

IXPE: The Imaging X-ray Polarimetry Explorer Implementing a Dedicated Polarimetry Mission

Brian Ramsey and the IXPE team:

M.C Weisskopf, R. Bellazzini, E.Costa, R. Elsner, V.Kaspi, H.Marshall, G.Matt, F.Muleri, G.Pavlov, S. O'Dell, G.Pavlov, R.Romani, P.Soffita, A.Tennant, N.Bucciantini, E.Churazov, M.Dovciak, R.Goosman, V.Karas, D.Lai, F.Marin, P-O. Petrucci, J.Poutanen, M.Salvati, L.Stella, R.Sunyaev, R.Turolla, K.Wu and S.Zane. *U.S., Italy, Canada, Germany, Czech Republic, France, Finland, U.K*.

- Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's
- The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components)
- Typically, for a few % minimum detectable polarization, 10⁶ photons are required.
- So, <u>a dedicated mission is vital</u> with instruments that are designed specifically to measure polarization (with minimal systematic effects)

Opportunity

DRAFT 2014 SMEX AO

National Aeronautics and Space Administration

NNH14ZDA011J

Release Date July 14, 2014

DRAFT Announcement of Opportunity

Astrophysics Explorers Program

2014 Small Explorer (SMEX)

- NASA releases its draft announcement of opportunity for small explorer missions
- Proposal are expected to be due early next year (~ Jan 2015)
- The IXPE team will be proposing a dedicated polarimetry mission

Comments Due Date:

August 4, 2014

OMB Approval Number 2700-0085

Opportunity

Pegasus launched

- ~ 1-m diameter x 2 m long payload capability
- ~ 300 kg capability for payload + satellite bus
- \$125M total including contingency

IXPE Payload

Optics NASA/MSFC

Туре	Electroformed nickel/cobalt
Number of telescopes	3
Shells per telescope	30
Inner shell diameter	274 mm
Outer shell diameter	142 mm
Angular resolution	25 arcsec HEW
Focal length	4 m
Peak effective area	~ 900 cm² (3 modules)

Detectors Italy/ INFN/INAF

Туре	Gas pixel detector
Fill gas	He (20%) + DME (80%)
Pressure	1 atm
Detector sensitive area	18 x 18 mm
Modulation factor	~ 50% at 5 keV
Spatial Resolution	100 micron (4 keV)
Energy resolution	< 20 % at 6 keV
Energy range	2 – 8 keV

Heritage: X-ray Optics at MSFC

ART-XC (Satellite)

HEROES (Balloon)

FOXSI (Rocket)

28-shell nested assembly

MicroX (Rocket)

Heritage: MSFC X-ray Optics Infrastructure

Gas Pixel Detector

Principal of operation :

- Gas-filled imaging detector with GEM amplification stage
- Sensitive to single electrons
- Allows reconstruction of photoelectron tracks

- Typical photoelectron track image shown above
- Initial emission direction of photoelectron contains polarization information

Heritage – Gas Pixel Detector

Under development in Italy (INAF + INFN) since early 2000's.

Latest iteration is well characterized and understood

Gas Pixel detector

GPD being tested at INAF-IAPS

Heritage – Gas Pixel Detector

Highly stable operation demonstrated over long periods

No damage over 5-years-equivalent worth of heavy ion irradiation

Heritage: Extending Bench

Shorter version of NuSTAR boom/mast

NuSTAR boom/mast deployed

NuSTAR boom/mast in stowed configuration

Planned Full System Calibration

Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies will be obtained from TBD scattering crystals and non-polarized from an electron impact source which will be rotated to remove any polarization effects

IXPE will have unprecedented polarization sensitivity, 2 orders of magnitude more sensitive than original OSO-8 instrument

Time to obtain a specific Minimum Detectable Polarization (MDP)

Over the proposed mission life (2-3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations.

Name {"Bins"}	Туре	T(d) MDP(%)
Crab Nebula/Pulsar {8}	PWN & PSR	7.3 0.18/3.0
Vela	PWN	4.6 3.0
MSH15-52/B1509-58	PWN	1.0 10
G21.5-0.9 (J1833-1034)	PWN	0.464 3.0
4U 0142+61 {10}	AXP	2.4 10.0
J1708-4009	AXP	3.6 10.0
SAXJ1808.4-3658 {4}	AMSP	4.0 3.0
XTE J1751-305 {4}	AMSP	2.8 3.0
AM Her	mCV Polar	2.41 5.0
V1223 Sgr	mCV Intermediate Polar	1.9 3
EX Hya	mCV Intermediate Polar	2 3
Sgr B2	Scattering from GC cloud	4.3 20
SS 433	u-quasar	0.67 3
Her X-1 {30}	LMXB, Pulsing	2.1 5.0
GX 1+4 {30}	LMXB, Pulsing	1.4 5.0
1627-673 {12}	LMXB, Pulsing	2.3 5.0
Cen X-3 {12}	HMXB, Pulsing	5.8 5.0
2S 1553-542 {12}	HMXB, Pulsing	2.1 5.0
J16320-4751 {12}	HMXB, Pulsing	3.4 5.0
1915+105 {9}	LMXB, Transient, u-quasar	0.32 1.0
J1655-40 {9}	LMXB, Dipper, µ-quasar	0.16 1.0
Sco X-1	LMXB, OPO, Z	0.045 1.0
GX 5-1	LMXB, OPO, Z	0.27 1.0
Cyg X-2	LMXB OPO Z	0.27 1.0
1636-536	LMXB, Bursts, Atoll	0.26 3.0
1728-337	LMXB, Bursts, Atoll	0.80 1.0
1820-303	LMXB, Bursts Atoll	0.48 1.0
GS 1826-238	LMXB, Bursts, Transient	0.45 3.0
Cyg X-1 {9} low rate	HMXB, BH, radio, u-quasar	1.0
Cyg X-3	HMXB radio, u-quasar	0.55 3.0
4U 1700-37	HMXB	1.2 3.0
Circinus Galaxy	Galaxy	2.3 10.0
Cen A {3}	AGN	2.4 4.0
MCG-5-23-16	AGN	3.0 3.0
MCG-6-30-15	AGN	3.9 3.0
IC 4329A	AGN	2.0 3.0
NGC 4151	AGN	1.8 3.0
3C 273 {3}	AGN	4.4 4.0
Mkn 421	Blazar	5.6 3.0
Mkn 501	Blazar	2.7 3.0
PKS 2155-304	Blazar	3.8 3.0
PKS 2005-489	Blazar	2.4 3.0
H1722+119	Blazar	1.9 3.0
1ES 1101-232	Blazar	3.4 3.0
1ES 0836+710	Blazar	1.9 5.0
S5 2116+81	Blazar	5.2 5.0

IXPE measurements will address the nature of X-ray sources, providing information on:

- The geometry and emission mechanism of Active Galactic Nuclei (AGNe) and Microquasars?
- What is the geometry and strength of the B-field in Magnetars?
- What is the origin of radiation from Radio Pulsars?
- How are particles accelerated in Pulsar Wind Nebulae (PWNe)?

IXPE will provide imaging and pulse-phase polarimetry

- Perform imaging polarimetry of pulsar wind nebulae and crowded fields such as the Galactic Center
- Provide unique information to develop more robust models for several categories of sources including: magnetars, radio pulsars, pulsar wind nebulae, accreting x-ray pulsars, microquasars and active galactic nuclei

- Probe extreme astrophysical environments characterized by strong magnetic, electric or gravitational fields
- Explore exotic physical phenomena predicted by quantum electrodynamics.

ask			20)15	201	6	2017	2018	3 2019	9 :	2020	2021	2022
lo.	Name		FY2015	; JJASON	FY2016	F' Alsonid Jif	Y2017 MAMJJASO	FY2018	FY2019		20 MJJASON	FY2021	FY2022
1	Major Milestones AO Ris	7	∇	Sele	ction								
2	AO Milestones	Pro	posal Due	F	Phs A	Brdg	Phs B		Phs C/D			Phs E/F	
3	KDPs				K	ор-в∨с	ec KDP-C∖	7 Nov	KDP-D ▽ Mar	KDP-E∑	7 Apr		KDP-F ▽
4	Life Cycle Reviews			SRE	lan		PDR▽	CDR \\ Apr Oct	SIR▽Feb		RR // PLAR		DR∇Apr
6	Payload			Orti	v van		1 DIX V			Edditori	A Niely		
7	Telescope System				Teles	cope PDI	אר ∆ב.	lescope CDR					
8	Telescope Modules												
9	Detectors												
10	Telescope System Test & Calibration												
11	BATC Payload Elements												
12	Payload Software					Ĺ							
13	Payload Structures and Mechanisms								X				
14	Payload Electronics								Z				
15	Payload I&T												
16	Spacecraft							1					
17	Ground System								<u>۲</u>				
18	Observatory I&T									Divry	to Launch	n Svc	
19	L/V Services; Launch Ops												
20	Mission Operations							Pre-Phase	e E Mission Ops		P	hase E Msn Op	S
21	Science												
22	Project Mgt/Systems Eng/S&MA - LOE												
23	Education & Public Outreach - LOE												