-Enskog expansion

We return to the Boltzmann equation, describing the evolution of the distribution
function of particles in phase space,

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C , (164)

To proceed further we use the so-called Chapman-Enskog expansion. In this ex-
pansion we write the non-equilibrium distribution function f as a series of devia-
tions from the equilibrium Maxwell-Boltzmann distribution(f (0) = fMB):

f = f (0) + αf (1) + α2f (2) + · · · , (165)

whereα is a measure of the role of collisions:α = λ/L (λ being the mean free
path between collisions andL the typical size of our system). For a collisional
fluid L ≫ λ and theα’s are small numbers.
Since theα’s are small, a first approximation is to writef ≃ f (0) + αf (1) =
f (0) + g, where we substitutedg for αf (1). Putting this back into the Boltzmann
equation, and only keeping the first order terms gives

∂f (0)

∂t
+ v · ∂f

(0)

∂x
+ a · ∂f

(0)

∂v
= C(1)(f (0), g) , (166)
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whereC(1)(f (0), g) describes the collisions between particles from the equilibrium
distributionf (0) and non-equilibrium distributiong.
One can argue that an order of magnitude estimate for the collision termC(1)

should be
C(1) ≈ vrelσng ≈ vrel

λ
g =

g

τ
(167)

whereτ is the typical time between collisions andvrel is the typical relative veloc-
ity between colliding particles. This argument suggest theBGK approximation
(Bhatnagar, Gross & Krook):

∂f (0)

∂t
+ v · ∂f

(0)

∂x
+ a · ∂f

(0)

∂v
= −g

τ
≈ −f − f (0)

τ
, (168)

which implies that the non-equilibrium distribution function f relaxes exponen-
tially to the equilibrium valuef (0) with a characteristic timeτ .
Sincef (0) is a Maxwell-Boltzmann distribution, it only depends onn, u andT ,
which all only depend on timet and positionx. So we can write that

∂f (0)

∂t
=

∂n

∂t

∂f (0)

∂n
+

∂T

∂t

∂f (0)

∂T
+

∂u

∂t
· ∂f

(0)

∂u
, (169)

and similar expressions for∂f (0)/∂xi.
PuttingfMB into Eq. (169) and the equivalent expressions for the spatial deriva-
tive, and then substituting these into Eq. (168), gives an expression forg

g = −τ

[

1

T

∂T

∂xi

wi

(

m

2kBT
w2 − 5

2

)

+
m

kBT
Λij

(

wiwj −
1

3
δijw

2

)]

f (0) (170)

wherew = v − u, the random velocities of the particles, as before. The term

Λij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(171)

is a matrix giving the shear (velocity gradients perpendicular to the velocity direc-
tions) in the macroscopic velocity field.

10.3 Macroscopic quantities

We can now derive macroscopic quantities from this first order approximation for
the distribution functionf = f (0) + g. Many terms remain the same as before
(whenf wasf (0)) because integrals over terms that are odd inwi give zero. This
is to be expected since the new terms should come fromdifferencesin the flow.
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10.3.1 Heat conduction

We defined the heat flux as

q =
1

2
ρ〈w2w〉 (172)

which was zero forf = f (0). Forg the∂T/∂xiwi terms result in an integral over
w2, an even term inwi. Evaluating

q =
ρ

2n

∫

dwww2g (173)

gives

q = −K∇T (174)

K =
τm

6T

∫

dww4

(

m

2kBT
w2 − 5

2

)

f (0) =
5

2
τn

k2
BT

m
(175)

This is the transport of internal energy due to the existenceof a temperature gra-
dient: Heat conduction or thermal conduction. Clarke & Carswell treated this in
Sect. 4.4.2 as a process for energy transport. Here we see that it is in fact a trans-
port phenomenon due to deviations from the Maxwell-Boltzmann distribution.
Heat conduction will strive to diminish temperature gradients, and as quite strong
temperature gradients can occur in astrophysical systems,the most extreme ones
associated with contact discontinuities, it is potentially an important effect. How-
ever, as also mentioned in Sect. 4.4.2 of the book, the role ofheat conduction in
astrophysics is normally assumed to be quite marginal. The reason for this is that
the presence of even a weak magnetic field and some charged particles will reduce
the time between collisionsτ to such an extent thatK becomes very small. The
cause of this is that charged particles cannot move freely inthe present of a mag-
netic field and will spiral around the field lines. Therefore their mean free path
will be very limited.

10.3.2 Viscosity

In Chapter 2 we defined a tensorPij = ρ〈wiwj〉 (Eq. 35). Forf = f (0) = fMB

we showed this tensor to be diagonal, and the diagonal elements to be associated
with the gas pressure:Pij = pδij. For f = f (0) + g, theΛij velocity shear term
in g adds non-zero off-diagonal terms, so we can writePij = pδij + σ′

ij whereσ′

ij

88



contains all the off-diagonal terms. Working out the integral gives

σ′

ij = m

∫

dwwiwjg (176)

= −τm2

kBT
Λkl

∫

dwwiwj

(

wkwl −
1

3
δklw

2

)

f (0) , (177)

where the suffix notation is implied for the indicesk andl.
Thisσ′ tensor is traceless (this means it has zeros on the diagonal:σ′

ii = 0) and it
is symmetric,σ′

ij = σ′

ji, and proportional toΛkl. However,Λkl doeshave diagonal
terms sinceΛkk = ∇ ·u, and so not necessarily zero. So to writeσ′ in terms ofΛ
we need to subtract the divergence of the velocity:

σ′

ij = −2η

(

Λij −
1

3
δij∇ · u

)

(178)

where the second term between the brackets makes sure that the total expression
is traceless.
The coefficientη must follow from the evaluation of the integral (Eq. 177), for
example forσ′

12

σ′

12 = −τm2

kBT
Λkl

∫

dww1w2

(

wkwl −
1

3
δklw

2

)

f (0) (179)

= −2
τm2

kBT
Λ12

∫

dww2
1w

2
2f

(0) (180)

since the integral is only non-zero whenk and l are a combination of 1 and 2.
From this we find

η =
τm2

kBT

∫

dww2
1w

2
2f

(0) = τnkBT (181)

The tensorσ′

ij has to do with non-diagonal terms ofΛij, so velocity variations
perpendicular to the velocity direction, an effect known asshear. The property of
fluids associated with this is known asviscosity, andσ′

ij is known as theviscous
stress tensor, andη is the viscosity coefficient. Interestingly, the above derivation
shows that sinceτ = λ/〈v〉,

η =
1

4a2

√

mkBT

π
(182)
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independent of the density of the gas! This seems counter-intuitive (many would
say that “denser fluids are more viscous”) but is in fact confirmed by experiments.
The reason is that although a denser gas has more particles totransport physical
quantities, the mean free path of these particles is shorter, and they are thus less
efficient tranporters. Of course this independence of the density is only valid for
dilute gases, since we derived our equations under the assumption of a dilute gas.
One also sees thatη ∝

√
T , which is understandable since with higher particle

velocity, physical quantities should be transported further. Note that this tem-
perature dependence only holds for gases. As you probably know from personal
experience, in liquids the viscosity actually goes down with temperature.

10.4 Navier-Stokes equations

These new effects, conduction and viscosity now have to be added to the fluid
equations. The continuity equation does not change. The momentum equation
now has a more complicated tensorP, namelyPij = −pδij + σ′

ij and after some
re-arranging can be written as

∂ρu

∂t
+∇·(ρu⊗u) = −∇·P+ρa = −∇p+η

[

∇
2u+

1

3
∇(∇ · u)

]

+ρa (183)

Note that for some special fluids, there is also a so-calledbulk viscosityζ which
is associated with a∇ · u term:

∂ρu

∂t
+∇ · (ρu⊗u) = −∇p+η

[

∇
2u+

1

3
∇(∇ · u)

]

+ζ∇(∇ ·u)+ρa (184)

This bulk viscosity is associated with diagonal elements for the viscous stress
tensorσ′, which do not follow from the ideal, monatomic gas-type approach we
used to deriveσ′. The bulk viscosity is associated with internal degrees of freedom
of the particles in a non-ideal gas, which can be excited or de-excited through
volume changes. It is generally unimportant in astrophysical applications.
The energy equation becomes

∂E

∂t
+∇ · (E + P)u−∇ · (K∇T ) = ρu · a (185)

which by taking thepδij part out ofPij can be written as

∂E

∂t
+∇ · (E + p)u+∇ · (σ′u)−∇ · (K∇T ) = ρu · a (186)
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The∇ · (K∇T ) term only acts on the internal energyρE , but the complicated
∇ · (σ′u) term (remember thatσ′ is a tensor) has contributions both to the kinetic
and the internal energy. Manipulation of the equations shows that theviscous
heating termis given by

2η

[

ΛijΛij −
1

3
(∇ · u)2

]

(187)

and is an energy loss for kinetic energy, and an energy gain for the internal energy.
This shows that viscosity is an irreversible, dissipative process through which
kinematic energy is turned into internal energy. It is oftena small term in the
equations.
The new set of equations forρ, u andE is called the set of theNavier-Stokes
Equations. They are similar to the Euler equations but contain extra terms of
higher spatial derivatives of the velocity and the temperature. This makes them
harder to solve, but also introduces the necessity for more boundary conditions.

10.5 Viscosity

Considering deviations from a local Maxwell-Boltzmann equation gives rise to
the viscous terms in the momentum and energy equations. Viscosity is often not
very important in astrophysics, and hence it is neglected. In Chapter 12 we will
consider the only case where viscosity is essential in astrophysics, namely in ac-
cretion discs. But as we will see even there it is not the “molecular” (mircroscopic)
viscosity from Eq. 182 which is important, but rather the viscosity is used to de-
scribe small scale but macroscopic dissipative processes in the disc.
For many Earth-based applications viscosityis important. The reason for this is
that we often have to deal with fluids interacting with some solid body. For exam-
ple the flow around the wing of an airplane, or the flow of a gas orliquid through
a pipe. Viscous shear will work to reduce the velocity difference between surface
and the flow, so viscosity works like a kind of frictional force. The result is the
formation of a “boundary layer”. In Section 11.5 Clarke & Carswell calculate the
viscous stationary flow through a circular pipe and show thatthe velocity profile
is parabolic with zero velocity at the edge of the pipe and thehighest velocity in
the middle of the pipe (a solution known as the Coette flow). Without viscosity
the flow velocity would be constant across the a cross sectionof the pipe, but the
viscous forces will “brake” the flow near the edge of the pipe until eventually it
becomes zero there. So, although viscosity is not very important in “free flow”, it
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becomes important once your gas flows around a solid body and aboundary layer
is created.
The viscous terms in the Navier-Stokes equations contain the viscosity parameter
η. As we have seen above,η depends on the temperature of the gas, so in principle
it can vary in a fluid. However, for many applications these variations are quite
small and the coefficient is assumed to be constant, so that itcan be taken out
of the differentials. When considering the equation for the velocityu rather than
the momentum densityρu, a factorη/ρ appears. This is often written asν and is
called the kinematic viscosity.

Read Sections 11.1 and 11.2 in Clarke & Carswell to learn
about viscosity and Navier-Stokes equations.

In Chapter 8 we defined the vorticity of a flow (Eq. 116) and showed that for a
barotropic fluid one can write the time evolution of the vorticity with the Helmholtz
equation (Eq. (9.14) in Clarke & Carswell). If we now consider the effect of vis-
cosity, the Helmholtz equation becomes

∂w

∂t
= ∇× (u×w) + ν∇2w , (188)

with an extra termν∇2w. This extra term invalidates Kelvin’s vorticity’s theorem:
a viscous fluid can create vorticity from nothing, and vorticity can also disappear
from a viscous fluid. Only whenν = 0 is vorticity conserved.
The above example of the formation of a boundary layer is a perfect example of
this creation of vorticity. The viscous forces set up a shearflow along the boundary
of a solid object (pipe, wing, etc.) even if it was not there before; and a shear flow
has vorticity.

Read Section 11.3 in Clarke & Carswell to learn about vor-
ticity and viscosity.

10.6 Reynolds number

When considering the equations for the evolution of the vorticity, one can derive
an interesting scaling relation.
We introduce scaling factors for the lengthL and velocityV such that

x = x′L, u = u′V, t = t′
L

V
, w = w′

V

L
. (189)
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This makesx′, u′ andw′ dimensionless numbers. We then substitute these rela-
tions into Eq. 188 to get a dimensionless version of that equation

∂w′

∂t′
= ∇′ × (u′ ×w′) +

1

R∇′2w′ , (190)

where∇′ = L∇, the scaled version of the spatial differentation and

R =
LV

ν
, (191)

the so-called Reynolds number. This is a dimensionless number which expresses
the importance of viscosity.
In the inviscid caseν = 0 so that1/R = 0. Then Eq. 190 does not contain
any scale; it is completely scale free. This means that for a given flow pattern,
for example the flow around a sphere, if the velocity is increased by a certain
factor, the flow pattern will not change (obviously this onlyholds as long as the
flow velocity remains subsonic). Also, the flow around a sphere that is twice the
size, will look identical to the flow around the original sphere. There is no typical
length or velocity scale in the problem.
However, if there is viscosity, this is no longer true since the term1/R appears.
It is inversely proportional toLV so now the flow does depend on the size and
velocity scales; the flow pattern around a two spheres, one ofradiusR0 and one
of radiusR1 = R0/2 will not be indentical if the flow has the same velocity.
However, if for two flows around a geometrically similar object the Reynolds
number is identical, the flow pattern will be identical. So the flow pattern around
the two sphereswill be identical if the flow velocity around sphereR1 is twice that
aroundR0 (assuming the fluids have the same viscosity).
The other application of the Reynolds number is to estimate the relevance of vis-
cosity. For high Reynolds numbers the viscosity terms are small and do not play a
major role in the solution of the flow equations. For small Reynolds numbers the
viscosity terms dominate. So low Reynolds number flows are very viscous flows.
We can estimate a typical Reynolds number for astrophysical systems. The kine-
matic viscosityν = η/ρ, whereη is the viscosity of the gas, andρ its density.
Typical values forη of gasses areη ∼ 10−4 g cm−1 s−1. For length scales of
1 parsec, velocity scales of 1 km s−1 and number densities of order102 cm−3 we
obtain thatR ∼ 105. This is the reason why viscosity is almost never important
in astrophysical problems: the typical Reynolds numbers areextremely high.
The Reynolds number also plays a role when studying turbulence. As we will see
in the next chapter, the relative scale of the energy dissipation in turbulent media
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scales with1/R. This means that only high Reynolds number flows can become
fully turbulent. In practice the development of turbulencerequiresR > 3000.

10.7 Summary

The most important points from this chapter are

• Deviations from the Maxwell-Boltzmann distribution give rise to transport
phenomena

– Heat conduction, due to the transport of internal energy dueto random
motions. This term is proportional to the temperature gradient.

– Viscosity, due to shear flows (velocity gradients perpendicular to the
velocity direction), this term is proportional to the gradient of the ve-
locity divergence.

• Heat conduction in astrophysical flows is often inhibited due to a weak and
tangled magnetic field.

• Viscosity is mostly unimportant in astrophysical flows due to the absence of
strong shear flows (as for example around solid objects).

• The importance of viscosity is expressed by the Reynolds number,R = LV
ν
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11 The Big Mess

In earlier chapters we have considered stationary solutions to the flow equations.
However, stationary solutions are only interesting if theyare stable. So, in prin-
ciple one should always investigate the stability of a givenstationary solution. If
it turns out to be unstable, it will not be a flow solution that will occur in nature
since any small disturbances will quickly destroy the flow pattern. Unstable flows
will very often evolve into turbulent flows and thus have verydifferent behaviour
from what may have been intended.

11.1 Instabilities

The presence of an instability means that a given situation or configuration is
very sensitive to small perturbations. If you perturb the configuration by a small
amount and it does not return to its original state, but instead keeps moving away
from it, the configuration is said to be unstable.
This suggests that the way to analyze the stability of a system is to calculate its re-
sponse to a small perturbation. This is essentially similarto what we did when we
derived the equation for sound waves. One imposes a small pertubation and tracks
what happens to it. If the pertubation grows, one has found aninstability. If it does
not grow, the system is stable. In the case we investigated for sound waves (a fluid
of constant density and pressure at rest) we found that it is stable since the sound
waves represent small oscillating variations around the equilibrium solution.
Since one can start with very small perturbations, one can dothis analysis in the
linear regime, which means that you neglect all the terms that contain products of
perturbed quantities.
As one can describe any function with a Fourier series, it is also customary to
parametrize the perturbations using Fourier components

exp [i(k · x− ωt)] . (192)

By substituting this in the linearized equations, one can finda relation between
k andω, the dispersion relation. From this dispersion relation one can find if a
given state is unstable, and one can even find which wave modesgrow the fastest.

11.2 Linear stability analysis

The procedure of linear stability analysis is as follows

95



1. Write down the equations in terms of the background solution which stabil-
ity you want to test plus a perturbation.

2. Linearize the equations so that only terms linear in the perturbed quantities
remain.

3. Insert the Fourier term for the perturbation and finds the relation betweenk
andω. This is called the dispersion relation.

4. Check whether for realk there are any imaginary solutions forω. If there
are, the solution is unstable since the Fourier term contains exp(−iωt)
which becomesexp(|ω|t) for imaginaryω, an exponentially increasing term.

This is the short version, also described in Sect. 6.3 in Clarke & Carswell.

11.3 Instabilities in stratified fluids

The most well known gasdynamic instabilities are associated with stratified flu-
ids, that is touching fluids of different densities. The two fluids are assumed to
be in pressure equilibrium, so the interface between them isactually a contact
discontinuity (see Section 6.9.1).
The two standard cases are

1. Classical Rayleigh-Taylor instability: a heavy fluid on topof a lighter fluid
in a gravitational field.

2. Kelvin-Helmholtz instability: two fluids which are sliding past each other
with different velocities. No gravity is needed.

There exist other important instabilities which we will notconsider here. Some are
described in some detail Clarke & Carswell (convection, Jeansinstability, thermal
instability)
Since both the Rayleigh-Taylor and the Kelvin-Helmholtz instability concern strat-
ified fluids one can actually derive a dispersion relation which is valid for both of
them.

Read Section 10.1.2 in Clarke & Carswell up to the deriva-
tion of Eq. (10.33), the dispersion relation for stratified flu-
ids.
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11.4 Rayleigh–Taylor instability

The true Rayleigh–Taylor instability concerns a heavier fluid resting on top of
a lighter fluid. Intuitively one can understand that this is an unstable situation.
The reverse situation, with the lighter fluid on top should bestable. Use of the
dispersion relation for stratified fluids shows that our intuition is right. If the
lightest fluid is on top (ρ′ < ρ) the dispersion relation has only wave-like solutions,
oscillating around the equilibrium solution. These waves are known as surface
gravity waves. They differ from sound waves as the wave speeds for surface
gravity waves of different wave lengths are different; the waves with the longest
wavelengths travel the fastest.

Read the section on Surface gravity waves in in Clarke &
Carswell (page 137).

If the heavier fluid is on top (ρ′ > ρ), the dispersion relation has imaginary so-
lutions forω whenk is real, which means that the flow is unstable. Since in this
caseω ∝

√
k, the smallest wave length perturbations are the ones which grow the

fastest.
It is rather rare that one ends up with a heavier fluid on top of alighter one in the
gravitational field of a star or a planet. However, this instability also applies for
flows in which there is aneffectivegravity, that is in accelerating flows. These
are much more common. Considering the direction of the effective gravity in an
accelerating flow, one can see that a decelerating dense shell travelling into a lower
density medium (as is the case in the Sedov–Taylor solution for the expansion of
a supernova explosion), is equivalent to a denser fluid sitting on top of a lighter
fluid; this configuration is unstable. As can be seen from the images of supernova
remnants, the shells do look rather filamentary, indicativeof an instability.

Read the section on Static stratified fluid under gravity in
Clarke & Carswell (page 137 & 138).

11.5 Kelvin–Helmholtz instability

If the two fluids are stable in the sense thatρ′ < ρ, but flow past each other with
a relative velocityU − U ′, the dispersion relation shows that the flow will be
unstable for some values ofk. This is known as the Kelvin–Helmholtz instability.
Also here the most unstable wave lengths are the smallest ones. However, for
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the Kelvin–Helmholtz instability above some wave length the waves are actually
stable.
The most familiar case of a Kelvin–Helmholtz instability are the condensation
trails behind airplanes. One can actually see how the instability develops along
the trails. Also in astrophysics the Kelvin–Helmholtz instability is quite common.
An example can be seen in Fig. 9 in Chapter 6 of these notes. The contact discon-
tinuity in the backflow region of the jet initially is quite regular but becomes more
and more unstable.

Read the section on Kelvin–Helmholtz instability in Clarke
& Carswell (page 138).

The linear stability analysis above only tells you that the situation is unstable and
gives an indication on which modes are the ones which start the instability. How-
ever, as soon as the instability starts to really develop, the linear description brakes
down. It for example becomes possible for one instability totrigger another, as
the heavier fluid starts sliding into the lighter fluid due to the Rayleigh–Taylor in-
stability, the velocity difference induced by the instability may trigger the Kelvin–
Helmholtz instability. Unstable flows can become very complex and often develop
into turbulent flows.

11.6 Turbulence

Instabilities and perturbations may ultimately lead to a state of random density,
velocity and pressure variations, known as turbulence. Turbulence is important in
astrophysics and earth-based applications, but turns out to be extremely difficult
to describe. In fact, no general theory for turbulence yet exists.
Since we are talking about random variations, a theory of turbulence has to be
statistical. In some sense one can argue that one has to construct another layer of
statistics on top of the microscopic picture of a fluid consisting of particles

v = w + u = w + u+ u′ (193)

wherev are the particle velocities,w are the random velocities of the particles,
u the gas velocity (mean velocity of the particles),u the average gas velocity in
the turbulent flow andu′ the turbulent velocities. Since by constructionu′ = 0,
analysis of turbulence is about higher order termsu′u′ (just as it was aboutw2

in the statistical treatment of particle velocities). As analysis of thew2 term led
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Figure 26: Sketch of a hierarchy of turbulent eddies next to amodel calculation
of two-dimensional turbulence (Held, I. M., R. T. Pierrehumbert, S. T. Garner,
and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. Journal of Fluid
Mechanics, 282, 1).

to the pressure or internal energy of the gas, also turbulence studies focus on the
turbulent energy, represented byu′u′.
Unlike the random particle velocities, turbulence has a scale, meaning that turbu-
lent flows have structure. The image often used is that of turbulent ‘eddies’. An
eddy is swirly or vortex-like flow pattern. Turbulence seemsto consist of a hierar-
chy of bigger eddies containing smaller eddies, that again consist of even smaller
eddies, down to the small scales where dissipative processes appear. This image
led to theKolmogorovpicture of the distribution of turbulent energy over length
scales

E(k) = Cǫ2/3k−5/3 (194)

whereǫ in the energy input rate per unit mass, andk is the Fourier wavelength,
2π/l, with l the length scale. This relation was derived by Andrey Kolmogorov
in 1941 from heuristic and dimensional arguments, but remarkably enough seems
to give a fairly accurate description of the energy spectrumof fully developed
turbulence.
The dissipation process that removes the turbulent energy from the flow in the
smallest eddies are viscous processes. One can therefore use the Reynolds num-
ber to analyze a turbulent flow. As we defined before (Sect. 10.6) the Reynolds
numberR for a system of sizeL, velocityV and kinematic viscosityν is given
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by

R =
LV

ν
(195)

Dissipative processes dominate for length and velocity scales whereR ∼ 1. For a
turbulent hierarchy of eddies this means thatR will be large for the largest eddies
(LV/ν ≫ 1 if L andV are the size and velocity of the large scale flow), and
smaller and smaller for the smaller eddies. At some length scale ld one reaches
the conditionldud/ν ∼ 1 and the turbulent energy is dissipated through viscous
processes.
To connect the largest scales to the dissipation scales we have to consider the
energy cascade from largest to smallest scales. Since energy cannot pile up at a
given length scale, there has the be a steady energy rate at all scales. If the energy
is fed in at the largest scalesL andV at a rate per unit massǫ (SI units J s−1 kg−1),
then a steady flow of energies from large to small scales requires that at every scale
l (where the typical velocity isu)

ǫ ∼ u3/l (196)

(from dimensional arguments). This implies thatu ∼ (ǫl)1/3. At the scale of the
system (L, V ) this should also hold, defining the input energy rate per mass unit
asǫ ∼ V 3/L. At the dissipation scaleld we haveldud ∼ ν, and sold ∼ ν3/4ǫ−1/4

andud ∼ (νǫ)1/4. This then implies that

L

ld
∼ R3/4 (197)

V

vd
∼ R1/4 (198)

WhereR is the Reynolds number at the largest scale of the turbulent system
(LV/ν). So given the Reynolds number of the system the dissipation scale and ve-
locity can be found. For example a system of large scale Reynolds number 10,000
and sizeL and turbulent velocityV will have smallest eddies of sizeL/103 and
typical velocityV/10.
To get the energy spectrumE(k), one should realize that thatk ∼ l−1. At scalek
the energy is given by

E(k)dk ∼ E(k)k ∼ u2 ∼ (ǫl)2/3 ∼ (ǫ/k)2/3 (199)

which then gives the Kolmogorov energy spectrum, Eq. 194. One can also derive
this from dimensional analysis assuming thatE(k) only depends onk andǫ. Ob-
viously, the spectrum will be cut off at smallk (largel) because of the size of the
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system (L) and at highk (small l) because the dissipation scale is reached (kd).
Experiments for many different systems show the Kolmogorovrelation to be valid
and surprisingly universal.

Figure 27: The Kolmogorov energy spectrum for turbulence. Thek’s correspond-
ing to the size of the system and the dissipation scale are calledkf andkη respec-
tively.

SinceR is large for most astrophysical systems, turbulence occursfrequently.
Some examples are

• turbulent convection in stars

• turbulence in molecular clouds

• turbulent boundary layers around jets

• atmospheric turbulence causing astronomical seeing

11.7 Summary

The most important points from this chapter are

• The stability of a stationary flow pattern can be analyzed using linear pertur-
bation analysis. The key result of such an analysis is the dispersion relation
between the wave numberk and the frequencyω. If real k’s can give imag-
inaryωs, the flow is unstable.
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• The Rayleigh-Taylor instability occurs when a heavier fluid sits on top of a
lighter fluid in a gravitational field or in an decelerating flow.

• The Kelvin-Helmholtz instability occurs when a two fluids separated by the
contact discontuinity slide over each other.

• Turbulent flows occur in high Reynold number flows and thus are frequent
in astrophysical settings. The turbulent energy is typically distributed over
the length scales in the flow according to the Kolmogorov spectrum.
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12 Accretion Disks

Gravity is the dominant force in astrophysics. When a heavy body such as a
star or a black hole starts collecting gaseous material fromits environment, we
call this process accretion. Usually the accreting material contains some angular
momentum, which will cause the accreting material to start to rotate around the
accretor. Conservation of angular momentum means that the rotation velocity will
be higher the closer the material gets to the accretor. The rotating material will
thus collect in a disc-like form around the accretor.
Examples of such accretion discs are

• discs around protostars (so-called protoplanetary discs in which planets are
thought to form).

• discs around neutron stars or black holes in binary system. These objects
are known as x-ray binaries, as the discs produce copious amounts of x-rays.

• discs around supermassive black holes in the centres of galaxies. If the
discs are massive enough, the system is called an Active Galactic Nucleus
(AGN).

Gas falls in and settles in a plane defined by the mean angular momentum vector
of the gas supply, since shocks and dissipation will dampen motions in the other
directions. This will happen on a free fall time,tff = (Gρ)−

1

2 , usually quite a
short time.
Once settled in a rotating discs, the gas will orbit the object, and not fall in, being
kept in place by the centrifugal force. The velocities in thedisc will thus fol-
low from this balance between gravitational pull and centrifugal force, just as the
velocities of the planets orbiting a star

Angular velocity Ω2 = GM
R3 Kepler’s 3rd law (200)

Orbital velocity uφ =
(

GM
R

) 1

2 , (201)

whereR is the cylindrical radius. Now for a gas this is a shear flow, sinceΩ is a
function ofR. Without viscocity this would be a stable situation, as the gas would
not feel the shear flow. With viscosity the faster rotating inner regions will lose
angular momentum to the outer regions. As they do, they will spiral in, and thus
some sort of viscosity is needed for a disc to be anaccretiondisc.
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Read the beginning of Chapter 12 of Clarke & Carswell up
to Section 12.1 to learn about accretion discs and their shear
flows.

12.1 Evolution of accretion discs

It is important to realize that the angular momentum densityper unit massL is
given by

L = Ruφ = (GMR)
1

2 (202)

so for equal mass the inner regions have a lower angular momentum than the outer.
However, as we saw above, they do have a higher velocity. Thisdifference in the
dependence of rotation velocity and angular momentum when orbiting a massive
body can confuse one’s intuition when considering orbital mechanics problems.
For example, if a space vehicle wants to overtake another space vehicle in the same
orbit, it shouldbrake, not accelerate. By braking it loses angular momentum and
moves to a lower orbit where it has a higher velocity with which it can overtake
the other space vehicle.
For a gas one can work with the angular momentum densityL, given by

L = ρRuφ = ρ(GMR)
1

2 . (203)

The evolution of accretion discs is best described by considering the evolution of
the angular momentum of the gas. As you should remember from basic mechan-
ics, angular momentum is conserved unless there is a torque acting. The same is
true in accretion discs, the angular momentum will be conserved, that is the ma-
terial will not change its orbit and not accrete, unless there is a torque acting. The
torque acting in an accretion disc is the viscous torque fromthe shear flow.
We will consider thin discs, which means that we can integrate over thez. This
means that we will be working with surface densities, ratherthan volume densities
so for the mass:

Σ =

∫

ρdz , (204)

and similarly the angular momentum per unit area,Λ = RΣuφ. The book derives
an equation for the evolution ofΛ (without actually using this symbol) from the
equations of gas dynamics in cylindrical coordinates.

Read Section 12.1 of Clarke & Carswell to learn about the
angular momentum and surface density evolution in an ac-
cretion disc.
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12.2 Viscosity in accretion discs

To understand how viscosity makes an accretion disc work, itis useful to derive
the solution for the evolution of an initially infinitely thin ring. The viscous forces
will spread this ring out. The full mathematical solution (originally found by
Jim Pringle) is given in Section 12.2 of Clarke & Carswell. The details of the
derivation are not so important, but the result is: the ring will widen with most of
the material in the ring moving in; the small amount of material moving out takes
with it the angular momentum of the ring (see Fig. 12.3 in Clarke & Carswell).
The typical time scale for accretion from an initial radiusR0 is found to be

tvisc = R0/ν (205)

also known as the viscous time scale. From this we see that thehigher the viscosity
the quicker the material accretes.
From observed discs we can obtain an idea of the amount of material accreting
to the central object. Since the accretion is driven by the viscosity, this gives us
an estimate of value of this viscosity. It turns out that thisvalue is much higher
than can be provided by normal molecular viscosity (due to collisions between
particles of different distribution functions, as considered in Chapter 10). As is
argued in Sect. 12.2.1 of Clarke & Carswell, the Reynolds numberof the flow in
the disc is enormous, which makes it more or less inevitable that the disc will be
turbulent. This means that there will be a lot of turbulent mixing and it is this
process which acts as an effective viscosity. One still needs to provide the energy
input for the turbulence (“drive the turbulence”), so some process is needed to
provide this energy. The currently most popular idea is thatthis is ultimately a
magnetohydrodynamic process called the magnetorotational instability (MRI).

Read Section 12.2.1 of Clarke & Carswell to learn about
viscosity in accretion discs.

As the cause of the viscosity is not really known, a parametrization of the viscosity
was suggested by Shakura and Sunyaev (1973):

ν = αcsH (206)

whereα is a parameter,cs the sounds speed in the disc andH its vertical scale
height. This parametrization allows for a handy analytic solution of the structure
of the accretion disc, the so-called “α-discs”.
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12.3 Steady solution

The last thing to consider is a steady solution for the accretion disc. From the
steady solution one once again finds that for a given density profile Σ(R) the
accretion rate is proportional to the viscosityν. Furthermore one can derive the
temperature structure of the accretion disc. As viscosity is a dissipative process,
part of the orbital energy lost as the material accretes inward goes into heating
the disc. The inner parts will thus generally be hotter than the outer parts. As is
shown in Clarke & Carswell if one considers the gravitational potential energy of
the accreting material it turns out that half of it is converted into heat and half into
kinetic energy. This is in fact another manifestation of theVirial Theorem.

Read Section 12.3 of Clarke & Carswell to learn about the
steady solution and the disc heating due to viscous dissipa-
tion.

12.4 Summary

The most important points to remember from this chapter are
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