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1 Pre-supernova Evolution of Massive Stars

1.1 Low mass versus high mass evolution

The evolution of the star is mainly the evolution of the core. This is in
turn determined by the temperature and density. In particular, the final
stages depend on whether or not the core becomes reaches a temperature
high enough for carbon to ignite.

We can separate two qualitatively different behaviors, depending on the
value of the core mass Mc. Core masses below MCh never reach a temper-
ature larger than Tc,max, while those above can increase their temperature
as the core contracts and ignite new fuels. For Mc > MCh the temperature

rises monotonically as Tc ∝ ρ
1/3
c . The division of these two cases occur for

8 − 10 M�, Stars with mass smaller than this only evolves to the helium
burning stage, when they become red giants. At this point they loose a large
fraction of their hydrogen envelope in a superwind lasting a few ×104 years,
forming a planetary nebula. The core, forming a white dwarf with a mass
of less than the Chandrasekhar mass 1.46 M�, consists of mainly oxygen
and carbon. Stars with larger mass than 8−10 M�, however, continue their
evolution into the more advanced burning stages, and end their lives in a
supernova explosion, and finally a neutron star or black hole.

In Fig. 1 this is shown in more detail from evolutionary calculations
for stars of different masses. The 1 M� and 2 M� stars become degenerate
before He-ignition, while the 7 M� model ignites helium non-degenerately
but then evolves into the degenerate regime. In all three cases does the
cores not reach a temperature high enough for carbon burning to start.
The 15 M� model on the other hand continues to evolve in the partially
degenerate regime and the temperature increases monotonically, and passes
through all the nuclear burning stages.

In Fig. 2 a more recent calculation of the evolution of a 15 M� and
25 M� star is shown through all evolutionary stages up to silicon burning.

1.2 Advanced nuclear burning stages

In this section we include a brief discussion of the advanced burning stages.
For a more complete account of the nuclear physics, as well as the hydrogen
and helium stages, see especially Clayton (1967) or Arnett (1996).
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Figure 1: Evolution of the central density and temperature for stars of
different masses. (Iben 1974)

1.2.1 Carbon burning

Carbon burning occurs at (0.6− 1.2)× 109 K. The principal reactions occur
through the compound nucleus 24Mg?, which decays as

12C + 12C → 24Mg? → 24Mg + n − 2.6 MeV (1.1)

→ 20Ne + α + 4.6 MeV (∼ 50%) (1.2)

→ 23Na + p + 2.2 MeV (∼ 50%) (1.3)

In the interesting temperature range the reaction rate depends on the tem-
perature as q ∝ T 29.

1.2.2 Neon burning

Neon burning occurs in a narrow range at ∼ 1.5 × 109 K. The first step is
photo-disintegration

20Ne + γ → 16O + α (1.4)

The next step is that the α particles are partly captured by 16O to form
20Ne, and partly by 20Ne to produce 24Mg, i.e., 20Ne + α → 24Mg. The net
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Figure 2: Evolution of the central density and temperature for a 15 M� and
25 M� star. (WHW02)

result of each of these reactions can be summarized as

2 20Ne → 16O + 24Mg + 4.6 MeV (1.5)

Note, however, that this is only symbolic, and is not a binary heavy ion
reaction, like carbon burning. Because of the sensitivity of the α particle
abundance to the temperature the reaction rate depends extremely sensi-
tively on the temperature, as q ∝ T 50.

One may ask why neon burning occurs before oxygen burning. The rea-
son is that 16O is a doubly magic nucleus, and has consequently a larger
binding separation energy for α particles than neon, 7.2 and 4.7 MeV, re-
spectively.

1.2.3 Oxygen burning

Oxygen can burn either as photo-disintegration, 16O(γ, α)12C, or as a fu-
sion reaction, producing Si – S. During hydrostatic burning at ∼ 2 × 109 K
the fusion reaction dominates, while in explosive oxygen burning in connec-
tion to the supernova explosion, photo-disintegration and fusion are equally
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important. The most important fusion reactions are

16O + 16O → 32S? → 31S + n − 1.5 MeV (5%) (1.6)

→ 31P + p + 7.7 MeV (56%) (1.7)

→ 30P + d − 2.4 MeV (5%) (1.8)

→ 28Si + α + 9.6 MeV (34%) (1.9)

The main products of oxygen burning are 28Si and 32S. At ∼ 2× 109 K the
reaction rate depends on the temperature as q ∝ T 33.

1.2.4 Silicon burning

Silicon does not fuse as a heavy ion reaction to 56Ni, but instead melts
at ∼ 3.5 × 109 K by photo-disintegration, due to the extremely energetic
radiation density. The resulting nuclei in turn photo-disintegrates to lighter
nuclei, etc. In summary,

28Si(γ, α)24Mg(γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α (1.10)

The result is, however, not only lighter nuclei. The α particles produced
by the melting will also be captured by the 28Si to form 32S, which may in
turn capture new α particles, etc. The result will be a quasi-equilibrium
with successively heavier nuclei. The end result of this depends on the
neutron excess η. For small values of η <

∼ 6 × 10−3, which is needed to
produce the right abundances of the isotopes around the iron peak, the
most abundant nucleus is also the most tightly bound nucleus 56Ni (see
next section). This radioactive isotope subsequently decays into 56Fe. The
fact that this radioactive isotope is main result of the silicon burning is
important not only for the nucleosynthesis, but also for the observational
properties of all kinds of supernovae.

The reaction rate at ∼ 3.5 × 109 K goes as q ∝ T 49. The energy release
is only one half of that of oxygen burning.

1.3 Nuclear statistical equilibrium

Because of the importance of nuclear statistical equilibrium (NSE) in the
Si burning phase, as well as in several other contexts, we discuss it in some
detail here.

The Saha equation, relating the number densities of two neighboring
ionization stages in ionization balance through

ni + γ ↔ ni+1 + e−, (1.11)
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is
ni+1ne

ni
=

Gi+1ge

Gi

(2πmekT )3/2

h3
e−χi/kT (1.12)

where Gi is the partition function of the ion i, ge the statistical weight of
the electron and χi the ionization potential.

In exact analogy with this, one can relate the equilibrium densities of
two different isotopes in photodissociation balance

nZ,A + γ ↔ nZ,A−1 + n (1.13)

by
nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(2πmZ,A−1mnkT )3/2

h3m
3/2

Z,A

e−Qn/kT (1.14)

where we have used the fact that the statistical weight of the neutron is
gn = 2. Qn is the binding energy of the neutron in the nucleus (Z,A),
Qn = (mZ,A−1 +mn−mZ,A)c2. In more compact notation we can write this
as

nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(

A − 1

A

)3/2

θ e−Qn/kT (1.15)

where θ ≡ (2πmnkT )3/2/h3.
Similarly, we can remove one proton from the nucleus we produced in

reaction (1.13) by photodissociation according to

nZ,A−1 + γ ↔ nZ−1,A−2 + p (1.16)

producing the next lighter element Z-1. As above we get for this balance

nZ−1,A−2np

nZ,A−1

=
2GZ−1,A−2

GZ,A−1

(

A − 2

A − 1

)3/2

θ e−Qp/kT (1.17)

where Qp = (mZ−1,A−2 + mp − mZ,A−1)c
2.

This procedure can now be repeated until we have only protons and
neutrons left. Putting these steps together we obtain

nZ,A = GZ,A

A3/2nZ
p nA−Z

n

2A
θ1−A eQZ,A/kT (1.18)

where now QZ,A = (Zmp+(A−Z)MN −mZ,A)c2 is the total binding energy
of the nucleus.
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Figure 3: Abundances of iron peak elements at 3.5 × 109 K as function of
the neutron excess. From left to right the isotopes are 56Ni, 54Fe, 56Fe, 58Fe.
(Hartman, Woosley qnd el Eid 1985)

A particular composition is then characterized by a given value of Ye or
η. Once this is specified all other abundances can then be calculated from
the NSE relation Eq. (1.18).

Which nucleus is most abundant in NSE depends on the value of η. In
general, for T <

∼ 1010 K the most tightly bound nucleus for a given value of
η is favored. Consequently, for small neutron excesses one finds that 56Ni,
which is an even-even nucleus with η = 0, is the most abundant nucleus,
while at η ∼ 0.07 56Fe, with η = (30 − 26)/56 = 0.071, is most abundant.
In Fig. 3 we show the isotopic abundances for a few different temperatures
as function of η. We see that the abundances do not change appreciably as
function of temperature, except for a general decrease in the iron peak abun-
dances, reflecting the shift to 4He, as photo-disintegration of 56Fe becomes
important.

1.4 Neutrino cooling

In the advanced burning stages cooling by neutrinos play an increasingly
important role. At temperatures of the order of mec

2/k ∼ 5×109 K electron
pair production by energetic photons becomes possible. In most cases these
pairs annihilate into photons, but because the electrons and neutrinos couple
through the weak interaction, occasionally a neutrino - anti-neutrino pair
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may be produced,
e− + e+ → ν + ν̄ (1.19)

The typical neutrino cross section is

σ ≈ 10−44

(

E

mec2

)2

cm−2. (1.20)

The electron-positron annihilation cross section is of the order of the Thomp-
son cross section, σT = 0.665 × 10−24cm2 (or rather Klein-Nishina at these
energies). Therefore the probability for neutrino pair production is ∼ 10−20

of the electron pair annihilation rate.
The neutrino energy loss rate at T < 109 K is given by

εν ≈ 4.9 × 1018T 3
9 exp−11.86/T9 erg cm−3 (1.21)

and at T > 3 × 109 K

εν ≈ 4.5 × 1015T 9
9 erg cm−3 (1.22)

This clearly illustrates the sensitivity of the neutrino losses to the tempera-
ture.

Except for pair production, also other neutrino cooling processes may be
important. In particular, the plasma neutrino cooling process and photo-
neutrino process are important in many circumstances.

The photo-neutrino process is just pair production of a neutro-antneutrino
pair

γ + e− → e− + ν + ν̄, (1.23)

For most massive stars it is the pair annihilation cooling which accounts
for most of the cooling, although plasma neutrino cooling is important in
especially stars of lower mass.

1.5 Duration of the burning stages

Because of the increasing importance of neutrino losses as the temperature
increases because of core contraction, and also the decreasing energy gener-
ation per mass, the durations of the burning stages decrease rapidly from
thousands of years for carbon burning to days or less for silicon burning. In
Tables 1 and 2 we give the duration, as well as the ignition temperature and
other parameters, for a 15 M� and a 25 M� ZAMS star, including mass loss
(from WHW02). These models include mass loss (see below), explaining the
low masses in the table.
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Table 1: Burning stages for a 15 M� star (WHW02)
Fuel Ashes T ρ M L R τ

108 K g cm−3 M� 103 L� R� yrs

H He, N 0.35 5.8 14.9 28.0 6.75 1.1 × 107

He C,O 1.8 1.4 × 103 14.3 41.3 461. 2.0 × 106

C Ne, Mg, O 8.3 2.4 × 105 12.6 83.3 803. 2.0 × 103

Ne O, Mg, Si 16.3 7.2 × 106 12.6 86.5 821. 0.73
O Si, S 19.4 6.7 × 106 12.6 86.6 821. 2.6
Si Ni 33.4 4.3 × 107 12.6 86.5 821. 18 days

Table 2: Same as above for a 25 M� star
Fuel Ashes T ρ M L R τ

108 K g cm−3 M� 103 L� R� yrs

H He 0.38 3.8 24.5 110. 9.2 6.7 × 106

He C,O 2.0 7.6 × 102 19.6 182. 1030. 8.4 × 105

C Ne, Mg 8.4 1.3 × 105 12.5 245. 1390. 5.2 × 102

Ne O, Mg 15.7 4.0 × 106 12.5 246. 1400. 0.89
O Si, S 20.9 3.6 × 106 12.5 246. 1400. 0.40
Si Ni 36.5 3.0 × 107 12.5 246. 1400. 0.73 days

Note in this table the dramatic decrease in the duration of the advanced
burning stages, because of increasing neutrino losses in the carbon burning
stage and beyond. Also note, while there is only a small decrease in the
total mass of the 15 M� star, the 25 M� star ends up with only half of the
original ZAMS mass. We will discuss this further later.

After the carbon burning stage the neutrinos dominate the cooling of
the core, as Fig. 4 clearly shows.

After carbon burning the diffusion time for the photons is much longer
than the duration of these stages, and the core evolves independently from
the envelope. Unless some kind of shell flash or similar occurs, the envelope
is essentially decoupled from the core.

1.6 Mass loss

Most massive stars experience mass loss to a varying degree. The properties
of these winds, however, vary dramatically between the different evolution-
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Figure 4: Neutrino luminosity of stars with mass 13 − 25 M� compared to
the nuclear energy generation and the photon luminosity (Limongi et al.
2002).

ary stages. In particular, the wind velocity scales roughly with the escape
velocity of the star, which varies by a factor of about a hundred between
the blue supergiant, red supergiant, and Wolf-Rayet phases.

In the blue supergiant (BSG) MS phase the winds are radiatively driven
through momentum deposition from absorption of the photospheric radia-
tion by the many resonance lines in especially the UV and far-UV. This is a
fairly well understood process both theoretically and observationally. Typi-
cal mass loss rates are of the order of 10−6 M� yr−1 and the wind velocities
are 1, 000 − 3, 000 km s−1.

In the red supergiant (RSG) phase the winds are much less understood.
Dust driving is believed to account for most of the momentum input. What
initiates the wind (e.g., photospheric shocks connected to pulsations) is, how-
ever, not known. Further, it is likely that the star experiences a superwind
phase, lasting ∼ 104 yrs in the very last phases of the red supergiant stage.
What drives this superwind is somewhat unclear, but pulsational instabil-
ities may be particularly important (see e.g., Heger et al. 1997). Typical
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mass loss rates are in the general RSG phase of the order of 10−6 M� yr−1

and the wind velocities are 10 − 50 km s−1. In the superwind phase mass
loss rates as high as 10−4 − 10−3 M� yr−1 may occur. The duration of this
phase must obviously be only of the order of a few times 104 yrs.

A useful formula which summarizes the mass loss rates on the main
sequence and in the red supergiant stage is given by Nieuwenhuijzen & de
Jager (1990),

Ṁ = 9.6 × 10−15

(

L

L�

)1.42 (

M

M�

)0.16 (

R

R�

)0.81

M� yr−1 (1.24)

Finally, in the Wolf-Rayet (WR) phase the wind velocities increase to
2, 000 − 5, 000 km s−1, while the mass loss rate is ∼ 10−5 M� yr−1. The
driving of the wind is here to a large extent by radiation on resonance lines,
as in the OB star case. The initiation of the wind is, however, not clear,
and pulsations may be important for this. Observationally, clumping of the
wind is important, with a typical clumping factor of about two. Once this
has been corrected for, the mass loss rates are fairly well determined.

The fact that the RSG phase last for ∼ 105 yrs and the WR phase
for a comparable period, and that the mass loss rates in these phases are
10−5 − 10−4 M� yr−1, means that stellar winds will have a major influence
on the evolution.

1.7 Evolution in the HR diagram

Mass loss is crucial both for the observational properties the appearance of
the star and for the internal structure. Because mass loss is increasingly
important with mass, the effects increase strongly with mass. In Fig. 5 we
show the evolution in the HR diagram of a 60 M� star with and without
mass loss. While both stars evolve to the RSG phase, the star without mass
loss end its life in this phase. The star with mass loss, however, evolves back
to the blue and becomes a hot star, now without any hydrogen envelope.
It has become a helium star, or better known as a Wolf-Rayet star. This
evolutionary scenario is a general feature for massive stars above some limit-
ing mass, MWR, which is uncertain, but probably in the range 20− 40 M�,
depending on mass loss rates, rotation, metallicity etc. (see below). We
therefore have the evolutionary sequence

O → BSG → RSG → WR (1.25)

The most massive stars may loose mass so fast that they never evolve to the
RSG stage, but instead evolve as luminous blue variable (LBVs) and then
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Figure 5: Evolution of a 60 M� star with (dashed line) and without (solid
line) mass loss (Maeder 1981)

directly to the WR stage.

O → LBV → WR (1.26)

Because mass loss increases with luminosity and mass, Ṁ ∝ L ∝ M2−3,
the effects are most important for the most massive stars. The result is
that the final mass before the star collapses is nearly independent of the
initial mass! When rotation is taken into account one finds a final mass of
10 − 15 M� for all masses >

∼ 20 M�, as shown in Fig. 6.

1.8 Structure before explosion

The structure of the star just before collapse is extremely important for the
outcome of the subsequent phases, including the supernova explosion. In
Fig. 7 we show the abundance structure of a 15 M� and a 25 M� star
shortly before core collapse. Because of mass loss on the MS and in the
RSG phase, ∼ 3 M� were lost before the explosion for the 15 M� model,
while the 25 M� had lost ∼ 12 M�, illustrating the increasing importance
of mass loss for the massive stars. Except for this, the general structure of
the two models are similar.

The first thing to note is the pronounced onion shell structure with
a number of distinct zones, reflecting the different burning stages at the
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Figure 6: The effects of rotation and mass loss on the final mass of massive
stars. The solid line gives the final mass for a ZAMS rotational velocity
of 300 km s−1, while the dashed line gives the zero velocity result, only
including mass loss (Meynet & Maeder 2003)

time of core collapse. Concentrating first on the 25 M� model, from the
surface inwards to ∼ 8.2 M� we have the unprocessed hydrogen envelope.
We here note that the He mass fraction is roughly twice the original, and is
actually higher than that of H. Consistent with this is the high N abundance,
depressed O abundance and nearly zero C abundance. This is a typical
signature of CNO burning products, which have been brought to the surface
by convective mixing of the envelope during the RSG phase. In the 15 M�

model this mixing is negligible, but this conclusion is sensitive to factors like
rotation and convective treatment.

Inside the hydrogen envelope, the helium mantle has almost the same
thickness in mass in both stars. The total mass of He produced is, however,
different, because a large fraction of the He from the shell-burning has been
mixed with the hydrogen envelope (see above). Besides He, the most im-
portant elements are Ne and C. Most of these are the result of He-burning,
mixed throughout the He shell.

In terms of nucleosynthesis the most important region is the oxygen
zone. The mass of the oxygen core varies strongly with ZAMS mass. For
the 15 M� model it is 3.1 M�, while it is 7.2 M� for the 25 M� model.
The most abundant elements are O (∼ 80%) and Ne (∼ 20%). Also Mg
has a substantial abundance in this region. The inner O zone has a large
abundance of nuclei resulting from Ne and O burning, in particular Si, S, Ar,
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as a result of convective mixing from the O burning shell. These dominate
completely in a thin region inside the O zone. The central ∼ 1.6 M� consists
of iron group elements from Si-burning. Between the iron core and oxygen
core are products of oxygen burning and incomplete Si-burning.

Figure 7: Abundance structure of a 15 M� and 25 M� star shortly before
core collapse. (WHW02)

The density structure before core collapse is important for the properties
of the supernova explosion. Fig. 8 shows the density as function of mass
from the center for stars of different masses. No mass loss has been included
in these models, but the general structure including this is quite similar.

One can roughly distinguish three regions. Most of the volume consist of
a very extended hydrogen envelope, with radius >

∼ 3 × 1013 cm containing
most of the mass. The mass of this is, not very surprising, sensitive to mass
loss. The radius is, however, characteristic of a red supergiant as long, as
there is at least ∼ 1 M� of hydrogen left.

Next comes the helium mantle with radius ∼ 1011 cm and density ∼
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Figure 8: Density structure of four stars with ZAMS 13 − 25 M� star.
(Limongi et al. 2002)

102 g cm−3. Inside this there is a gradual increase in the density in the
oxygen core. Finally, in the inner ∼ 1.5 M� we have the iron core with a
radius of only ∼ 3 × 108 cm and a density 107 − 109 g cm−3.

When we compare the structure of the different models, the most ap-
parent differences are the mass of the helium core, and the density gradient
outside the iron core. In general the latter becomes less steep as the mass of
the star increases. This will be important when we discuss the propagation
of the shock wave after the bounce.

The mass of the Fe-core is crucial for whether the explosion will be
successful or not. While this mass is only weakly dependent on the ZAMS
mass in this interval, 13−25 M�, the small difference between 1.29 M� and
1.53 M� for the 13 M� and 25 M� models, respectively, may, however, be
crucial for the outcome.

1.9 Triggering of collapse

A self-gravitating body is stable to perturbations as long as its adiabatic
index is larger than 4/3 As soon as γ < 4/3 the star (or core) will collapse.

There are several reasons why the core collapses. Photo-disintegration
of Fe into α particles, or even nucleons, require ∼ 8.8 MeV per nucleon.
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This takes away thermal energy from the core, and thus pressure support.
A further reason for instability comes from electron capture on free protons
and on bound protons in nuclei,

e− + p → νe + n (1.27)

The removal of electrons again decreases the pressure in the core.
Once the core becomes unstable it will collapse on roughly a dynamical

time scale, tdyn ∼ R/v, Assuming that the core collapses with the free-fall
velocity, Vff , we get

tdyn =
R

Vff
=

(

R3

2GM

)1/2

(1.28)

In terms of the density this is

tdyn =

(

3

8πGρ

)1/2

(1.29)

At the edge of the iron core the density is ∼ 108 g cm−3 when core collapse
sets in, and at the center it is ∼ 3 × 109 g cm−3. Therefore,

tdyn = 0.13 ρ
−1/2

8 s (1.30)

and the collapse time scale is therefore of the order of milliseconds. Hy-
drodynamical models show that in reality the velocity is only 0.5 − 0.8 of
the free-fall velocity, but as an order of magnitude estimate Eq. (1.30) is
sufficient.

1.10 Neutrino trapping

During core collapse neutrinos produced in the core are absorbed and scat-
tered by the nucleons. The most important elastic scattering processes are
scattering by free neutrons and protons, and coherent scattering against
bound neutrons and protons in nuclei,

ν + n → ν + n (1.31)

and
ν + p → ν + p (1.32)

and
ν + (Z,A) → ν + (Z,A). (1.33)
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All three processes are mediated by neutral currents, and were before the
Weinberg-Salam-Glashow electro-weak theory not considered. In fact, they
make a crucial difference for the neutrino trapping, as we will see. Because
of the coherence, the cross section of the last process is not only proportional
to A, but to A2.

In addition to the scattering against the nucleons, inelastic scattering
against electrons also take place,

ν + e− → ν + e− . (1.34)

The cross section of this is, however, only ∼ 1/600 of that of the elastic
nucleon scattering. Elastic scattering against the nucleons therefore domi-
nate the inelastic scattering against the electrons by a large factor. When
we estimate the mean free path to the scattering, we can therefore neglect
the electrons. The inelastic scattering may nevertheless be important for
thermalizing the neutrinos to the same temperature as the electrons.

For neutrino energies much less than mnc2 ∼ 1 GeV the cross section
for the nucleon scattering is

σν =
1

4
σ0

(

Eν

mec2

)2

(1.35)

where

σ0 =
4G2

F m2
e

h̄4
= 1.76 × 10−44cm2. (1.36)

The mean free path for scattering is λν = 1/ < nσν >, which is an aver-
age over the cross sections for these processes. An approximate expression
for the mean free path is given by

λν ≈ 2 × 105

(

Eν

10 MeV

)−2

ρ−1
12 cm (1.37)

The typical neutrino energy is ∼ 20 MeV, so the mean free path is only
∼ 0.5 ρ−1

12 km.
Scattering is a diffusion process, and from the diffusion equation in spher-

ical geometry one finds that the time for a neutrino to diffuse a radial dis-
tance R is

tdiff =
R2

3λνc
(1.38)

If we assume a uniform density sphere of mass 1.4 M� and estimate the

neutrino energy as the Fermi energy we get Eν ≈ EF = 36.8 ρ
1/3

12 MeV, and

tdiff = 5.2 × 10−2 ρ12 s (1.39)
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The diffusion time scale should be compared to the dynamical time scale,
tdyn, from Eq. (1.30),

tdiff

tdyn
= 40 ρ

3/2

12 (1.40)

Therefore, we find that above a density of ∼ 1011 g cm−3 the neutrinos

become completely trapped in the core. This has the consequence that the
lepton number will be conserved in the core. If neutrino trapping would not
set in, the lepton number would have decreased to a very low level because of
beta decay and inverse beta decay (K-capture). This now instead happens
after the collapse in the explosion phase when the density is low enough.

1.11 Collapse

Because of neutrino trapping, the collapse proceeds almost adiabatically. In
Fig. 9 we show the velocity profile of the infalling core at different epochs
during the collapse and the formation of the shock. The first curve, (a),
corresponds to the final stages of the infall. The central density is ∼ 4.8 ×

1013 g cm−3. At the next epoch the central density is ∼ 2.6 × 1014 g cm−3.
The compression at the center generates sound waves which propagate out-
wards. Curve (c) corresponds to maximum density, ∼ 9.7 × 1014 g cm−3.
The inner 10 km is now at rest, and from the discontinuity in the velocity
curve, it can be seen that the shock has just formed. In (d) the outgoing
shock is very obvious. The central density is ∼ 6.9 × 1014 g cm−3, and the
core is adjusting to its final density ∼ 4 × 1014 g cm−3. As we will see in
next section, an important point for the survival of the shock is that it is
not formed at the center of the star, but close to the outer edge of the core,
at a mass of ∼ 0.5 M� from the center, or ∼ 20 km.

1.12 Energy losses in the shock

The total energy of the shock, as it is launched outside the core, is roughly
the binding energy of this, ∼ 5 × 1051 ergs. While the initial energy of
the shock is large enough to overcome gravity, the problem is that there
are severe energy losses behind the shock, which takes away energy from
it. These are mainly due to photo-disintegration of iron by the shock and
due to neutrino losses in the hot gas behind the shock. Depending on the
temperature, the photo-disintegration may proceed all the way to nucleons,
or for lower temperature to α particles. Total disintegration of an Fe nucleus
to nucleons requires 8.8 MeV per nucleon. Therefore, for each 0.1 M� of
iron outside the core ∼ 1.5 × 1051 ergs is lost by this process.
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Figure 9: Velocity profile in the core at four epochs during collapse and
explosion. Curve a) corresponds to the last epochs of the infall. b) The
density at center is close to nuclear. The matter outside is falling in with
increasing velocity. c) The infalling mass at the center has been brought
to rest, while the accretion is occurring outside. d) The shock has been
launched. (Cooperstein & Baron 1990)

Success or failure depends on several factors. The mass of the iron
core is crucial, to avoid disintegration losses. The smaller, the better. The
maximum mass for an explosion is ∼ 1.2 M�. This is sensitive to factors
like the 12C(α, γ)16O reaction rate and the treatment of convection. Another
important factor is the stiffness of the equation of state. A soft equation of
state above nuclear density favors explosion. Unfortunately, this is the most
uncertain regime of the equation of state.

Summarizing the current situation, the prevailing view is that this prompt
explosion mechanism will probably not work without some additional energy
input, or other ingredient, except possibly for stars of mass <

∼ 12 M�.

1.13 Neutrino heating

In a now classical computer run, Jim Wilson let one of his apparently unsuc-
cessful simulations run for a much longer time than before. When he looked
at the result he saw, to his surprise, that the stalled shock had now become
a successful one due to the late energy input from the neutrinos from the
explosion and the newly formed hot proto-neutron star.
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Figure 10: Trajectories of different mass shells for Jim Wilson’s successful
explosion model. The upper dashed line gives the position of the shock,
while the lower is that of the neutrino photosphere. The dotted line marks
the region where the abundance of He is 50%. Note the revival of the shock
at 0.55 s due to neutrino heating (Bethe & Wilson 1985).

In Fig. 10 we show the resulting mass locations as function of time for
this simulation. As we see, the collapse occurs on a time scale of a few
tens of milliseconds. The shock forms at a distance of ∼ 100 km from the
center. This expands, but because of energy losses it looses speed, and after
∼ 0.1 s it is almost stalled. Accretion continues, and normally one would
consider this a failed explosion. However, because of the longer than normal
simulation, we see that at ∼ 0.5 s the shock suddenly gets new energy and
rapidly expands out of the core. At that point the density at the shock is
low enough for losses to be negligible, and a the result is a healthy explosion.

Although successful, these simulations were based on an unrealistic equa-
tion of state above nuclear density, as well as other deficiences. Nevertheless,
what was most important was that they pointed out the importance of neu-
trino heating and the consequences of this on a long time scale. We will now
discuss the details of this mechanism in more detail.
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The proto-neutron star formed by the collapse cools by an enormous flux
of neutrinos on a time scale given by the neutrino diffusion time scale tdiff ,
given by Eq. (1.39), but now with ρ ∼ 2 × 1014 g cm−3. Finally, as the
density decreases at the boundary of the iron core, the density will be low
enough for the neutrinos to escape freely. One can therefore, in analogy with
the photosphere, define a neutrino-sphere. As these propagate out through
the shocked gas, they will scatter and be absorbed by the nucleons.

The most important heating processes are

ν̄ + p → e+ + n (1.41)

and
ν + n → e− + p (1.42)

The temperature behind the shock is set by the dis-integration of Fe.
For each nucleon this costs a binding energy Ebind. Because the cooling
decreases faster than the heating, there will be a radius where heating and
cooling balance, often referred to as the gain radius. Inside of this there is
a net cooling by the neutrinos, while outside there is a net heating. This is
summarized in Fig. 11.

Figure 11: Schematic picture of the different regions close to the neutron
star (Janka 2001)

The neutrino heat input is probably crucial for the outcome of the explo-
sion. Just outside the gain radius the matter is heated to a high temperature,
decreasing outwards. This therefore induces a strong entropy gradient out-
wards, leading to convection. The large scale convective motions transport
entropy (hot gas) to the region close to the shock and can therefore re-
energize the shock (see Fig. 10 and Fig. 12). At the same time low entropy
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(cool) gas sinks inward, inside the gain radius. There it will be heated by the
neutrinos. This compensates the iron dis-integration losses, and if efficient
enough, can cause the shock to survive through the whole iron core.

The efficiency of the late heat input mechanism depends naturally on the
neutrino luminosity from the proto-neutron star. The neutrino emission is a
consequence of the de-leptonization of the proto-neutron star. The νe and ν̄e

are produced by e−+p → ν+n and e+ +n → ν̄e +p, while e+ +e− → ν̄i +νi

are responsible for the production of µ and τ neutrinos, by roughly equal
numbers.

Taking all these ingredients together, the increased neutrino luminosity
from the proto-neutron star, the neutrino heating of the gas of the matter
outside the neutron star and the convective motions behind the shock one
has in some simulations been able to obtain an explosion. However, several
of these successful attempts have weaknesses in the form of the treatment
of the neutron star cooling, the radiative transfer of the neutrinos or the
equation of state. It is therefore to early to make any conclusions of the
success of this mechanism. In addition, there are other ingredient. like
magnetic fields and rotation, which have only been included in simplified
models. They may, however, be crucial for the outcome. In particular, the
gamma-ray bursts may indicate the necessity to include these effects.

1.14 Explosive nucleosynthesis

If the shock has managed to escape the iron core, the density decreases
rapidly, and with that the dis-integration and neutrino losses. There will
still be some explosive nucleosynthesis in the silicon and inner parts of the
oxygen shell, but this only adds a small amount of energy to the shock. After
this the shock will propagate through the whole star and disrupt this. As the
shock reaches the surface the hot photons behind the shock are released and
one observes the explosion. This is however several hours after the collapse
of the core.

As the shock wave propagates through the silicon and oxygen rich gas
close to the iron core, the temperature behind the shock will be high enough
for explosive nucleosynthesis to take place in these regions. This burns most
of the Si and S into nuclear statistical equilibrium, (see Fig. 13).

During the first seconds after the core bounce some from the observa-
tional point of view most important isotopes are formed. Close to the border
between the neutron star and the ejecta the explosive nucleosynthesis occurs
in conditions close to NSE. As we saw in §1.3, it is therefore not surprising
that the most abundant nucleus is 56Ni. The exact mass of 56Ni, which will
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Figure 12: Two-dimensional simulation of the explosion at 0.38 s after core
bounce. The contours show the entropy distribution. The shock is at 3800
km. Note the bubbles of neutrino heated gas, and the down drafts of sinking
cooler gas. (Janka & Müller 1996)
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Figure 13: Explosive nucleosynthesis in the central region (Kifonidis et al.
2003).

be ejected, depends sensitively on where the split is between the the matter
falling into the neutron star and that expanding out. This is usually known
as the ’mass cut’. Typically, the 56Ni mass is ∼ 0.1 M�, but this can vary
by a large factor, both upwards and downwards.

In addition to 56Ni, substantial amounts of 57Ni and 44Ti are created.
The exact abundances of the three radioactive isotopes depend on the den-
sity, temperature and neutron excess. Therefore, a determination of these
abundances provides a useful probe of the conditions at the time of the
explosive nucleosynthesis, during the first seconds of the explosion.

Outside the silicon core, in the inner oxygen shell, the shock velocity
and density are still high enough for the inner parts of the oxygen core to
be transformed into Si/S. At this point the density becomes too low for
any significant nucleosynthesis to take place. Outside of the inner oxygen
shell, the composition just before core collapse is almost unaffected by the
explosion. Summarizing the explosive nucleosynthesis, the most important
elements affected by this is oxygen and elements heavier than this.

In addition to these elements, which account for most of the newly cre-
ated elements in terms of mass, there is also a further process, which is
extremely important for the elements beyond the iron peak. This relays on
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the fact that close to the mass cut, where the density and temperature is
high, the abundance of free neutrons is also high. This high neutron flux
can be absorbed by the different abundant iron group nuclei in this region,
which leads to the build up of heavier, neutron-rich isotopes. These are usu-
ally unstable to especially beta decay, which creates more stable isotopes of
the same mass, but higher charge. This process is known as the r-process, r
for rapid.

25



Figure 14: Energy versus arrival time for the detected neutrinos in the
Kamiokande II and IMB detectors. (Burrows 1988).

2 Observables of core collapse supernovae

2.1 Neutrinos from SN 1987A

The most unique observation of SN 1987A is the first observation of neutri-
nos from outside of the solar system. Although already Chiu and Colgate &
White in the 1960’s had predicted that most of the gravitational energy in
the collapse would emerge as neutrinos, the flux from supernovae at ’normal’
distances is too low for the current (and probably next) generation of neu-
trino detectors. However, the small distance to SN 1987A, 50 kpc, meant
the the flux was >

∼ 104 larger than from a supernova in even the closest
galaxies outside the Local Group.

As soon as the news of the discovery of SN 1987A came, the different
teams looked at the registration journals of the most sensitive detectors,
Kamiokande II in Japan and IMB (Irwine – Brookhaven – Michigan) in
Ohio. To their satisfaction they saw a clear signal at exactly the same time,
February 23 at 07:35:41 UT. Fig. 14 shows the energies of the individual
electrons produced by the neutrinos, which approximately corresponds to a
neutrino energy given by Eν ≈ Ee + 2 MeV.

The total energy in the form of neutrinos is straightforward to calculate,
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and was predicted long before SN 1987A. Because the kinetic energy of the
shock is less than a percent of the total energy, what is emitted is just the
binding energy of the neutron star formed. For a uniform density this is

Eb =
3

5

GM2

R
= 3.1 × 1053

(

M

1.4 M�

)(

R

10km

)−1

ergs (2.1)

Note that we here should use the radius of the cool neutron star 10−20 km.
A more accurate calculation, taking the non-uniform density distribution
into account, gives a similar result.

The duration of the burst is set by the diffusion time scale of the neu-
trinos as the proto-neutron star is deleptonized and is cooling down. The
mean free path from Eq. (1.37) is therefore ∼ 106ρ−1

14 (Eν/1 MeV)−2 cm.
Using a constant density for the proto-neutron star with mass ∼ 1.4 M�, we
have ρ ≈ 2.5 × 1013(R/30 km)−3. Using these expressions in the equation
for the diffusion time, Eq. (1.38), we get

tdiff ≈ 0.2

(

R

30 km

)−1 (

Eν

100 MeV

)2

s. (2.2)

Typically, the neutrino energies are of the order of 100-200 MeV in the inner
core.

In reality, the density in the center is higher than the mean density used
above, and the neutrino energies also vary by a large factor, so this number
should only be taken as indicative. The fact that it is much larger than
the dynamical time scale, however, shows the importance of the neutrino
diffusion. More accurate calculations show that the neutrinos diffuse out on
a time scale of ∼ 2 s.

Despite the high interior temperature the neutrinos which escape have
a temperature of only Tν ∼ 4 − 5 MeV, corresponding to a mean energy
< Eν >∼ 3 Tν ∼ 10−15 MeV. Because of the high temperature and trapping
an approximately equal number of all six neutrino species, νe, ν̄e, νµ, ν̄µ, ντ ,
and ν̄τ are produced by pair annihilation, the plasmon process and nucleon
bremsstrahlung. The energy in each of the neutrinos is therefore ∼ 6× 1052

ergs.
The Kamiokande II and IMB detectors are both water Cherenkov de-

tectors, shielded by several 1000’nds of meter of rock. The total amount
of water in these are 2140 tons for Kamiokande II and 6800 tons for IMB.
Only electron neutrinos are detected with these water detectors. This occurs
through absorption on the protons in the water

ν̄e + p → e+ + n (2.3)
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Figure 15: Approximate neutrino luminosities of the different neutron
species. Note the logarithmic time scale. (Burrows 1984).

and elastic scattering including all neutrino species, i = e, µ, τ ,

νi + e− → νi + e−i (2.4)

The second reaction has a cross section which is only ∼ 5% of that of
the first reaction, which therefore dominates. The neutrino detectors are not
sensitive to neutrinos below ∼ 7 MeV for Kamiokande II and below ∼ 19
MeV for IMB.

To compare the detected signal with the predicted one has to convolve
the detector sensitivity with the calculated spectrum. Because of the small
numbers (19 neutrinos in total) one compares the predicted curves with the
cumulative number of neutrinos detected.

The average observed temperature of the neutrinos is 3 − 5 MeV, and
agrees well with that estimated before the explosion. A recent calculation
of the mean energy, < Eν >∼ 3 Tν . The shorter duration of the IMB signal,
which has a higher threshold, actually gives some indication that the source
is cooling.

2.2 Supernova classification

The classification of supernovae into different types and subtypes is basically
an empirical scheme, based on spectral features and light curves. However,
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it turns out that this classification also corresponds to important physical
differences between them.

Most SNe are discovered shortly after explosion when they are near max-
imum luminosity. It is therefore important to be able to distinguish the
different types from the early spectrum. In Fig. 16 we show a collection of
spectra representing the most important types.

The observationally most obvious difference between various SNe is whether
or not they have any hydrogen features in their spectra. Type I SNe are de-
fined as those without and Type II as those with Hα. A closer examination,
however, shows that there are important differences within both of these
classes. The most important are between the extremely heterogenous Type
I’s. These are shown as the top and lower two spectra in Fig. 16. While
neither of them have any trace of Hα, the observational distinction is that
the Type Ia’s have a strong Si II λ6150 line, while the Type Ib’s and Ic’s
lack a strong feature at this wavelength. The distinguishing feature between
the Ib’s and Ic’s is the presence of He I lines in the former, while the Ic’s
lack any trace of helium.

While the differences between the Ia’s and Ib/c’s seem marginal, it turns
out that they originate from completely different explosion mechanisms. The
Ia’s are thermonuclear explosions of white dwarfs, completely disrupting the
star, while the I b/c SNe and the Type II’s are core collapse explosions of
massive stars, leaving a neutron star or black hole.

This distinction can somewhat better be understood from an examina-
tion of the spectra at late epochs. Fig. 17 shows a collection of spectra taken
5 months after explosion. Unfortunately, however, no Type Ib is included,
but they are qualitatively similar to the Type Ib’s. Now the difference be-
tween the Ia’s and Ib/c SNe become very large. While the Ia spectra are
dominated by [Fe II], [Fe III] and [Co III] features, the most prominent fea-
tures in the Ic spectrum are due to [O I], [Mg I] and [Ca II], with only weak
iron lines. Also the Type II’s have late spectra where the same lines are
strong, although they tend to appear later than for the Ib/c’s.

One can now start to appreciate the physical difference between these
classes. The presence of substantial amounts of oxygen, magnesium and cal-
cium is characteristic of the processed regions of a massive star, The Type
Ia spectra with only weak features of lines from these elements and strong
lines of iron are more typical of matter which has undergone complete burn-
ing to nuclear statistical equilibrium. The treason that the Type Ib/c’s lack
hydrogen is most likely because they have lost their hydrogen envelopes,
either as a result of mass loss or binary mass exchange. The progenitors are
therefore believed to be Wolf-Rayet stars. A more quantitative confirma-
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Figure 16: Spectra of different supernova types one week after explosion
(Filippenko 1997).
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Figure 17: Spectra of different supernova types 5 months after explosion
(Filippenko 1997).
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Figure 18: Light curves of different supernova types (Filippenko 1997).

tion of this, requires a much more detailed analysis of their spectra. This,
however, completely confirms these conclusions.

While the previous classification has only been discussed from the spec-
tra, there are also important differences with regard to the light curves of
the different SN types. In Fig. 18 we show light curves representative of
the different types. Here the Type Ia and Type Ib/c curves mainly differ in
terms of absolute luminosity. For the first two months they are character-
ized by a bell shaped peak, occurring 2-3 weeks after explosion. They then
have a nearly linear decline in a time - magnitude plot for the rest of the
evolution. However, while the Type Ia’s are highly standardized, there is a
large dispersion within the Type Ib/c curves, both in absolute luminosity
and in the shape. In particular, the rate of decline after ∼ 50 days differ
considerably.

While the Type II’s have a fairly large range of light curves, one can
distinguish two main types. The IIP’s which are the most frequent, are
characterized by a fairly fast rise to a peak. After a decline by a magnitude
or so, they then stay at nearly constant magnitude for ∼ 100 days. This is
the reason for the P = plateau. After this there is a drop by a magnitude
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Figure 19: Classification scheme based on spectra and light curves of differ-
ent kinds of supernovae (Turatto, 2003).

or more, and then they decline with a fairly uniform rate of ∼ 1 magnitude
per 100 days.

A less frequent class are the Type IIL’s, where the L stands for linear.
The plateau is here lacking and the linear decline sets in shortly after the
peak. Usually, the Type IIL’s are considerably brighter in absolute luminos-
ity than the Type IIP’s. Spectroscopically, the Type IIL’s have already at
early epochs a strong Hα line in emission, while Hα has usually a classical
P-Cygni profile in the Type IIP’s.

In addition to theses main classes, there are several other subtypes, with
more or less distinct properties. This is usually connected to interacting
with a dense circumstellar medium. In Fig. 19 we summarize the whole SN
classification scheme, and we will now discuss the physical interpretation of
these characteristics, and the differences between the various types.

2.3 Radioactivity

As we saw in §??, the explosive nucleosynthesis in the silicon core resulted
in several radioactive isotopes, the most important being 56Ni, 57Ni and
44Ti. All of these have comparatively short half-lives, and the decays of
these elements can therefore be directly observed, and are in fact crucial for
the observability of the supernova. The decays are characterized by either
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the half-life, t1/2, or the exponential decay time scale, τ . It is easy to see
that τ = t1/2/ ln 2.

56Ni decays on a time scale of τ = 8.8 days by electron capture as

56Ni → 56Co + γ . (2.5)

In this process it emits gamma-rays with energies 0.158 – 0.812 MeV (see
Fig. 20). The 56Co isotope resulting from this decay is, however, not stable
either, but decays by electron capture or by positron decay according to

56Co → 56Fe + γ (2.6)

→ 56Fe + e+ (2.7)

The first decay occurs in 81% of the cases and the second in the remaining
19%. In terms of energy going into gamma-rays and positrons these numbers
are 96.4% and 3.6%, respectively. The strongest gamma-ray lines are at
0.847 MeV and 1.238 MeV. The average positron energy is 0.658 MeV.
Similarly, 57Ni decays by electron capture as

57Ni → 57Co + γ (2.8)

with a very short decay time τ = 52 hours. The more interesting decay is

57Co → 57Fe + γ (2.9)

with τ = 390 days.
Finally, 44Ti decays first to 44Sc on a time scale of ∼ 89 years.

44Ti → 44Sc + γ (2.10)

and then rapidly (τ = 5.4 hours) to

44Sc → 44Ca + γ (2.11)

→ 44Ca + e+ (2.12)

(see Fig. 21).
The result of these radioactive decays are either gamma-rays or positrons.

The gamma-rays are scattered by the electrons in the ejecta through Comp-
ton scattering. In each scattering they loose roughly half of their energy
to the electrons. Because the energy of the gamma-rays are initially in the
MeV range, much higher than the binding energies of the bound electrons
in the atoms, both free and bound electrons contribute to the scattering.
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Figure 20: Transitions in the 56Ni and 57Ni decays (Diehl & Timmes 1998).

Figure 21: Transitions involved in the 44Ti and 44Sc decays (Diehl & Timmes
1998).

35



This down-scattering of the gamma-rays continues until the cross section
for photoelectric absorption is larger than the Compton cross section, which
occurs at an energy of ∼ 10− 100 keV, depending on the composition. The
most important element for the photoelectric absorption is iron.

The total gamma-ray luminosity from the various decays is given by

Lγ = 1.27 × 1042

(

M(56Ni)

0.1 M�

)

e−t/111.3d

+ (2.13)

6.9 × 1038

(

M(57Co)

5. × 10−3 M�

)

e−t/390.d + (2.14)

4.1 × 1036

(

M(44Ti)

10−4 M�

)

e−t/89.yrs

erg s−1, (2.15)

and the positron input by

L+ = 4.44 × 1040

(

M(56Ni)

0.1 M�

)

e−t/111.3d

+ (2.16)

1.3 × 1036

(

M(44Ti)

10−4 M�

)

e−t/89.yrs

erg s−1 (2.17)

2.4 Light curves

2.4.1 The diffusion phase of the light curve

After shock breakout the radiation will leak out on a diffusion time scale.
We have already estimated this in Eq. (1.38), which we write as

tdiff =
3R2ρκ

π2c
(2.18)

This should be compared to the expansion time scale t = R/V . Taking the
opacity to be that of Thompson scattering, κ = 0.4 cm2g−1, and assuming
a uniform density for the envelope we get

tdiff

texp
= 1.9

(

M

M�

)(

V

104 km s−1

) (

R

1015cm

)−2

(2.19)

For a typical mass of 10 M� we therefore find that not until the supernova
has expanded to Rpeak ∼ 4× 1015 cm, after tpeak = R/V ∼ 40 days, can the
radiation leak out faster than the ejecta expand. This is analogous to the
neutrino trapping discussed in §1.10, although in this case it is expansion,
rather than collapse.
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Before tpeak the expansion is nearly adiabatic. Because the ejecta is
radiation dominated it behaves as a γ = 4/3 gas, and the total thermal
energy behaves like

Eint = (γ − 1)−1pV = 3Kρ4/3V ∝ ρ1/3 ∝ R−1 (2.20)

Therefore, if the progenitor has a radius R0, the internal energy has de-
creased by a factor Rpeak/R0 once the photons can leak out. A small initial
radius therefore means that almost all the internal energy produced by the
shock has been lost into adiabatic expansion, i.e., to kinetic energy. If the
thermal, shock energy was the only source of energy, supernovae coming
from this kind of stars would be very faint. A red supergiant, on the other
hand, could be bright for weeks just from the thermal shock energy.

Besides the thermal energy from the shock, there is one more important
source for the light curve. As we saw in §2.3, the radioactive isotopes created
in the explosion give rise to gamma-rays and positrons as they decay. These
are loosing their energy in the ejecta, thermalizing their energy into UV and
soft X-ray photons, and therefore acts like an additional energy source. In
the same way as the thermal energy from the shock, the photons undergo
scatterings in the ejecta and only leak out when the diffusion time scale
becomes comparable to the expansion time scale. The difference compared
to the shock energy is, however, that this source is not affected by adiabatic
expansion. The number of radioactive nuclei, of course, remain the same
independent of the expansion. Therefore, even if nearly all the internal heat
has been lost in the expansion, radioactivity provides a source for the light
curve even at late times.

2.4.2 The late light curve and radioactive isotopes

After the peak diffusion plays a steadily decreasing role, and the light curve
becomes simpler. This is in particular the case if we consider the bolo-
metric light curve, i.e., the frequency integrated light curve. In this case
the emitted luminosity is just the instantaneous gamma-ray and positron
energy absorbed by the ejecta.

If we neglect the scattering in space and energy of the gamma-rays and
just consider it as an absorption process, which is a reasonable approxima-
tion, although not very accurate, we can calculate the bolometric light curve
just from the absorbed energy. As an averaged opacity one can for 56Ni and
56Co use κγ = 0.06Z/A cm2g−1, where Z/A is the average charge to mass
ratio of the ejecta. The positrons have a considerably smaller mean free
path, and they can be considered to be stopped and annihilate on the same
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spot as the radioactive decay. Further, since we neglect diffusion we are
only considering epochs later than ∼ 100 days. At these epochs all 56Ni has
decayed into 56Co, and we can therefore neglect the first step in this chain.

For t � τ(56Ni) = 8.8 days we need only consider the 56Co decay.
Further, we assume that a fraction (1 − e−τγ ) of the gamma-ray energy is
trapped in the ejecta. Here τγ is an average optical depth to the gamma-rays.
Adding the gamma-ray and positron contributions we get

Lbol = 1.27× 1042

(

M(56Ni)

0.1 M�

)

e−t/111.3d

[(1− e−τγ ) + 0.035] erg s−1. (2.21)

The first term in the square bracket represents the gamma-ray input and the
second the positron input. As an estimate of the gamma-ray optical depth
we take

τγ = κγρR = κγ
3

4π

M

V 2t2
(2.22)

= 0.38
Z

A

(

M

M�

) (

V

104 km s−1

)−2 (

t

100 days

)−2

(2.23)

We therefore see that the gamma-ray trapping is sensitive to both the mass
and the expansion velocity. As an example we take SN 1987A, where most
of the gamma-rays were trapped in the core. For the mass we therefore take
M ∼ 4 M� and for the expansion velocity of the core ∼ 2000 km s−1. We
than get τγ ∼ 40(t/100 days)−2. The gamma-rays are therefore in this case
trapped up to ∼ 600 days. As another extreme case we can take a Type
Ia supernova, with M ∼ 1.4 M�, Z/A ∼ 0.5 and an expansion velocity
∼ 10, 000 km s−1. In this case we get τγ ∼ 0.25(t/100 days)−2, and the
ejecta is therefore transparent already at ∼ 50 days, or earlier for higher
ejecta velocities.

Eq. (2.21) shows that for τγ
>
∼ 1 the bolometric light curve follows the

radioactive decay time scale closely, Lbol ∝ e−t/111.3d
. For 0.035 � τγ � 1

the decay is, however, steeper with Lbol ∝ e−t/111.3d
/t2. This dependence

explains the steeper late light curves of the Type Ia, Ib, and Ic supernovae
(§2.2).

From Eq. (2.21) we also see that the positrons become important when
τγ ∼ 0.035. For slowly expanding ejecta, as for SN 1987A, the positron
contribution does not become important before the next abundant radioac-
tive isotope, 57Ni, dominates the 56Ni contribution. For rapidly expanding
supernovae, like Type Ib/c supernovae or Type Ia supernovae, the positron
contribution, however, becomes dominant for t >

∼ 300−500 days. The bolo-
metric luminosity then again follows the radioactive decay.
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Figure 22: Bolometric light curve from ESO data for SN 1987A during the
first 1000 days. The solid line gives the bolometric light curve from Eq.
(2.21) with M(56Ni) = 0.07 M� and τγ = 30(t/100d)−2. The dashed line
shows the total radioactive energy, including that escaping the ejecta. (Data
from Bouchet et al. 1990).

2.4.3 The bolometric light curve of SN 1987A

As an example of the usefulness of the bolometric light curve we take SN
1987A. In Fig. 22 we show this during the first 1000 days. After the diffusion
phase, which ends by day ∼ 130, and up to day ∼ 400, the light curve
closely follows the predicted linear relation expected for full trapping, Mbol =
−t2.5 log e/111.3d + const = −t/102.5d + const. After day 400 there is an
increasing deviation from the full trapping case, well fit by Eq. (2.21) with
τγ = 30(t/100d)−2, showing that some of the gamma-rays now escape the
ejecta. Optical depth unity is reached after ∼ 550 days. Most important,
from the normalization of the curve one can determine the total nickel mass
to M(56Ni) = 0.07 M�. The error in this mass is not more than 10%.

By day 600 the bolometric light curve starts to deviate from that pre-
dicted by the pure 56Ni decay. This is a clear indication that the next most
abundant radioactive isotope 57Ni comes into play. Analysis shows that one
finds a good agreement with M(57Ni) = 3.3 × 10−3 M� (Fig. 23).

Thanks to its very long decay time scale, 89 years, 44Ti takes over as
the dominant source of energy to the ejecta at ∼ 1700 days. Although only
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Figure 23: Bolometric light curve for SN 1987A compared to theoretical
light curves from different isotopes. (Diehl & Timmes 1998).

∼ 25% of the energy in the decay is in the form of positrons, these dominate
the energy input. The reason is that the positrons are most likely trapped
by collisions and even a weak magnetic field, while most of the gamma-rays
escape, since τγ

<
∼ 0.1. The trapping in combination with the long decay

time scale means that the light curve will be essentially flat after this epoch.
Careful modeling by Cecila Kozma shows that a mass of (1− 2)× 10−4 M�

of 44Ti was formed in the explosion. As we discussed in §2.3, this provides
us with a very useful diagnostic of the explosion conditions.

SN 1987A is not the only supernova for which the decays of 44Ti has
been observed. For Cas A (age ∼ 330 years) COMPTEL on the Compton
Gamma Ray Observatory detected the strongest gamma-ray line from the
44Sc at 1.157 MeV (Fig. 24). The strength of the line corresponds to
M(44Ti) ∼ 1.7 × 10−4 M�, close to that inferred for SN 1987A.

3 Type Ia supernovae

Observationally there are two types of SN explosions, Type I and Type II.
The Type I SNe are mainly characterized by the complete lack of hydrogen
in their spectra. As we have seen the Type Is can be divided into Type Ia

40



Figure 24: Gamma-ray spectrum of Cas A obtained with COMPTEL on
the Compton Gamma Ray Observatory. (Iyudin et al. 1994).

and Type Ib/c. The latter are physically similar to the Type IIs, originating
from the collapse of massive stars. The Type Ia SNe have, however, a very
different origin, often occurring in elliptical galaxies with a very old stellar
population. Observationally they are very similar to each other, both their
light curves and spectra. In addition, the absolute luminosities are also
similar within a few tenths of a magnitude. They have therefore become the
most useful ’standard candle’ for determining distances in cosmology.

The extreme uniformity of the Type Ia SNe show that they must come
from very similar types of stars. These in addition have to be very old, of the
order of billions of years, and can therefore not originate from massive stars,
like the core collapse SNe. The standard picture is therefore the explosion
of a white dwarf, with mass close to the Chandrasekhar mass. If this is
in a close binary system mass transfer from the ’normal’ star to the white
dwarf may take place. Because of the angular momentum this will spiral
in and form a disc around the white dwarf, and later be accreted onto the
white dwarf. The accreted gas will then accumulate and normally will after
some time explode in explosive nuclear hydrogen burning. This will give
rise to an ordinary nova, occurring frequently every year in our Galaxy. In a
fairly restrictive range of mass accretion rates, >

∼ 10−7 M� yr−1, the mass
of the white dwarf will, however, increase steadily. As the mass increases the
radius of the WD will decrease, R ∝ M−3 (See lecture notes on WDs), and
the density will therefore increase. This will heat up the degenerate core
and when the density reaches 109 g cm−3 the nuclear burning will become
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explosive.
The ignition of the explosion is still not well understood and may occur

in two different modes. Either the nuclear burning will propagate from
the ignition site subsonically, with velocity less than the sound velocity, or
supersonically, with velocity larger than the sound velocity. In the former
case, known as a deflagration, the WD will have time to expand as a result
of the increased temperature and pressure, resulting in a decreasing density
as the deflagration wave propagates to the surface of the star. The nuclear
burning will at the center go all the way to nuclear statistical equilibrium,
mainly M(56Ni. As the explosion proceeds and the WD expands the nuclear
burning will occur at lower densities and only a partial burning will take
place, leading to intermediate mass elements, like Si, S and Ca. In the outer
parts of the exploding WD remains of the original carbon and oxygen may
be present.

In the supersonic case the pressure of the star does not have time to
adjust and the explosion takes place at the density of the original WD.
This is known as a detonation. The result of this is that the whole WD,
consisting originally of ∼ 50% of carbon and ∼ 50% of oxygen , will be burnt
into nuclear statistical equilibrium. This will therefore result in a SN with
only iron peak elements.

Observationally one finds that the spectra of Type Ia SNe show clear lines
of both oxygen and intermediate mass elements at high velocities, close to
the surface. This strongly argues against a pure detonation. Hydrodynamic
simulations of pure deflagrations, however, show that in these a substantial
amount of unburnt carbon and oxygen occurs also in the center of the super-
nova. This is in contradiction to observations of Type Ia SNe at late epochs,
when the central regions dominate the light. Therefore, a popular model
is that of a ’delayed detonation’, where the burning stars as a deflagration,
expanding the WD. After a few seconds the deflagration will turn into a
detonation, transforming the unburnt fuel in the center to higher mass ele-
ments. Because the expansion during the deflagration phase leads to a lower
density the burning will, however, during the detonation now not go all the
way to nuclear statistical equilibrium. A substantial mass of intermediate
mass elements will therefore be found at especially high velocities, and even
unburned material at the surface.

What causes the transition from deflagration to detonation is however,
not understood, and much work remains to be done. Also other aspects of
the Type Ia explosions are not well understood. In particular the nature of
the progenitor systems are unknown. Only in one case, that of Tychos SN
1572, has a binary companion probably been detected. The mass transfer
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Figure 25: The development of the deflagration flame seen at (A) 1.26, (B)
1.49, (C) 1.57, (D) 1.65, (E) 1.76, and (F) 1.90 s after ignition. The color
code shows the velocity. (Gamezo et al. 2003)

process and the accretion is also ill-understood. Most important, the in-
fluence of different initial metallicities in the progenitor star, and its effect
on especially the C/O ratio is also unknown. This will influence the total
nuclear energy available, and therefore the total luminosity of the SN. This
is especially serious for the use of Type Ia SNe as cosmological standard can-
dles. The fact that they seem to work so well for this purpose is therefore
somewhat surprising and needs to be better understood.
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Figure 26: Abundances in one pure deflagration model (top) and two delayed
detonation models started at 1.62 s (b) and at 1.51 s (c). Note the absence of
oxygen and carbon in the delayed detonation models (Gamezo et al. 2005)
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