Polarized emission from the GRB photosphere

Christoffer Lundman (KTH/OKC) with Felix Ryde (KTH/OKC) & Asaf Pe'er (UCC)

Where in the jet does the gamma-ray emission come from?

Motivating our study: Has photospheric emission been detected?

- Photosphere detected at sub-MeV energies
- Same energy region where polarization can be measured!

What ingredients are needed to produce polarized emission from the photosphere?

Part I: The photon field in the **local comoving** frame must be anisotropic

Part II: The observed emitting region must be **asymmetric**

Part I: Scattering dominates the photosphere opacity

135°

90°

45°

- Therefore, inherent ^{180°}
 Polarization degree for potential for polarized photospheric emission
- Crucial ingredient for polarization from scattering: anisotropy

Part I: Anisotropy increases as the fluid approaches the photosphere

Intensity becomes anisotropic in the comoving fluid frame \rightarrow emission is polarized after last scattering at photosphere

What ingredients are needed to produce polarized emission from the photosphere?

Part I: The photon field in the **local comoving** frame must be anisotropic OK

Part II: The observed emitting region must be **asymmetric**

Part II: Individual fluid elements at the photosphere emit polarized emission

Part II: Polarized emission from spherical outflows?

- Averaging over the emitting region cancels the polarization signal
- However, emission is polarized if "rotational symmetry" of the emitting region is broken

Part II: Natural way to break the symmetry - Jet structure

What ingredients are needed to produce polarized emission from the photosphere?

Part I: The photon field in the **local comoving** frame must be anisotropic OK

Part II: The observed emitting region must be **asymmetric OK**

We do: Polarized radiative transfer close to the jet photosphere

How we approach solving the problem

1) Analytical calculations

$$\frac{\dot{N}^{\rm ob}}{\mathrm{d}\Omega_{\rm v}}(\theta,\theta_{\rm v},R_{\rm ph}) = \frac{1}{4\pi} \int_{\Omega_{\rm s}} D^2(\theta,\theta_{\rm v}) \frac{\mathrm{d}\dot{N}}{\mathrm{d}\Omega}(\theta,R_{\rm ph}) \mathrm{d}\Omega$$
$$\frac{\mathcal{Q}}{\mathcal{I}} = \frac{\int_{\Omega_{\rm s}} D^2(\mathrm{d}\dot{N}/\mathrm{d}\Omega)\Pi(\theta_{\rm L})\cos(2\chi)\mathrm{d}\Omega}{\int_{\Omega_{\rm s}} D^2(\mathrm{d}\dot{N}/\mathrm{d}\Omega)\mathrm{d}\Omega}$$
$$\Pi(\theta_{\rm L}) \simeq 0.45 \frac{(1-\beta\cos\theta_{\rm L})^2 - (\cos\theta_{\rm L}-\beta)^2}{(1-\beta\cos\theta_{\rm L})^2 + (\cos\theta_{\rm L}-\beta)^2}$$

2) Monte Carlo simulation of polarized radiative transfer

Narrow jet results: Breaking the symmetry of the emitting region

Lundman+ 2014b

Narrow jet results: Breaking the symmetry of the emitting region

Wide jet results: Breaking the symmetry of the emitting region

Lundman+ 2014b

Interesting consequence: Correlations between the spectral shape and the polarization degree

Polarization degree is up to 40%,spectrum similar to typical GRB spectra!Lundma2014.4

Lundman+ 2014a, b

Summary: Polarized emission from the photosphere

- Polarized emission in range 0-40% expected (depending on viewing angle and jet structure)
- Only a change in pol. angle of 90° is possible (due to jet axisymmetry)
- If jet is wide, most obs. see low polarization (few percent)
- Correlations expected between spectrum and polarization

Comparison with interesting GAP observations

See talk by Yonetoku!

GAP observations of GRB100826A

- Polarization of prompt emission measured in two separate time bins
- First bin: $\Pi = 25\% \pm 15\%$ $\phi = 159^\circ \pm 18^\circ$
- Second bin: $\Pi = 31\% \pm 21\%$ $\phi = 75^\circ \pm 20^\circ$
- Consistent with a shift of $\ \Delta\phipprox90^\circ$

