

X-ray polarization in the lamp-post model of non-smooth black-hole accretion discs

Michal Dovčiak

Astronomical Institute Academy of Sciences of the Czech Republic, Prague

R. W. Goosmann Strasbourg Astronomical Observatory F. Marin & V. Karas

Astronomical Institute Prague G. Matt University Boma Tre F. Muleri

IASF Rome

X-ray polarisation in astrophysics: a window about to open? AlbaNova University Center, Stockholm, Sweden 25th – 28th August 2014

Scheme of the lamp-post geometry

- central black hole \rightarrow mass, spin
- accretion disc
 - \rightarrow Keplerian, geometrically thin, optically thick and neutral
- compact corona
 - \rightarrow isotropic and unpolarised power-law emission
 - ightarrow static (or slow motion)
 - \rightarrow height, photon index
- relativistic effects:
 - \rightarrow Doppler and gravitational energy shift
 - \rightarrow light bending (lensing)
 - ightarrow aberration (beaming)
- references:
 - \rightarrow Matt (1993)
 - → Dovčiak, Muleri, Goosmann, Karas & Matt (2011)

Motivation

- ► observational evidence of a rather compact X-ray source: variability, micro-lensing → corona size of ten(s) of R_g = GM/c²
- many effects should be qualitatively similar with a simple lamp-post geometry
- base of an aborted jet?
- light bending scenario to explain variability in continuum versus line flux (e.g. Miniutti & Fabian, 2004)
- polarization in reflection in non-axisymmetric geometry should be significant
- reflection versus absorption scenarios for origin of the AGN X-ray spectral shape in 2–10 keV range (Marin et al, 2012, 2013)
- new polarimetric detectors for next generation X-ray missions have been developed and proposed (XEUS, IXO, NHXM, GEMS, XIPE)

Stokes parameters at infinity

$$\Delta I(E) = \int_{\Sigma} dS \ G \ I_{\text{loc}}(E/g) \qquad G = g^{3} \ell \mu_{e}$$
$$\Delta Q(E) = \int_{\Sigma} dS \ G \ P_{\text{loc}}(E/g) \ I_{\text{loc}}(E/g) \ \cos 2[\chi_{\text{loc}}(E/g) + \psi]$$
$$\Delta U(E) = \int_{\Sigma} dS \ G \ P_{\text{loc}}(E/g) \ I_{\text{loc}}(E/g) \ \sin 2[\chi_{\text{loc}}(E/g) + \psi]$$

$$P = \frac{\sqrt{(\Delta Q)^2 + (\Delta U)^2}}{\Delta I} \qquad \tan 2\chi = \frac{\Delta U}{\Delta Q}$$

 \rightarrow $I_{\rm loc}$, $P_{\rm loc}$ and $\chi_{\rm loc}$ depend on local geometry of scattering

Local emission

- ▶ flux → multiple Compton scattering and K α , K β fluorescence NOAR
- ▶ polarization \rightarrow single scattering approximation Chandrasekhar (1960)
- irregular surface
 - to relax the assumption on such a well defined scattering geometry
 - on much smaller scale than the changes in relativistic effects
 - on much larger scale than the scale characterizing the radiative transfer
 - averaging of the local polarisation properties

Local emission

- ▶ flux → multiple Compton scattering and K α , K β fluorescence NOAR
- ▶ polarization \rightarrow single scattering approximation Chandrasekhar (1960)
- irregular surface
 - defined by the angle of the surface with respect to the equatorial plane, $\delta < \delta_{max} = 10^{\circ}, 30^{\circ}$ and 60°
 - Iocally symmetric in azimuthal angle
 - shading is not taken into account
 - two probability distributions are explored, $\mathscr{P}(\delta)$:
 - ightarrow linearly decreases to zero for $\delta_{ ext{max}}$
 - ightarrow linearly increases to be doubled for $\delta_{ ext{max}}$

Smooth disc

- \rightarrow importance of the local polarization properties
- ightarrow geometry of scattering (incident, emission and relative azimuthal angles)
- \rightarrow source height, observer inclination and black hole spin
- \rightarrow formation of additional depolarizing critical points
- \rightarrow illumination pattern depends on height of the source

Irregular disc surface - polarisation degree

Irregular disc surface - polarisation degree

Irregular disc surface - polarisation angle

Irregular disc surface - polarisation angle

Conclusions

- relativistic effects change considerably the polarization of the emitted radiation
- importance of the system geometry and physical properties of the system
- ▶ effects of "large-scale" corona (in XRBs) → Schnittman & Krolik (2010)
- the differences between results for various heights get smaller for polarisation degree
- ► the irregularities in the disc lower the polarisation degree and change the angle more with higher δ_{max}
- ▶ the polarisation properties for $\delta_{max} \approx 60^\circ$ are similar for different heights and BH spins
- polarimetric observations could help to discriminate between competing scenarios and to determine the properties of the system
 inclination, BH spin, corona geometry