GRB history

Discovered 1967 Vela satellites

classified!

Published 1973!

Ruderman 1974 Texas: More theories than bursts!

Burst diversity

$$E_{peak} \sim 300 \text{ keV}$$

Non-thermal spectrum

In some thermal contrib.

Short time variability down to ms

Duration: $10^{-2} - 10^3$ s Often substructure

Bimodal distribution

Fig. 1

Short:
$$t < 2 s$$
 $t_{mean} \sim 0.2 s$
 $\frac{1}{4}$
 Hard

 Long: $t > 2s$
 $t_{mean} \sim 35 s$
 $\frac{3}{4}$
 Soft

Isotropic distribution: 1. Cosmolgical 2. Distant halo contribution > 100 kpc

Beppo/SAX satellite

First GRB afterlow: GRB970228First with redshift: GRB970508z=0.835 from absorption lines

GRBs are cosmological!!

Energies 10⁵⁰-10⁵⁴ erg/s if isotropic

Prompt phase

t ~ 10 -1000 s

rapid variability milli sec – sec

Gamma-rays

Both short and long bursts

Afterglow

 $t \sim 100 \text{ s} - \text{years}$

X-rays, optical, radio

smooth evolution, often power law decay

Until SWIFT only long, now also short

Relativistic expansion?

Photon-photon pair production

$$\gamma + \gamma \rightarrow e^+ + e^- \qquad h \nu > 2 m_e c^2$$

$$\tau_{\gamma\gamma} \approx \sigma_T n_{\gamma} R \approx \sigma_T f_p \frac{L}{4 \pi R^2 c m_e c^2} R$$

$$R \approx c \,\Delta t \qquad L = 4 \,\pi \,D^2 \,F / \Delta t$$

$$\tau_{\gamma\gamma} \approx \frac{\sigma_T f_p F D^2}{\left(\Delta t c\right)^2 m_e c^2} \approx 3 \times 10^{14} f_p \frac{F}{10^{-6}} \left(\frac{\Delta t}{10^{-2} s}\right)$$

 $\tau_{\gamma\gamma} \gg 1$ thermalisation: black-body!

Consequences of relativistic expansion

If relativistic, i.e., $\Gamma \gg 1$

$$v_{obs} \approx \Gamma v_{em}$$

Observed MeV photons become X-rays in rest frame: No pair production

$$f_p \propto \Gamma^{-2\alpha} \ll 1$$

Consequences of relativistic expansion II

$$t_1^{obs} = t_1^{em} + (D - r_1)/c$$

$$t_{2}^{obs} = t_{2}^{em} + (D - r_{2})/c$$

$$dt^{obs} = dt^{em} - dr/c = dt^{em} - V dt^{em}/c = dt^{em}(1 - V/c)$$

$$dt^{obs} = dt^{em} (1 - \beta)$$

$$\Gamma^{2} = \frac{1}{(1-\beta^{2})} = \frac{1}{(1+\beta)(1-\beta)} \approx \frac{1}{2(1-\beta)} \quad if \ \beta \approx 1$$

Consequences of relativistic expansion III

$$dt^{obs} = \frac{dt^{em}}{2\Gamma^2}$$

1. Observer sees everything slower compared to comoving frame

$$dt^{em} = 2 \Gamma^2 dt^{obs}$$

- 2. Size of object is NOT c t^{obs} but c t^{em} = 2 c t^{obs} Γ^2
- 3. Solves compactness problem!

$$\tau_{\gamma\gamma} \propto \Gamma^{-2(\alpha+1)}$$
$$\alpha \approx 2 \quad \Rightarrow \quad \tau_{\gamma\gamma} \propto \Gamma^{-6}$$

Interstellar scintillations

Size larger than scintillating elements $> 10^{17}$ cm Needs relativistic expansion

Baryon loading

 $E = \Gamma M c^2$

$$M \approx 5 \times 10^{-6} \left(\frac{\Gamma}{10^3}\right)^{-1} \left(\frac{E}{10^{52} \, erg \, s^{-1}}\right)^{-1} \quad M_o$$

Temporal Variability

Prompt burst scenarios

- Internal Shocks
 many colliding shells
- Complex, Long Lasting Engine

irregular surrounding

External Shocks

• Simple "Explosive" Engine

Sari

Blast wave hydrodynamics

Relativistic version of the Sedov solution

Parameters: Total energy E, surrounding density (constant or wind)

$$\Gamma_2 \approx \left(9 \frac{E}{16 \pi n_1 m_u c^2}\right)^{1/2} R^{-3/2}$$

$$R = 8 \Gamma_2^2 c t_{obs}$$

$$\Gamma_2 \approx 0.4 \left(\frac{E}{n_1 m_u c^5}\right)^{1/8} t_{obs}^{-3/8}$$

$$\Gamma_{2} \approx 4.4 \left(\frac{E}{10^{52} \ ergs}\right)^{1/8} \left(\frac{n_{1}}{1 \ cm^{-3}}\right)^{-1/8} \left(\frac{t_{obs}}{days}\right)^{-3/8}$$
$$R \approx 4 \times 10^{17} \left(\frac{E}{10^{52} \ ergs}\right)^{1/8} \left(\frac{n_{1}}{1 \ cm^{-3}}\right)^{-1/8} \left(\frac{t_{obs}}{days}\right)^{1/4} \ cm.$$

Blandford-McKee solution

Synchrotron spectrum_{10⁴}

Spectral fits of synchrotron-self absorption, minimum energy, and cooling breaks give total energy, magnetic field, non-hermal particle energy density, and particle spectrum

Jet steepening

Correct for opening angle gives total energy. Nearly constant ~ 10^{51} ergs

Close to 'normal' supernova energy! $\theta \sim 5-10$ degrees

Beaming $\Delta\Omega \sim 0.03$. Only one of 100-500 GRBs seen by us

1-3 GRBs observed per day. Total rate 100-1000 per day

1 GRB per 10⁵ - 10⁶ years per galaxy

Compare 1-2 SNe per galaxy per 100 years, i.e. 1 GRB / $10^3 - 10^4$ SNe

SN 1998bw = GRB 980425

Type Ic supernovaz=0.0085in ESO 184-G82Radio: $\Gamma \sim 2$ Optical:Expansion velocity ~ 60,000 km/s $M(^{56}Ni) \sim 0.7 M_{o}$ $E \sim 10^{48}$ erg/s, low compared to 'normal' GRBsNo H or He in spectrum.Exploding Wolf-Rayet star

GRB 030329 = SN 2003dh

Bump in light curves

Bump at ~ 1 month well fitted with SN 1998bw supernova light curve

Collapsar model

Collapse of a very massive star (M > 30 MO). Needs compact progenitor, i.e., no H envelope = Wolf-Rayet star Fast rotation gives accretion disk + jets. Electromagnetic energy extraction ?

Collapsar model II

Highly variable Lorentz factor source for internal shocks for the prompt burst

Difficult to get millisecond bursts Main candidate: Long bursts

Jet expansion in circumstellar medium gives afterglow

Neutron star merger

Progenitor: Close binary neutron star system. Energy loss by gravitational waves give spiral-in and merger within ~ 10^8 years Final merger within ~ millisecond

Merger sequence

Merger \rightarrow accretion disk

 $T \thicksim 10^{10} \text{ K}$

energy loss by neutrinos

Energy conversion by

$$v + \overline{v}_e \rightarrow e^- + e^+$$

Pair plasma expands into ISM

All in milliseconds

No supernova in afterglow expected

Excellent candidate for short bursts

Short bursts with SWIFT

GRB 050509B, 050709, 050724

all short

X-ray afterglows!!

GRB 050709, 050724 also optical afterglows

z = 0.16 - 0.25

 $E \sim 10^{50} \text{ ergs} \ll \text{Long}$

Two in ellipticals, one in a starforming galaxy

No supernova signature

All consistent with merging neutron star system. Could also be NS + BH

SUPERMASSIVE BLACK HOLES and ACTIVE GALACTIC NUCLEI

Galactic Center Black Hole

Radio souce Sagittarius A

Infrared observations penetrate the dust

Mass of Black Hole

Gaez et al

Stellar orbits around Sgr A give enclosed total mass within the orbit

Star S 2 period 15.2 years

Closest approach (pericentre) ~ 17 light hours

Total mass 3.7 (± 1.5) x 10⁶ M_{\odot} Must be a black hole!!

Galactic Center Flares

IR and X-ray flares with L ~ $6x10^{33}$ erg/s <<< L_{Edd} Duration ~ 1 hour

Time scale shorter than last stable orbit from Schwarzshild BH \Rightarrow Kerr BH (?)

Infalling matter (?)

Fe K emission

XMM, Fabian et al

MCG-6-30-15 Seyfert 1 galaxy M(BH) 10⁶ - 2x10⁷

Asymmetric Fe K line. Must come from very close to BH horizon To explain red extension material from inside the last stable orbit is needed if Schwarzshild BH, or a BH rotating at the maximum velocity.

Maser Emission from Active Galactic Nuclei

VLBA observations of maser emission from NGC 4258

Maser emission from disk gives dynamics. Rotation curve well fitted by Kepler rotation around point mass.

~ $3.7 \times 10^7 M_{\odot}$ within 0.13 pc = 150 light days

Supermassive Black Holes

Most galaxies have a BH in the center. Most of these are in a quiesent state. 'Starved' or very inefficient accretion flow.

For ellipticals and spiral bulges there is a strong correlation between BH mass and velocity dispersion of the bulge component.

Types of Active Galactic Nuclei

	Narrow em. lines	Broad em. lines	No lines
	few x 100 km/s	10-30,000 km/s	
Radio quiet	Seyfert I	Seyfert II	
		Quasars	
Radio loud	NL radio gal.	BL radio gal.	Blazars

Optical spectrum: Seyfert I, QSOs: Broad, highly ionized emission lines non-thermal continuum. $V \sim (1-3)x10^4$ km/s.

Seyfert 2, NLRG, Liners: High ionization, narrow lines

Jets

radio, optical synchrotron emission

Unified picture of AGNs

Large inclination: Disk + broad lines \Rightarrow Seyfert 1, QSO...

In jet direction: Only continuum synchrotron \Rightarrow blazar