Polarimetry of AGN from the infrared to the X-ray range

René W. Goosmann

Observatoire astronomique de Strasbourg, France

in collaboration with Michal Dovčiak, C. Martin Gaskell, Nicolas Grosso, Vladimír Karas, Frédéric Marin, Giorgio Matt, Delphine Porquet, Francesco Tamborra

> International conference *X-ray polarization in astrophysics – a window about to be opened?* Stockholm, Sweden, August 27th 2014

arisation as a tool to study the ar System and beyond Action MP1104

How to resolve the unresolvable?

How to resolve the unresolvable?

MY ULTIMATE GOAL

Constrain the unresolved geometry and dynamics of AGN by using broadband polarimetry as a complement to spectroscopy, imaging and timing...

The broad spectrum of AGN

Collin (2001), Sanders et al. 1989

The optical spectrum of AGN: 3C 273

The optical spectrum of the quasar 3C 273 exhibits broadened, redshifted Balmer emission lines.

The brodening is due to a large differential velocity distribution of the reprocessing medium (several 1000 km/s).

Maarten Schmidt (1963)

Unifying broad and narrow line objects

Processes producing (de-)polarization in AGN

Synchrotron emission Electron and Rayleigh scattering Dust (Mie) scattering Resonant line scattering Dichroic absorption Faraday rotation Dilution (by unpolarized radiation) General Relativity

Radio-quiet objects Hidden type-1 AGN

A major breakthrough for the unified model with NGC 1068 (Antonucci & Miller 1985)

→ periscope view of AGN in polarized flux

Recovering the hidden accretion disk spectrum

Looking through the periscope, the continuum spectrum of the disk can be recovered.

A multiple-blackbody shape with power-law slope of $n^{-1/3}$

Kishimoto et al. 2008

A 3D image of the scattering clouds in NGC 1068

Capetti et al. 1995

Kishimoto et al. 1999

Phase function of Thomson scattering Spatial distribution of polarized flux Assuming optically thin matter

 \rightarrow 3D image of the scattering clouds

Hidden type-1 AGN and polarization dichotomy

The polarization dichotomy of AGN was established in the NIR/optical/UV:

Type-2 \rightarrow *P.A.* jet axis

Type-1 $\rightarrow P.A.$ jet axis,except for dominantpolar scattering

See Antonucci (1993) and Smith et al. (2002) and references therein for an overview

Modeling polarization with the STOKES code

- Monte-Carlo radiative transfer in 3D
- Various geometries for the emission / scattering regions
- polarization due to (multi-)electron scattering and dust (Mie-)scattering
- Resonant line scattering routines implemented
- Photo- and K-shell ionization / recombination
- variability and evolution of the incident spectrum
- Polarization imaging simulations

Public access

http://www.stokes-program.info/

Goosmann & Gaskell (2007) Marin et al. (2012) Goosmann, Gaskell & Marin (2013)

Modeling the polarization dichotomy of AGN

Goosmann et al. (2006) Marin et al. (2012)

See also Smith et al. 2004, 2005

 \rightarrow Reproduction of the observed polarization dichotomy in the opt/UV

The X-ray polarization of disk reprocessing

- Polarization is always parallel to the symmetry axis
- *P* rises with inclination
- The Compton hump is slightly more polarized than the soft continuum
- *P* drops strongly across the lines

Θ

h

Face-on

Λ Ι V

edge-on

Edge-on

Λ Ι V

face-on

The X-ray polarization of disk reprocessing

Marin & Goosmann (2011)

 \rightarrow Prediction of a polarization dichotomy in the X-ray range *that evolves as a function of photon energy*

X-ray polarimetry of NGC 1068

Modeling of an irradiated accretion disk, equatorial scattering, a dusty torus with Θ =60°, and inclined outflows as suggested by Raban et al. (2009).

Goosmann & Matt 2011

X-ray polarimetry of NGC 1068

Modeling of an irradiated accretion disk, equatorial scattering, a dusty torus with Θ =60°, and inclined outflows as suggested by Raban et al. (2009).

Goosmann & Matt 2011

Possibility to measure the relative angle between torus and outflows by broad-band polarimetry!

Probing general relativity close to the black hole

Unravel the nature of broad iron Kα lines

Marin et al. (2012)

Relativistic case

Re-emitted radiation from a rotating accretion disc and relativistic ray-tracing

Absorption case

Optically thick, low ionized absorber partially covering the emission region (Miller et al. 2008/2009)

Unravel the nature of broad iron $K\boldsymbol{\alpha}$ lines

Marin et al. (2012)

Summary and conclusions

- X-ray polarimetry is challenging and so is the modeling!
- X-ray polarimetry complements polarization studies of AGN at other wavebands, because the polarization mechanisms are connected.
- So far, we can predict for AGN that:
 - a polarization dichotomy known from the NIR/optical/UV occurs also in the X-ray range but is energy-dependent,
 - a misalignment of the outflows in NGC 1068 induces a rotation of the X-ray polarization position angle with energy,
 - the signature of X-ray polarization discriminates between relativistic reflection and complex absorption models.
- Next steps: exploring clumpy structures and the full infrared range...

THANK YOU FOR YOUR ATTENTION!