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Standard Spectrum:
Band '93

+ Unique function that joins two power
laws with continuous 1 derivative

+ Although it is completely empirical, it
can mimic OTTB, OT synchrotron & BB,
each in the appropriate limit

+ Usually parametrized in terms of the
energy at the peak of the PD
distribution: Epeax

 This definition requires that HE PL
index B < -2

(A(E/100)" e~ E2+a)/ By

((l’ — ﬂ] b.pealk —

W = Lbreak »

f(E) =X 4 (o — ‘fa)Epeak
100(2 + «)

if £ <

{a—3)
] exp(3 — a)(E/1 00)“3
. (0 — 3) Epeak
if F > __/peax
\ T 24 a)

. MeV")

—2
- S

Flux (photons - cm

. 3_1)

—2

E> N, (erg-cm

10

10

10

Briggs et al. 1999

Low-Energy Index
a=-06+0.07

=0

TD},D,
x5

0 e O *x o | m

BATSE SD0O

BATSE SD1

BATSE LADO

BATSE SD4

OSSE

COMPTEL Telescope
COMPTEL Burst Mode
EGRET TASC

GRB 990123

g vF, Peak Energy
oy 4 B =720£10keV
M

High-Energy Index
p=-3.11+0.07

0.1 1 10
Photon Energy (MeV)



GRB 080916C

 Bright burst with very simple spectral shape
over 7 decades (Band function)

- Zhang & Pe’er (2009) claim that the
absence of a thermal component
indicates strong magnetization

« But wait: only the first spectrum is
indicative of OT synchrotron ‘line of death’
(Preece et al. 1998)

« All are inconsistent with the ‘fast cooling’
limit (Cohen et al. 1997)

- Uhm & Zhang (2014) propose magnetic
field decaying with radius to get a ~ -1
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The Case for a Photosphere

* Ryde et al., (2006): fitted photospheric function +
PL to archival BATSE spectra

+ Why does this work?

+ GRB spectra with sufficient statistics for
spectral analysis (45 o) typically allow only 4
free parameters for fitting, as with Band
GRB function

* BB + PL also has 4 free parameters

+ Line of death problem replaced by physical
values.

« Band a values are replaced by sum of BB +1
index and fitted PL index

« HE PL index change is also accounted for

+ But: Photosphere not likely to show polarization!
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GRB 0909028

- Bright LAT burst with clear
photospheric emission

« The medium energy range
should have no polarization
signature

- Still, lowest energies are
dominated by possible
synchrotron emission

* Polarization fraction
certainly reduced

* Rare event type

Figure 3 from A. A. Abdo et al.
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GRB081224A Time Evolution
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« Motivated by Baring & Braby (2004), g
Burgess et al. (2011) began fitting h
spectra with numerically integrated o
synchrotron emission from parametrized gn
electron distributions N
A
[‘g — b N wul —
- Electron distributions are ‘life-like’: Fermi 101 102 103 104
shock accelerated PL from a thermal (rel. Energy (keV)
Maxwellian) reservoir or fast cooling
broken PL

- Fitting is done to the electron
distribution, convolved with synchrotron
emissivity kernel - too numerically
intensive until recently

n. (cm™3)

* If no HE gamma-rays: thermal
synchrotron (may be most typical
spectral form)
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Best Fit Spectra

* Clearly, the cut-off model power-
law (COMP) is a better fit to most
spectra by a huge margin

« Some low-flux/fluence spectra
don’t constrain high-energy PL
very well

« OTOH: some very bright
spectra are cut-off

* Possible mechanisms: Thermal
Synchrotron?

- If so, polarization should be
less than for PL electrons
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Table 2
BEST GRB models
PL SBPL BAND COMP GLOGE
Fluence Spectra
506 (23%) 124 (6%) T7 (4%) 903 (42%) 535 (25%)
Peak Flux Spectra
454 (21%) 150 (7%) 65 (3%) 847 (40%) 629 (29%)

BATSE 5B Spectral Catalog (Goldstein et al. 2013)



GRB130427A: Spectral Analysis

- Because the GBM data are
saturated throughout the main
emission episode, we looked
instead at the cleaner, first pulse.

* This pulse is brighter than
most GRBs!

- The Band GRB function is fitted
to 0.1 s intervals, using three
datasets: GBM Nal, GBM BGO
& LAT LLE.

- Strikingly, the peak energy
shows a very simple behavior...
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GRB130427A: Peak Energy Evolution

- Fitted Band function Epeax
values (blue) for the first 2.5 s
of 130427A in 0.1 s time bins.
Fitted with a single power law
(slope of -0. 96 +/- 0.02).
Time has been offset by 0.1 s,

« The Burgess et al.
Synchrotron + BB
characteristic energy values
are in red. A broken power-
law fit is indicated by the
dashed line (early time decay
index is -0.37 +/- 0.23, with a
break at 0.38 +/- 0.08 s.,
breaking to an index of -1.173
+/- 0.045).

Similar behavior in several
other single-pulse bursts
(Burgess et al. 2014)
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Luminosity-Epeak Correlation

« The decay phase L — Epeax
correlation is fit with a power-law

index of 1.43 +/- 0.04. 10°F

« Spherical blast waves in shell
collisions go as L « Epeak3 during
the decay phase of a pulse
[Dermer 2004]
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« We can obtain the 3/2 PL index by
assuming magnetic flux freezing:

Luminosity [erg s ']

 Usual relation for magnetized
jets: B ~1/R

« With minijets, you can get away
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with: B ~ 1/R?
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LAT High Energy Afterglow

103 I IIIIIIII e I lIIIIlII 1 IIIIIIII I IIIIIEIII I I:IIIIII 1 IIIIIIII

+ LAT Lightcurve belongs to the afterglow:
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+ Except for 3 photons right at the trigger,
nearly all the LAT photons come after 10
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« LAT Photon flux is a broken power law S, R TR . e Vo,
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+ Interestingly, the observation of late-time 10
high-energy photons by the LAT is
inconsistent with a synchrotron
interpretation:
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radiation Ackermann et al., Science 2013

* May be due to SSC or external Compton



GRBs: Whither Magnetization”

* Polarization: direct measurement; no question

« Prompt emission: dominated by y-rays

- Afterglows: all wavelengths

« Spectral and Temporal analyses: messy & indirect

« Fitting Function: Band, Cut-off Model Power Law (COMP), BB, Synchrotron

* Pulse Model: Norris; Hakkila & Preece; several others

- Particle acceleration: Fermi shocks; magnetic reconnection; combo (ICMART)

- Emission: Synchrotron; ‘Jitter’; Inverse Compton; Photospheric



