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Abstract. We describe time-dependent axisymmetric numerical simulations of ultrarelativistic
highly-magnetized, force-free jets. The simulations follow the jet from the central engine to beyond
six orders of magnitude in radius. The simulated jets are confined by an external pressure which
we take to vary as a power-law with distance along the jet. We find that the radial distance over
which the jet is pressure supported determines the terminalLorentz factor. For the collapsar model
of GRBs, this distance is set by the size of the progenitor star and is very large. At this distance
our fiducial model generates a Lorentz factorγ ∼ 400 and a half-opening angleθ j ∼ 2◦, consistent
with observations of many long GRBs. Other models with slightly different parameters giveγ in
the range 100 to 5000 andθ j from 0.1◦ to 10◦, thus reproducing the range of properties inferred for
GRB jets. A potentially observable feature of some of our solutions is that bothγ and the Poynting
flux Sare concentrated in hollow cones, with the half-opening angle of theγ-coneθγ ≪ θ j and the
half-opening angle of theS-coneθS = θ j . In the case of systems such as AGN, XRBs, and short
GRBs, we expect the confining medium, viz., the disk wind, to act over a shorter range of distance.
This would explain the lower terminal Lorentz factor of these systems compared to long GRBs.
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INTRODUCTION

Models of long gamma-ray bursts (GRBs) require the ejected plasma to move at ultra-
relativistic speeds [1]. For some bursts the required Lorentz factor may be as high as
γ ∼ 400 [2], and the jet half-opening angle may beθ j ∼ a few degrees [1, 3, 4]. Com-
bined with the observed fluence and the known distance to the source, this gives a typical
event energy of∼ 1051 ergs, comparable to the kinetic energy released in a supernova
explosion. Such jets can be produced via the Blandford-Znajek effect [5] by a rapidly
spinning black hole threaded by an ordered magnetic field [6–8], which is presumably
generated inside the turbulent magnetized accretion disk,or by a millisecond magne-
tar [9–12]. The standard alternative mechanism is neutrinoannihilation [13, 14], but it
probably does not produce sufficient luminosity to explain most GRBs [15, 16].

In the present work we obtain global solutions of ultrarelativistic magnetically-
dominated jets, confined by an external power-law pressure profile. We use time-
dependent numerical magnetohydrodynamic (MHD) simulations in flat space-time (no
gravity), and we focus on the relativisticforce-freeregime [5, 17–27], which corre-
sponds to a magnetically-dominated plasma in which particle rest-mass and temperature
are unimportant and are ignored. We work with spherical coordinates(r,θ ,ϕ), but we
also use cylindrical coordinatesR= r sinθ , z= r cosθ . We setc= r0 = 1, wherec is the
speed of light andr0 is the radius of the compact object.



FIGURE 1. [Left panel, (a)] Cartoon of the large-scale structure of a GRB source (not to scale). The
major elements are a central engine which launches a polar magnetically-dominated ultrarelativistic jet,
and a gaseous stellar envelope (gray shading) which confinesthe jet. [Right panel, (b)] Idealized model
studied in this paper. The star and the razor-thin disk are threaded by magnetic field lines (thin solid lines).
Thick dashed lines indicate the field lines that separate thejet from the disk wind. The wind provides
pressure support for the jet and plays the role of the gaseousstellar envelope as in the left panel.

MOTIVATION, PROBLEM SETUP, AND NUMERICAL METHOD

Figure 1a shows basic elements of a jet system: (i) acentral engine, which could be
a spinning black hole (BH) or neutron star, that produces (ii)a highly magnetized jet
surrounded by a (iii)confining medium, e.g., the stellar envelope. Figure 1b shows our
idealized approach to this problem. We replace the confiningmedium with a force-free
disk wind tuned to have the same pressure profile as the confining medium. Magnetic
field lines thread both the compact object and the razor-thindisk. We identify the field
lines emerging from the compact object as the ‘jet’ and the lines from the disk as the
‘wind.’ In this idealized model, the force-free disk wind plays the role of the stellar
envelope or gaseous disk wind that collimate the jet in a realGRB.

We perform the simulation in the domain(r,θ) ∈ (1,108)× (0,π/2) and use the
usual antisymmetry and outflow boundary conditions atθ = 0 andr = 108 boundaries,
respectively. We treat the central compact object as a perfect conductor with a uniform
radial field on its surface,Br = 1. We neglect all gravitational effects as they only slightly
change the field shape even near the BH [28, 29]. The compact object and its field lines
rotate at a fixed angular frequencyΩ0 = 0.25 in our chosen units, which corresponds
to a maximally spinning BH or a millisecond magnetar [30], andit is this magnetized
rotation that launches and powers the jet. We choose a power-law profile for the vertical
magnetic field at the surface of the razor-thin disk,Bz(R) ∝ Rν−2, 0< ν < 2, which leads
to a power-law radial dependence of the wind confining pressure, p ∝ r2(ν−2) [30]. The
simulations of hydrodynamic relativistic jets injected atan inlet within the presupernova
core show complex interaction between the jet and the stellar envelope. We assume that
the jet head has reached the surface of the progenitor star and a power-law pressure
profile has been established within the jet (e.g., models JA-JC in [31]), and adopt that



pressure profile as the confining pressure profile. For our fiducial model we choose
ν = 0.75 which provides a good match to such a pressure profile and tothe jet pressure
profile found in GRMHD accretion simulations [28, 29]. We choose a Keplerian-like
rotation profile in the razor-thin disk that smoothly connects to the rotation profile of the
compact object.

We use a Godunov-type scheme [26] to numerically solve the time-dependent force-
free equations of motion. Our code has been successfully used to model BH and neutron
star magnetospheres [26, 28, 29, 32, 33]. To ensure accuracyand to properly resolve the
jet, we use a numerical grid that approximately follows the magnetic field lines in the jet
solution [33] and use a resolution of 2048x256. In order to speed up the computations,
we evolve only the non-stationary region of the solution [30, 34]. Following this work
we plan to use the same numerical scheme but optimized for theultrarelativistic MHD
regime [35–37] to systematically study the efficiency of matter acceleration.

SIMULATION RESULTS AND ANALYTICAL MODEL

Starting with a purely poloidal near-equilibrium initial magnetic field configuration for
our fiducial model, we have run the force-free simulation until a timetf = 107r0/c. At the
end of the calculation we obtained a time-steady solution out to a distance of 2×106r0.
Fig. 2a shows the poloidal field of this steady state solution. The poloidal field in the
final rotating state is nearly the same as in the initial non-rotating state, as in the case
of the self-similar solutions discussed in Narayan et al. [33]. This is despite the fact
that the final steady solution has a strong axisymmetric toroidal field Bϕ(r,θ), which is
generated by the rotating boundary conditions at the compact object and the disk. As a
result of rotation, the solution develops a poloidal electric field~E in the lab-frame, which
is equal toE = ΩRBp, whereΩ is the angular frequency at the foot-point of the local
field line. This gives an outward Poynting flux~S= ~E× ~B/4π and associated angular
power output per unit solid angledP/dω = r2S. It also gives a drift speedv = E/B, and
a corresponding Lorentz factorγ. The color-coding in the panels of Fig. 2a indicates the
variation ofγ with position in the steady solution. The Lorentz factor reaches up to a
maximum∼ 1000 in this particular model. As Fig. 2a shows, the acceleration proceeds
gradually and occurs over many decades in distance from the compact object.

Note that, at a given distance from the compact object, the maximum Lorentz factor is
not achieved at either the jet-wind boundary or on the axis but at an intermediate radius
inside the jet. For instance, at the slicer = 5×105 shown in Fig. 3a,γ is maximum at
θm∼ 0.006, whereas the jet-wind boundary is located atθ j ∼ 0.16. Thus, the jet consists
of a slow inner spine, a fast edge, and a slow outer sheath which actually contains most
of the power density, as Fig. 3b shows. Komissarov et al. [34]apparently observed this
‘anomalous’ effect in one of their solutions. Now we explainthe origin of the effect.

Figure 2b shows the variation of the Lorentz factor with distance along two field lines
emerging from the compact object. The field line that starts closer to the equator, with
θfp = 73◦, rapidly accelerates once it is beyondr ∼ 10. However, atr ∼ 103 it switches
to a different and slower mode of acceleration, reaching a final γ ∼ 500 atr = 2×106. In
contrast, the field line that starts closer to the axis atθfp = 21◦ does not begin accelerating



FIGURE 2. Results for the fiducial model withν = 0.75 which gives a confining pressure profile
p ∝ r−2.5. [Left panel, (a)] Poloidal magnetic field lines (solid lines) overlaid on the color-coded (see
bar at the top) Lorentz factorγ. The thick dashed line indicates the position of the field line that separates
the jet from the disk wind (see Fig. 1a,b). The thick solid line is the Alfvén surfaceΩR= 1. Note that
the maximum Lorentz factor is found inside the jet, and not atthe jet-wind boundary (see Fig. 3a). [Right
panel, (b)] Radial dependence of the Lorentz factorγ in the fiducial model for two field lines. One field
line starts from the compact object at an angleθfp ≈ 73◦ (thick lines), and the other starts atθfp ≈ 21◦ (thin
lines). Solid lines show the numerical solution and dashed lines show an analytical approximation [30]
(the solid and dashed lines are virtually indistinguishable for θfp = 21◦). Note that the field line with
θfp = 73◦ accelerates quickly as it moves away from the compact objectbut it then switches to a slower
second regime of acceleration. In contrast, the field line with θfp = 21◦ begins accelerating only after it
has moved a considerable distance from the compact object. However, it then maintains a rapid rate of
acceleration without switching to the second accelerationregime. When the jet reaches the outer edge of
the simulation atr ∼ 2×106, this field line has a very large bulk Lorentz factorγ > 1000, whereas the
field line with θfp = 73◦ has a smallerγ ∼ 500. Thus, the jet develops a fast core surrounded by a slower
sheath.

until r ∼ 100. It then accelerates rapidly almost until it reaches theouter radius, by which
point it has a larger Lorentz factor∼ 1000 than the other field line. This inverted behavior
causes the natural development of a fast structured spine and slow sheath that contains
most of the power density. We have developed an analytical model to describe these two
distinct acceleration regimes [30], and the resulting analytical prediction, shown with
the dashed lines in Fig. 2b, agrees very well with the numerical simulation. We observe
this kind of agreement for all field lines with 0≤ θfp ≤ 80◦.

In addition to the fiducial model described above, we have simulated other models
with ν in the range 0.5≤ ν ≤ 1.25. We find that all models withν < 1 are qualitatively
similar, e.g., they all show the two acceleration regimes discussed above. Models with
ν ≥ 1 are simpler since they display only the first acceleration regime. However, it is the
models withν < 1 that are physically relevant because they satisfy the condition γθ j > 1
required to explain the achromatic ‘jet break’ seen in GRB light curves [1, 30].

A very interesting question is what sets the terminal Lorentz factor of a relativistic



FIGURE 3. Face-on view of the lateral structure of the jet in the fiducial model at r = 5× 105

(2×1011 cm for a maximally spinning BH of massM = 3M⊙). The left panel (a) shows the color-coded
(see bar on top) Lorentz factor,γ, and the right panel (b) shows the color-coded energy flux of the jet per
unit solid angle,dP/dω. The dashed line shows the jet-wind boundary. Note that the maximum value of
the energy flux,dP/dω, occurs at the jet-wind boundary, whileγ is maximal inside the jet.

jet. In the context of the collapsar model the confining pressure on the jet is due to the
stellar envelope, and therefore we expect the accelerationto continue only until the jet
leaves the star. Once outside, the jet will probably become conical (monopolar). Such
a field geometry is inefficient for accelerating particles for a wide range of jet initial
magnetization as was shown in [38], i.e., theLorentz factor is determined by the size
of the star[30]. We note that once outside, current-driven instabilities may set in as the
jet loses pressure support and much of the electromagnetic energy maybe converted into
thermal energy [10, 39]. These additional topics are beyondthe scope of the present
paper and require simulations that model the loss of pressure to model the effect of
progenitor star surface on the jet. By the time the jet breaks out of the star (r ∼105−106),
the physically relevant models with 0.6≤ ν ≤ 1 produce Lorentz factorsγ ∼ 100−5000
and opening anglesθ j ∼ 10−3 − 0.2 radians, perfectly consistent with observations
of long GRBs. These are currently largestγ attained in a numerical magnetized jet
simulation of long GRBs. We note that for low values of initial jet magnetization, its
value may influence the jet Lorentz factor [34, 40].

We make a robust analytic prediction for the dependence of the maximum Lorentz
factor on distancer along the jet,γm(r) ≈ (1/3− 3)

√
r. This applies to the whole

physically relevant range of models 0.6 ≤ ν ≤ 1 [30]. For instance, forr ∼ 106, the
expected maximum Lorentz factor isγm ∼

√
r ≈ 103, as confirmed in Fig. 2a,b. This

formula can also be used to estimate the jet Lorentz factors not only of long GRBs but
also AGN, short GRBs, and X-ray binary systems, where the jet ispresumably confined
by the wind from a radiatively inefficient accretion disk. The confining effect of the
wind from such a disk with a characteristic radial extentr ∼ 50 ceases around a distance



∼ few× 100 along the jet [39]. Therefore, we would expect such a system to have a
terminal Lorentz factorγ ∼ 1−10, consistent with observations [41–44].
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