Prospects of Hard X-ray polarimetry with Astrosat-CZTI

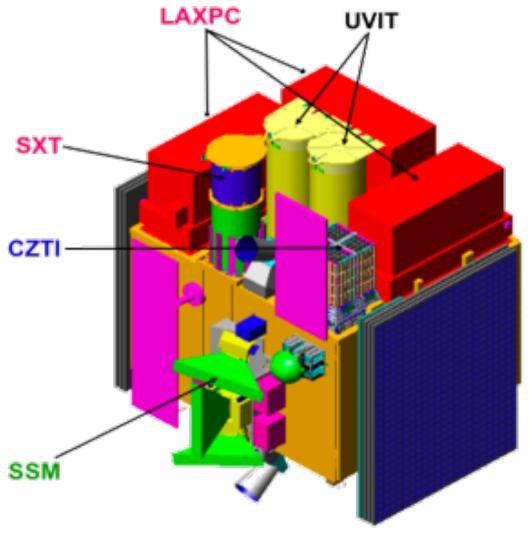
Santosh Vadawale

Physical Research Laboratory, Ahmedabad

On behalf of CZTI team:

A. R. Rao (TIFR), D. Bhattacharya, V. Bhalerao (IUCAA), S. Sreekumar (VSSC)

"X-ray Polarisation in Astrophysics – A new window about to open", 28 August 2014, Stockholm, Sweden


Outline

> Astrosat

- Introduction
- CZT-Imager
- > X-ray Polarimetry with CZTI
 - Proof-of-Concept
 - Geant4 simulations
 - Experimental verification
 - Expected sensitivity

Astrosat

India's first dedicated satellite

for Multi-wavelength Astronomy

Collaborative project of

- Many premier Indian research institutes
- + two international parterres

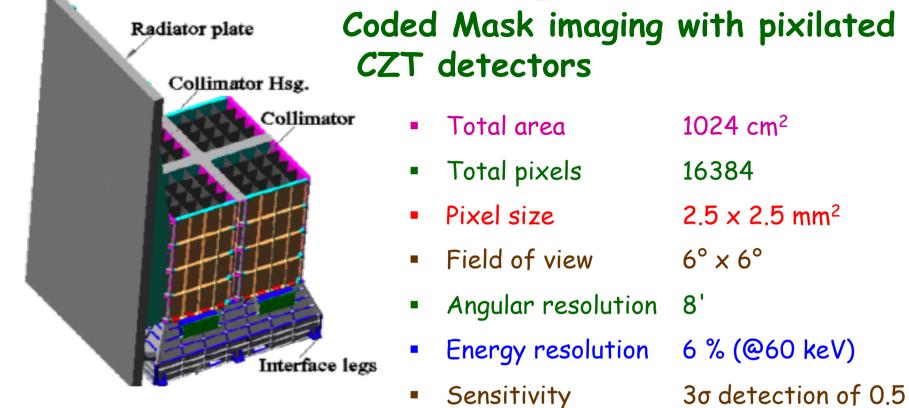
- 650 km, near equatorial orbit
- Launch by Indian PSLV in 2015 (Q2/Q3)
- Observatory class, Proposal driven mission from 2nd year

Main scientific focus

- Simultaneous multi-wavelength monitoring of broad range of cosmic sources.
- Sky surveys in the hard X-ray and UV bands.
- Broadband spectroscopic studies of X-ray binaries, AGN, SNRs, clusters of galaxies and stellar coronae.
- Studies of periodic and non-periodic variability of X-ray sources.
- Monitoring the X-ray sky for new transients.

Five Instruments

- > LAXPC: Large Area X-ray Proportional Counters
 - $A_{eff} \approx 6000 \text{ cm}^2$; FOV =1° X 1°; 3-80 keV; Res: 9% @ 22 keV
- CZTI: Cadmium-Zinc-Telluride Imager with Coded Aperture Mask
 - $A_{eff} \approx 500 \text{ cm}^2$; FOV = 6° X 6°;10 100 keV; Res: 6% @ 60 keV
- > SXT : Soft X-ray Telescope using conical-foil mirrors
 - $A_{eff} \approx 200 \text{ cm}^2$; FOV = 0.5°; (~3' res); 0.3-8 keV; Res: 2% @ 6 keV
- > SSM : Scanning Sky Monitor with 3 PSPCs and CAM
 - A_{eff} ≈ 30 cm² (each); 2-20 keV. Res: 20 % @ 6 keV
- > UVIT : Ultraviolet Imaging Telescope
 - Two telescopes each with 38 cm aperture; N-UV, F-UV and visible bands.





CZT-Imager

Orbotech CZT modules

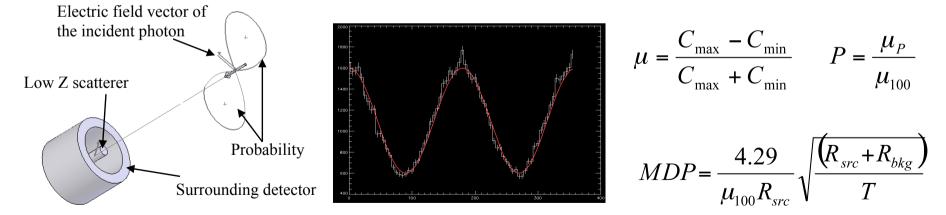
- 4 x 4 cm² (16 x 16 pixel)
- 5 mm thick
- ASIC based readout (2 x 128 ch. ASIC)

mCrab source in 10⁴ s

Total 64 modules (16 in 4 quadrants)

X-ray polarimetry with CZTI

> Pixilated detectors in principle can measure polarization

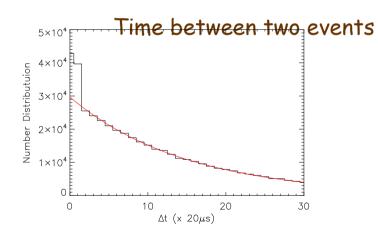

 Many attempts to measure polarization from instruments not optimized for polarimetry (RHESSI, Integral-IBIS, Integral -SPI)

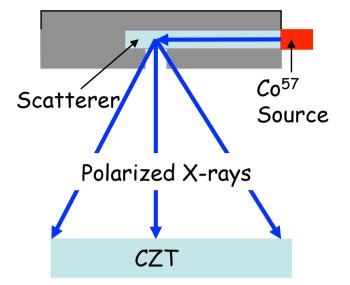
> Can Astrosat CZTI measure X-ray polarization?

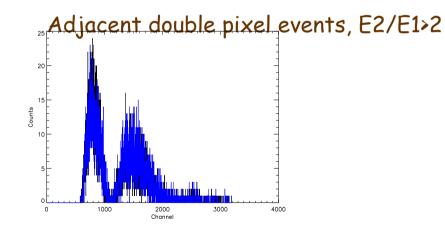
 May be above 100 keV (due to scattering probability / threshold) (Capability in modules? Preserved in data? Meaningful sensitivity?)

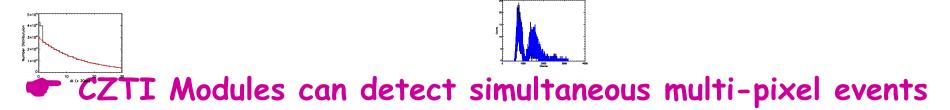
Compton polarimetry

 $d\sigma = \frac{r_e^2}{2} \left(\frac{v'}{v}\right)^2 \left(\frac{v}{v'} + \frac{v'}{v} - 2\sin^2\theta\cos^2\varphi\right) d\theta d\varphi$




For scattering polarimetry with Pixilated detectors

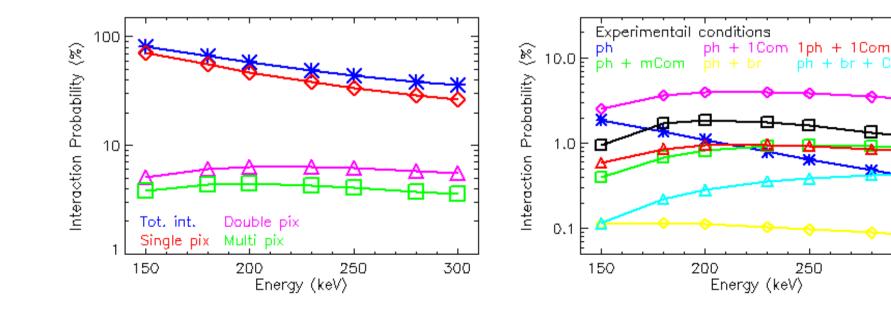

→ azimuthal bins are unequal


Proof-of-Concept Experiment

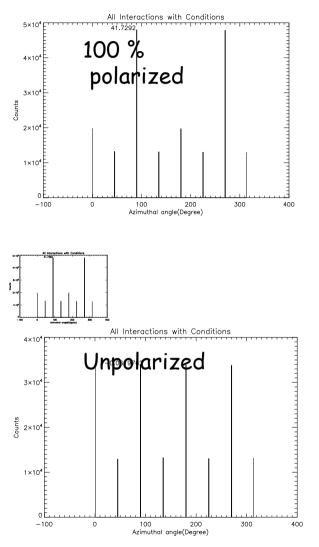
- Verify multi-pixel capability of CZTI modules
- ~70 % Polarized beam produced by 90° Compton scattering of 122 keV X-rays from Co⁵⁷
- Energy of polarized X-rays ~100 keV
- Time tagging \rightarrow 20 µs

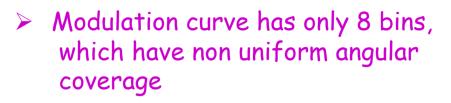


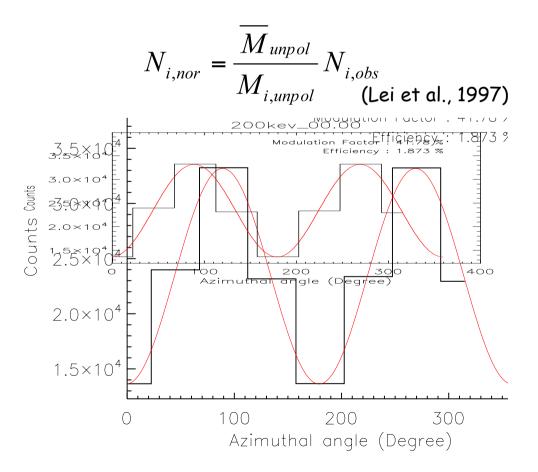
Geant4 Simulations for CZTI

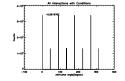

- Simulate interaction of photons with 40x40x5 >mm³ CZT (Low Energy Electro-magnetic processes)
- Energy range \rightarrow 100 to 300 keV in 10 steps \succ
- Unpolarized + 100 % polarized beam at 9 angles >
- 10 Million photons at each step
- Record absolute positions of the primary >interaction and up to 5 secondary interactions
- Pixilate with 2.5 mm pixel \succ

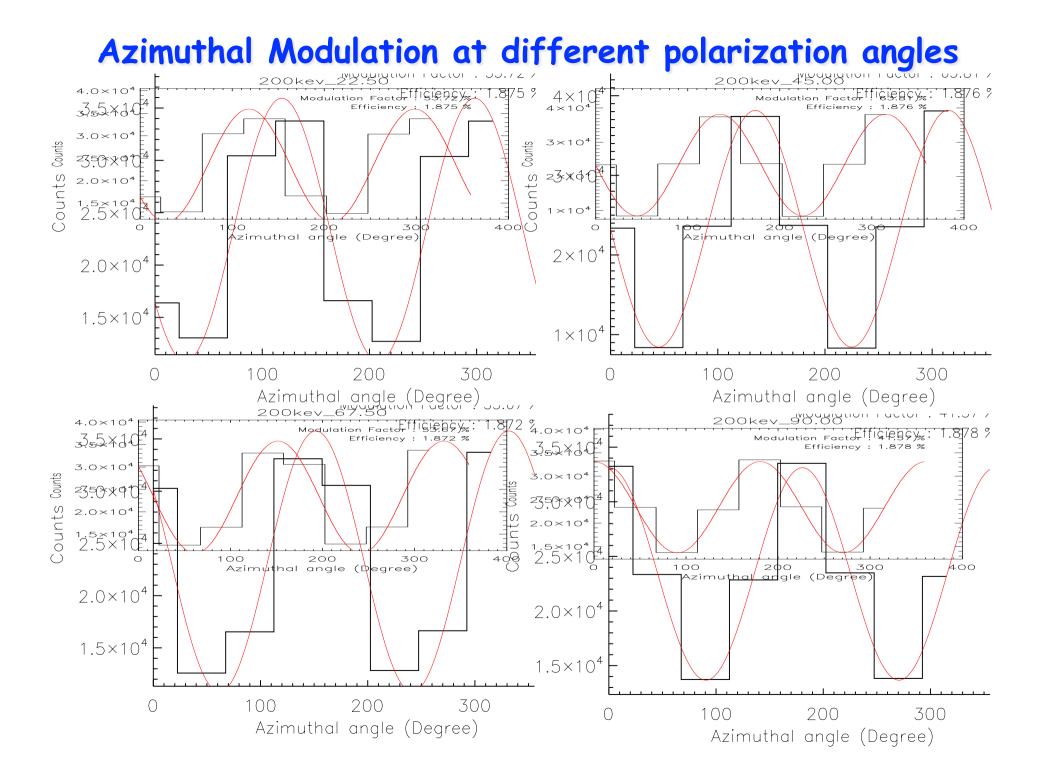
br + Com


300

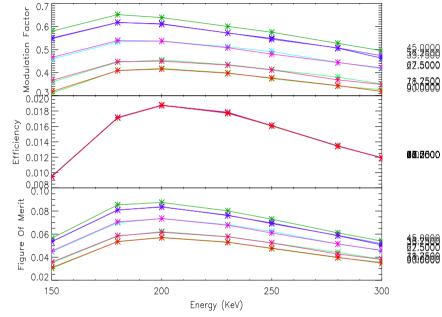

Investigate number of pixels as well as number / type of interactions \succ


Modulation Curve

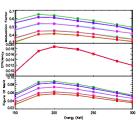

Generate 8 bin azimuthal histogram with low energy pixel as scattering pixel



Can be normalized with modulation curve for unpolarized beam

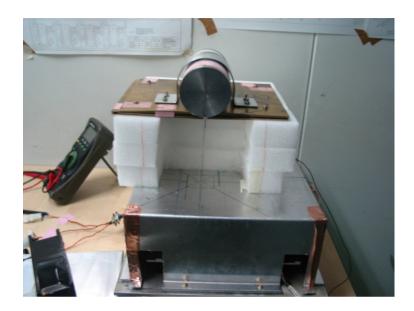


Azimuthal Modulation at different polarization angles

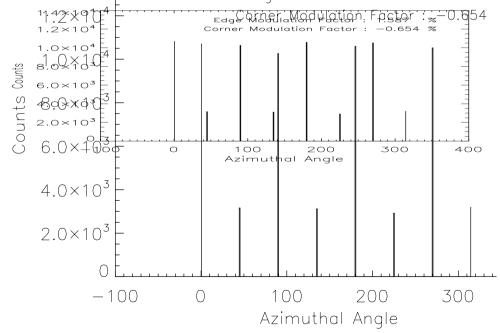

> Modulation factor is now dependent on the polarization angle

→ Figure of Merit → $FoM = \mu_{100} \cdot \sqrt{\varepsilon}$

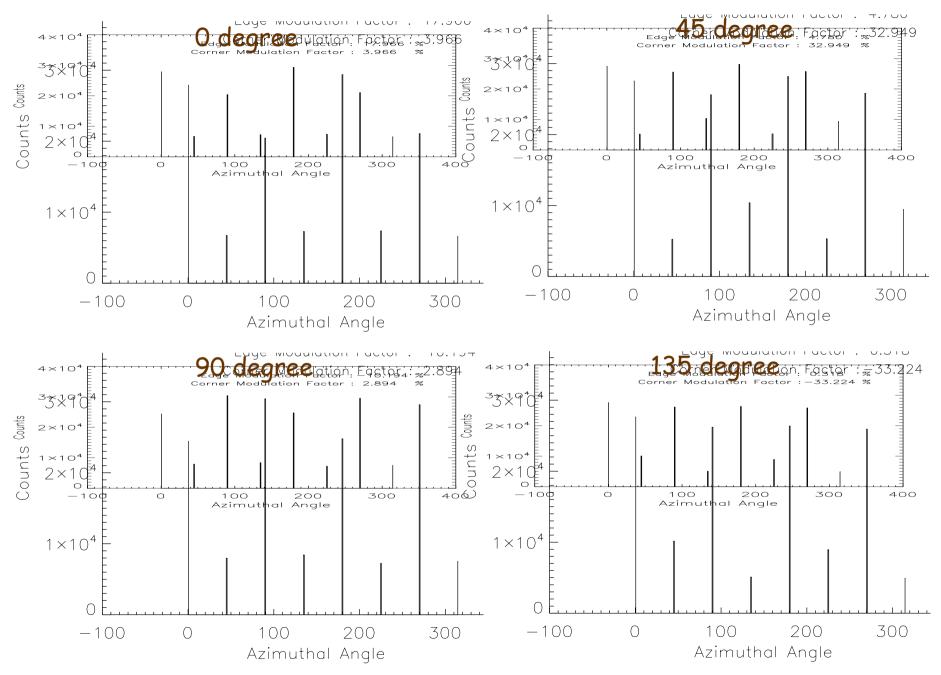
is function of both energy and polarization angle



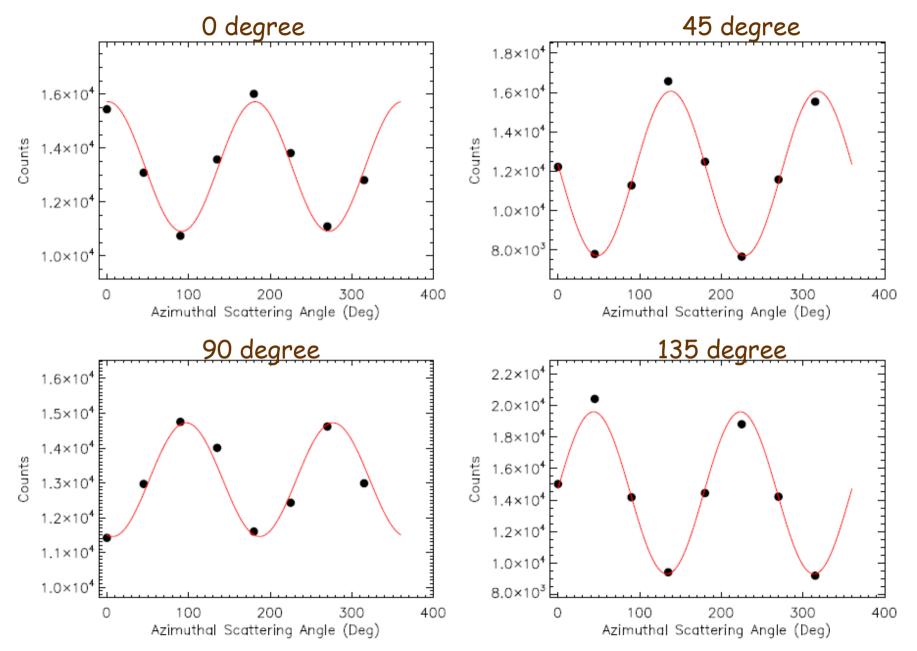
Pol.Angle	Average MF (%)
0	36.83
11.25	40.52
22.50	48.46
33.75	55.19
45.00	58.05
56.25	55.33
67.50	48.47
78.75	40.34
90.00	36.82


- Significant modulation \rightarrow Polarization measurement possible
- Angle dependent modulation \rightarrow opportunity of cross verification

Experimental Verification

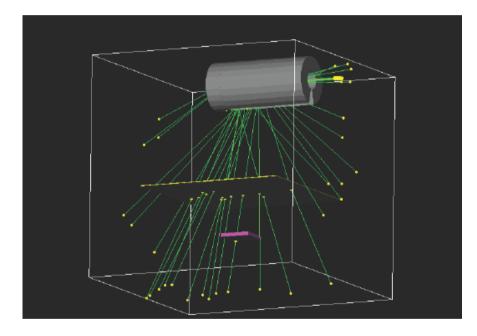


- Detection of polarized X-rays with CZT-I Flight electronics
- Polarized X-rays by Compton scattering of 356 keV from ¹³³Ba in 70 - 107 deg.
 - Incident energy: ~190 240 keV
 - ~70% polarized beam
- Measurements at four different incident angles 0°, 45°, 90° and 135° + unpolarized beam (direct 356 keV)



Modulation curve for unpolarized beam

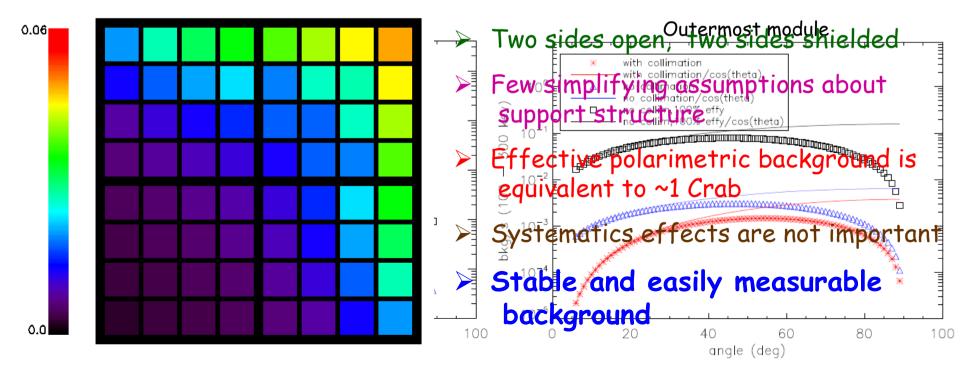
Observed Modulation for Polarized Beam



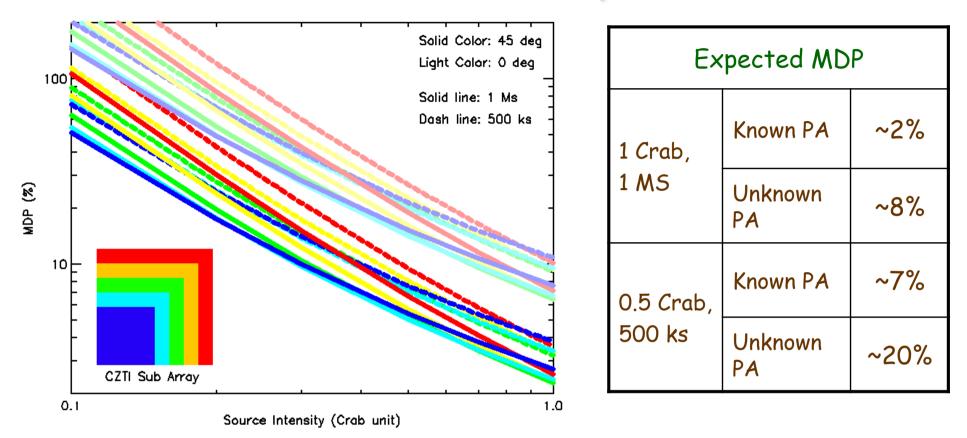
Normalized Modulation Pattern

Validation of the Simulations

- Observed modulation factor is less then simulated one for 100% polarized X-rays
 - As expected because of partially polarized beam
- Verify with Geant4 simulation of the experimental setup



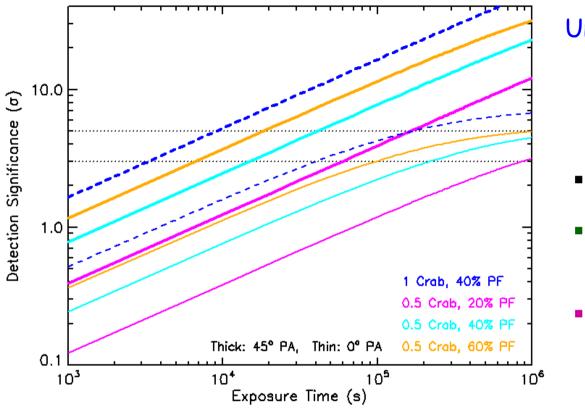
Modulation factors (%)						
Angle	Obs.	Sim.				
0°	19.68	20.74				
45°	36.99	37.43				
90°	11.96	22.06				
135°	36.83	38.40				


- Observed and simulated modulation factors match within 1%
 After addition of the instrumental background
- Simulations with 100 % polarized beam do indicate realistic modulation factors

Polarimetric Background

- > All double pixel events satisfying filtering criteria
 - → Inst + Inst, Src + Src, Bkg + Bkg and their combinations
 - Compton scattering of cosmic X-ray background photons
- CZTI mask and shielding designed up to 150 keV
- Most important component (99.99 %) is Compton scattering of cosmic diffuse X-ray background
 - Different for different module due to varying shielding
 - Estimated for each module separately

Polarimetric Sensitivity of CZTI



Different sensitivity at different polarization angle

- Any measurement can be verified at different S/C role angle
- > Slightly different sensitivity for sub-arrays
 - Sub-array selection can be optimized at analysis stage

Too demanding on source intensity and exposure time?

Polarization detection time scale (not so bad for highly polarized sources)

Uncertainty in Pol. Deg.

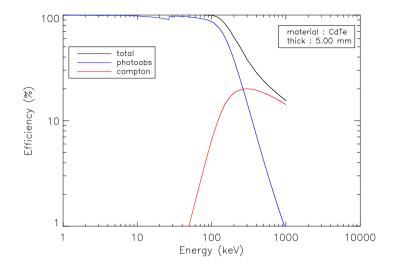
$$\frac{\sigma_P}{P} = \sqrt{\frac{\sigma_{\mu}^2}{\mu^2} + \frac{\sigma_{\mu_{100}}^2}{\mu_{100}^2}}$$

•
$$\mu_{100}, \sigma_{\mu_{100}}$$
 depend on PA

- determined by fitting to simulated library
- For bright and highly polarized sources polarization can be detected 50 - 100 ks

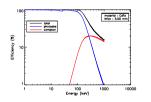
Scientifically meaningful?

- > Pulse phase resolved polarimetry \rightarrow Crab
- ➢ Jet contribution to X-rays in BHB → Cyg X-1, GRS1915+105, Transients
- > GRB polarimetry \rightarrow after studying the off-axis response (under progress)


Summary

- 100 250 keV polarimetry with Astrosat-CZTI is possible for bright sources
 - MDP of ~8 % for a Crab like source in 1 Ms
 - For highly polarized source, polarization signature can be detected 50 - 100 ks
- No additional requirement, only from available raw CZTI data in the standard mode
- Polarimetric energy range (100 250 keV) is not the primary spectroscopic energy range
 - Mask and other structural elements are transparent
- Polarimetry is also possible for off-axis sources!!
 - Good opportunity for GRB polarimetry

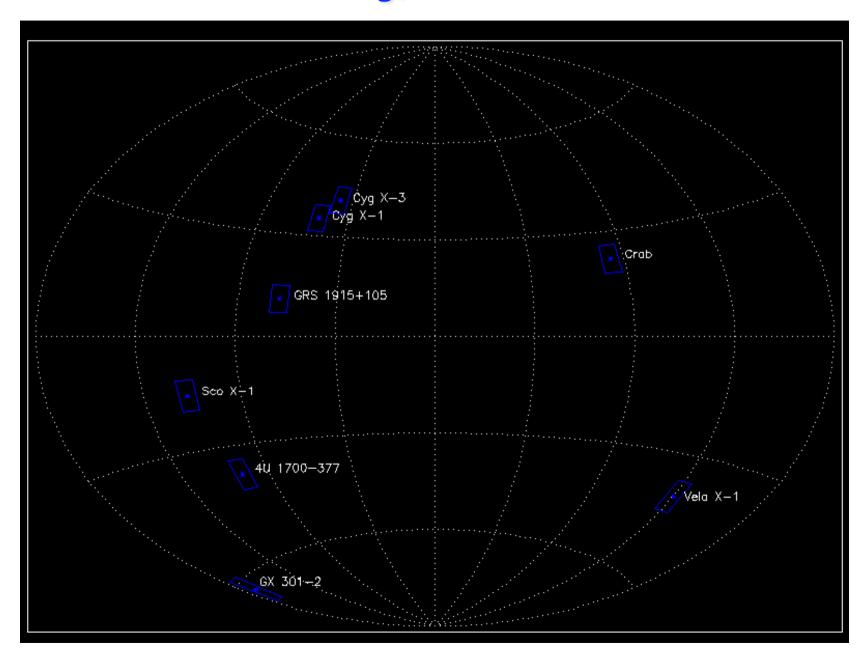
Real test -> Actual background level, No polarization


Thanks...

X-ray polarimetry with CZT-Imager

Significant Compton scattering probability ~ 10 - 20 % in 100 -300 keV

Compton polarimetry can be applicable for CZTI at energies (> 100 keV) beyond its primary spectroscopic energy range


Can Astrosat CZTI measure X-ray polarization?

- Multi-pixel capability in the Orbotech CZT modules?
- If yes, whether CZTI will have meaningful sensitivity?
- Polarimetric information preserved by data processing?

Brightest sources from BAT 70m catalog

	BAT_NAME	📕 RA	E DEC	COUNTERPART_NAME	FLUX	TYPE
elect	19A	Е	Е	30A	Е	21A
All		deg	deg		10^-12ergs/sec/cm^2	
nvert	Modify	Modify	Modify	Modify	Modify	Modify
1	SWIFT J0534.6+2204	83.626	22.025	Crab	23861.50	PSR/PWN
2	SWIFT J1958.4+3510	299.563	35.202	Суд Х-1	21861.30	HMXB/BH
3	SWIFT J1620.1-1539	244.985	-15.636	Sco X-1	19348.50	LMXB/NS
4	SWIFT J1915.3+1057	288.806	10.967	GRS 1915+105	4325.27	LMXB/BH
5	SWIFT J0902.1-4034	135.529	-40.579	Vela X-1	3931.86	HMXB/NS
6	SWIFT J1703.9-3753	255.970	-37.848	4U 1700-377	3425.23	HMXB/NS
7	SWIFT J1226.6-6244	186.700	-62.782	GX 301-2	2829.08	LMXB/NS
8	SWIFT J2032.5+4055	308.121	40.967	Суд Х-З	2340.28	HMXB/NS
9	SWIFT J1753.5-0130	268.357	-1.456	SWIFT J1753.5-0127	1802.06	LMXB/ BHC
10	SWIFT J1829.4-2346	277.384	-23.785	Ginga 1826-24	1691.54	LMXB/NS
11	SWIFT J1815.8-1403	273.995	-14.022	GX 17+2	1517.32	LMXB/NS
12	SWIFT J1801.1-2504	270.298	-25.072	GX 5-1	1412.12	LMXB/NS
13	SWIFT J1325.4-4301	201.381	-43.026	Cen A	1388.99	Sy2
14	SWIFT J1801.1-2544	270.305	-25.721	GRS 1758-258	1362.69	LMXB/BH
15	SWIFT J1731.9-2444	262.986	-24.754	GX 1+4	1291.36	HMXB/NS
16	SWIFT J1705.9-3624	256.440	-36.430	GX 349+2	1277.29	LMXB/NS
17	SWIFT J1700.8-4139	255.195	-41.657	2MASS J17004888-4139214	1110.15	HMXB/NS
18	SWIFT J0538.8+2620	84.713	26.305	1A 0535+262	1056.49	HMXB/NS
19	SWIFT J1743.7-2946	265.965	-29.741	1E 1740.7-2942	1018.68	LMXB/BH
20	SWIFT J1657.7+3518	254.484	35.332	Her X-1	992.08	LMXB/NS

BAT 70m catalog, source > 100 mCrab

