Off-axis response of Compton and photoelectric polarimeters with a large field of view

Fabio Muleri fabio.muleri@iaps.inaf.it

X-ray polarisation in astrophysics -a window about to open?

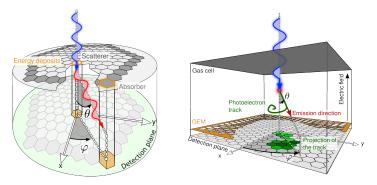
Stockholm, Sweden, 25-28 August 2014

Outline

- An analytical approach to calculate the modulation curve
- Difference between on-axis and off-axis photons
- A selection of the results
- Comparison with measurements
- Conclusions

How we build the modulation curve

• The modulation curve \mathcal{M} is just the number of counts produced in the direction φ



- Common instrumental designs are not sensitive to the angle ϑ
 - For example, Compton telescopes are an exception

How can this be expressed mathematically?

How we can *mathematically* build the modulation curve

The number of events produced in a certain direction is the differential cross section of the process:

Photoelectric (K - shell):
$$\frac{d\sigma_{Ph}}{d\Omega} = r_0^2 \alpha^4 Z^5 \left(\frac{m_e c^2}{E}\right)^{\frac{f}{2}} \frac{4\sqrt{2} \sin^2 \theta \cos^2 \phi}{(1 - \beta \cos \theta)^4}$$

Compton (Klein - Nishina):
$$\frac{d\sigma_{Cm}}{d\Omega} = \frac{1}{2} r_0^2 \frac{E'^2}{E^2} \left[\frac{E}{E'} + \frac{E'}{E} - 2 \sin^2 \theta \cos^2 \phi\right]$$

Usually, the instruments are not sensitive to θ and then we have to integrate over this angle:

$$\mathcal{M}(arphi) \propto \int_{\mathsf{Min}}^{\mathsf{Max}} rac{\mathsf{d}\sigma}{\mathsf{d}\Omega} \mathsf{d} heta$$

How is this applied on-axis?

We have to sum the number of events in the meridian slide φ

For completely polarized photons and a photoelectric polarimeter:

$$\mathcal{M}(arphi) \propto \int_{\mathsf{Min}}^{\mathsf{Max}} rac{\sin^2 heta\,\cos^2\phi}{\left(1-eta\cos heta
ight)^4} \mathsf{d} heta$$

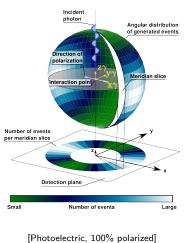
On axis, this integral is trivial:

$$\mathcal{M}(arphi) \propto \cos^2 \phi \, \left[\underbrace{\int_{\mathsf{Min}}^{\mathsf{Max}} rac{\sin^2 heta}{\left(1 - eta \cos heta
ight)^4} \mathrm{d} heta}_{\mathsf{constant} = \mathsf{A}}
ight]$$

In the following, Min=0 and Max= π .

 Taking into account the error in the measurements of the event direction:

$$\mathcal{M}(\varphi) = A\cos^2(\varphi - \varphi_0) + B$$

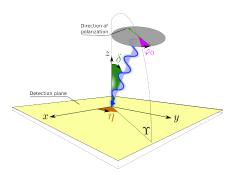


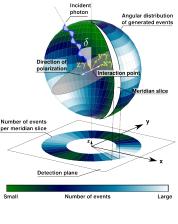
... and off-axis?

- The azimuthal and meridian directions are not decoupled as seen by in instrument
- The angular dependency of the events must be transformed in the instrument frame of reference

I used three rotations, representing

- δ : inclination
- η : azimuthal direction of the photons
- φ_0 : polarization angle





[Photoelectric, 100% polarized]

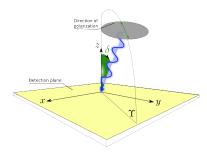
Off-axis modulation curve

- There is no conceptual difference between photoelectric and Compton polarimeters
- Some algebra is required to arrive at the modulation curve
- In a simple configuration ($\eta = 0$ and $\varphi_0=0$), with a 1st order approximation in energy, for photoelectric polarimeters:

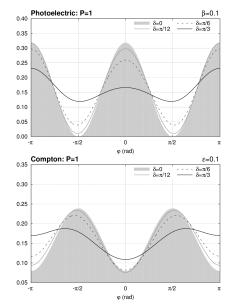
$$\begin{split} \mathcal{M}_{\mathsf{Ph}} &= f\mathcal{N}_{\mathsf{tot}} \left\{ \mathcal{P} \left[-\frac{9\beta\cos^2\delta\sin\delta}{8}\cos^3\varphi + \frac{\cos^2\delta}{\pi}\cos^2\varphi + \frac{3\beta\left(3\cos^2\delta - 1\right)\sin\delta}{8}\cos\varphi + \frac{\sin^2\delta}{2\pi}\right] + & \text{ αPol. component} \\ & + (1-\mathcal{P}) \left[\frac{9\beta\sin^3\delta}{16}\cos^3\varphi - \frac{\sin^2\delta}{2\pi}\cos^2\varphi + \frac{3\beta(3\cos^2\delta - 4)\sin\delta}{16}\cos\varphi + \frac{3-\cos^2\delta}{4\pi} \right] \right\} + & \text{ αUnp. component} \\ & + \mathcal{N}_{\mathsf{tot}}\frac{1-f}{2\pi} & \text{ αInstr. sensitivity} \end{split}$$

- *f*: f-factor, conceptually similar to the modulation factor $\rightarrow \rightarrow \rightarrow \rightarrow$ In the following we will assume an ideal instrument with f = 1
- \mathcal{P} : polarization degree
- $\mathcal{N}_{\mathsf{tot}}$: number of collected events
 - β : velocity of the photoelectron in *c* units, basically the energy of the photon

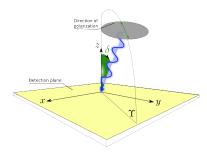
Increasing the inclination angle δ for completely polarized photons



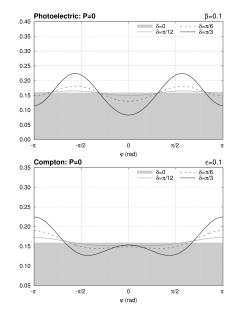
- Deviation from the cosine square behavior
 - Asymmetry of the two peaks
 - The modulation curve must be resolved over 360°
- \blacksquare Decreasing amplitude of the modulation with δ
- Increasing effects with the energy



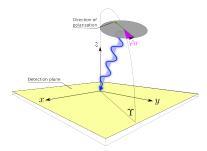
Increasing the inclination angle δ for completely <u>un</u>polarized photons



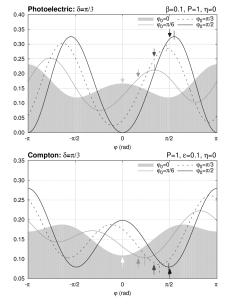
- A modulation is present also for off-axis unpolarized photons
 - In the low energy limit, this is exactly a cosine square
 - ➡ The amplitude increases with the inclination



Changing the angle of polarization φ_0



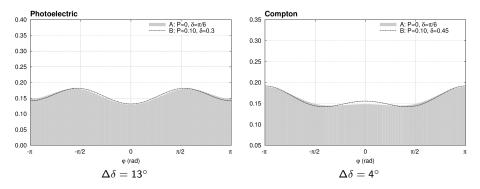
- The shape of the modulation curve depends on the angle of polarization
- The peak of the modulation does not correspond exactly to the polarization angle, even for 100% polarized photons



Modulation curve degeneracy

Modulation curve degeneracy

Comparison of 10% polarized and unpolarized photons with different inclination:



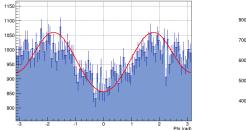
A similar result holds true if we consider different energies.

The incident direction and energy of the photons have to be known to some degree

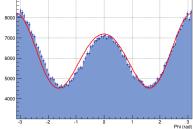
Comparison with real measurements

Comparison with real measurements

Photoelectric polarimeter (Gas Pixel Detector):



Unpolarized 3.7 keV, delta=40 deg



Polarized 4.5 keV, delta=40 deg

Red curves are not fit to data, but theory predictions without any free parameter.

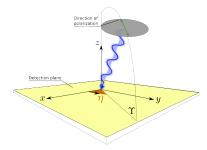
Conclusions

- The modulation curve depends not only on the polarization, but also on the incident direction and energy in a complex but predictable way
 - The source position and the photon energy have to be known
- This is true for both usual "2-dimensional" photoelectric and Compton polarimeters
 - ➡ The only way of avoiding this is 3-dimensional polarimeters, like Compton telescopes, with a complete reconstruction of the event direction.

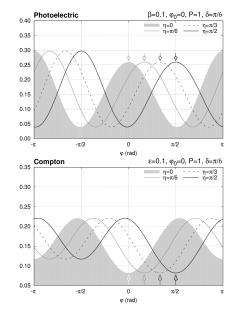
[see Muleri 2014, The Astrophysical Journal, 782:28 for more details]

Backup slides

Changing the azimuthal direction of the photons η



- \blacksquare The modulation curve just shift of η
 - This is true for the modulation produced by both polarized and unpolarized photons



Increasing the polarization degree

- Both the shape and the phase of the modulation changes
 - Evolution from the behavior for unpolarized to polarized photons
 - The phase of the modulation is not correlated at all with the phase of the modulation

