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Spitzer Space Telescope are colored red; visible data fnrerhltibble Space Telescope
are yellow; and X-ray data from the Chandra X-ray Obseryatoe green and blue



1 Introduction

In this exercise you will run different (small) simulatioabgasdynamic problems, the
results of which you are asked to analyze. There are two r&its.pln the first part
we will be looking at so-called Riemann problems, in whiclo sonstant states are ex-
posed to each other, leading to the formation of differepésyof discontinuities. In the
second part we will study the interaction of a supernovatbiage with the supernova’s
environment, the so-called 'circumstellar interactiordlplem for supernovae.

In this introduction we describe the general details of theutations.

1.1 Technical Details

All of the necessary files can be found in

[ af s/ astro. su.se/ u/ garrel t/ Teachi ng/ AstroGasDynani cs/ Lab or
inhttp://ww. astro. su.se/ garrelt/AS7002_Lab. If you download it
from the web, be aware that your browser may damage the bméii emann and
super nova). The safest way to download them is with thhget program: e.g.,
wget http://ww. astro.su.se/ garrelt/AS7002_Lab/ri enmann. You
will also need to turn on the executable permission for tigse

Each of the two problems has its own executable which areaallemrann and
super nova. These executables have to be run on a Linux system by formggam
giving the command/ r i emmann. They will ask for input parameters, which can ei-
ther be given interactively, or using the Unix redirectigstion, from a file. If you
have collected the input parameters in a file (shpckt ube, you can run for ex-
ample. /ri emann < shockt ube. It may be recommendable to keep the input
parameters in a file so that you have a record of what went ipttecular simulation.
Similarly it may be good to make a separate directory forysenulation run.

The required input is slightly different for the two progranso it is described in
detail below. Both codes need to be told the size of the coatipaal mesh (how many
computational cells should be used), the size of the donraimtach the calculation is
done, some parameters describing the initial conditidrestime between outputs, and
the total time for which to run the simulation (time here mephysical time, not wall
clock or CPU time). The i enmann program will also ask for the CFL number.

The codes produce two types of output, one to the terminadlevin the other to
files. The output to the terminal is meant to monitor the pesgrof the simulation. The
code prints one line for every time step showing the numbdéhefime step, the time,
size of the time step and the time when the next output fileddyced. The output files
are ASCII tables containing four columns of the length ofrtiesh. The four columns
are the position, the mass densip),(the momentum density(), and the pressure
(p). For each output time a new file is created, and they are niedlsequentially
from out put 000. dat (initial conditions) to (maximallyput put 999. dat . How
many output files you generate depends on the frequency ptitsuspecified in the
input parameters.

The output files can be read into your favourite plotting paog for further analy-
sis. Examples of plotting programs arBL, gnupl ot, supernongo, natl ab,
et c. Ask me for help if you have problems plotting the results.



Both codes will run until one of these conditions is met

1. The specified end time is reached.

2. The generated flow patterns have reached an edge of the grid
3. The maximum of 1000 output files have been generated.

4. An error has occured in the calculation of the evolutiothefflow.

It is not strictly necessary to stop on condition 2, but sitteepurpose of the exercise
is to analyze the flow patterns, it is best if they are all ciorgd on the grid.

If the code stops on condition 3, you should choose to gemenatput files less
often by increasing the time between outputs (specifiedarirthut parameters).

Condition 4 shows that the numerical method used has its tenks. In fact
most numerical methods for gasdynamics have such draw baok®very problem
can be handled by an off-the-shelf method. For the problemusaye asked to study
below, errors in the humerical method should not normallyuocbut it is important to
remember that the codes are not guaranteed to work forampitritial conditions.

Both codes solve the Euler equations in one spatial dinecéssumingpé =

p/(y—1)withy =5/3.

2 Riemann Problems
Riemann problems are defined by the initial condition
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They can be thought of two constant states seperated by hrd@gp atzy which is
removed at = 0. In the progrant i emann x, is always the middle of the computa-
tional grid and is defined to be 0. To define the grid you onlydrteespecify the size
of the domain. The initial condition for the Riemann problenset by specifying the
left and right values of the density, velocity and pressure.

As input, the code also needs the so-called CFL number (8l@uset to a number
smaller than 1; for a safety margin, use a number in the range 0.8, except when
asked to try a different value).

The Riemann problem for the Euler equations leads to twostgb@vaves spread-
ing. The two types are shock and expansion waves. The ped’ibmann configura-
tions are thus,

1. one shock and one expansion wave
2. two shock waves

3. two expansion waves.



In each of the cases there will be a contact discontinuityeivben the two waves (due
to the fact that we started with an initial discontinuity).this lab, we will look only at
cases 1 and’2

2.1 Shock tube

The first Riemann problem we will consider is the so-calleaicittube.

A shock tube is a device used primarily to study gas phase combustion reactions.

A simple shock tube is just a metal tube in which a gas at low pressure and a gas
at high pressure are separated using a diaphragm. This diaphragm suddenly bursts
open under predetermined conditions to produce a shock wave. The low-pressure gas,
referred to as the driven gas is subjected to the shock wave while the high pressure
gasis known as the driver gas. The bursting of the diaphragm creates a compression
wave in the driven gas, which then rapidly steepens to form a shock front, known as
the incident shock wave. S multaneously, a rarefaction wave, often referred to asa fan,
travelsback in to the driver gas. The experimental gas and the driver gas make contact
at the contact surface, which moves rapidly along the tube behind the shock front (from
Wikipedia, the free encyclopedia).

We do not consider any combustion reactions here, but ateaidsnterested in
the pattern of discontinuities. In fact one particular shtabe problem, known as the
Sod shock tube (Sod 1978), is one of the classical test profdegasdynamics codes.
We will use the initial conditions of the Sod shock tubg; = 1, v, = 0, pr, = 1,
pr = 0.125, vg = 0, pr = 0.1 but since the code uses= 5/3, we are not exactly
doing the classical Sod problem (which requites 1.4). Use a domain size of 1.

A) To set good values for the output and end times, estimatd@atyglocity from the
initial conditions given above.

B) Run the simulation and inspect for a late time the graphsfar, p, as well as
the total energy density, specific internal energy densitythe Mach numbeM (in
the lab frame), and the entropy related quangity ¥. Identify the three discontinu-
ities: expansion wave, contact discontinuity and shocH, rantivate your choices by
identifying their characteristics.

C) In the same output, derive the shock strength (characteligehe Mach number
in the shock frame) and the shock’s velocity (in the lab frafmem the pre- and post-
shock conditions.

D) Measure the speed of the 3 discontinuities by looking at geaf outputs. Are the
values for the shock the same as derived under C)?

E) Try running with a CFL number larger than 1. If numerical esroccur before
the first output is produced, try changing the output timehsat &t least one output is
produced. What do the results look like?

2.2 Coallision

A different Riemann problem is the one in which two flows at#li If the flows are
supersonic this will generate two shocks seperated by aacbdiscontinuity. The

1if you are curious you may also study a dual expansion flow. Yitinatice that the code is more likely
to generate errors in this case. To get a result choose tiekwaihich are close to sonic.



simplest case would be a head-on collision between two fl@irsce one can change
the reference frame to another one which is moving with ateonwelocity (Galileo
transformation), there are in fact many variations on theme. One suggestion is
pL = 0.1, vy = 10, pL = 0.1, pr = 1, vr = 2, pr = 1 The size of the domain can
again be setto 1. For the end time either experiment, or makstmate as in case of
the shock tube.

A) Run the simulations and inspect for a late time the graphg,forp, as well as the
total energy density, specific internal energy densitythe Mach numbeM, and the
entropy related quantityp~". ldentify the three discontinuities.

B) From the conditions before and after the shocks derive theksktrengths (char-
acterized by the Mach numbers in the shocks frame), the sheelocities (in the lab
frame).

C) Measure the speed of the 3 discontinuities by looking at geaf outputs and
compare to the results from C.

3 Supernova Explosion

Inthe second part we look at a more astrophysical applicalibe progransuper nova
calculates the evolution of the earliest phases of a suparexplosion when the stel-
lar atmosphere ejected by the explosion interacts with tiir@enment of the star.
This process is often called “circumstellar interactioand Claes Fransson and Pe-
ter Lundqvist at Stockholm Observatory have both workedhis iroblem (see e.g.,
Fransson et al. 1996).

We will assume that both the supernova ejecta and the emegnnare spherically
symmetric, which allows us to solve the problem in one dinmmswith as spatial
variable the radius.

The stellar atmosphere of a star exploding as a supernovdeatescribed by
a powerlaw of index:, wheren is in the range 6-12. As the envelope expands it
decreases in density. Initially the expansion is complate@hindered, so the density

profile is given by
3
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wherepg, ro andt, are reference values. In such a free expansion the velsaifyén

by
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SO it increases with position. At some point the whole atrhesp will have been
ejected but in our simulation we will not consider that titios.

The environment of the star could be the interstellar med{L8M) of roughly
constant density, or more likely in the case of a massive ttaremnant of the star’s
stellar wind. In either case it can be described by a powerlaw

p=n (), 3)

r



with a velocityv; (which could be zero in the constant density ISM case). Weasi
sume a supersonic stellar wind, in which case 2, and the wind can be characterized
by a constant mass loss raté = 4712 pv;.

This configuration has an analytical solution found by Chiev41982). This solu-
tion is self-similar which means that apart from scale fes;tthe solution is identical
for all times.

The interaction between the supernova ejecta and the eméot leads to four
zones:

1. Freely expanding supernova ejecta
2. Shocked supernova ejecta
3. Shocked environment
4. Undisturbed environment
separated by three discontinuities:
1. aninner shock where the stellar ejecta are shocked

2. a contact discontinuity between the shocked stellataped the shocked envi-
ronment,

3. an outer shock where the environment is shocked

In this sense it resembles the second Riemann problem wedatkabove. However,
we are now working in the spherical coordinateso the problems are not identical,
specifically, the flow variables are not necessarily cornstéthin the different zones.

In astrophysical problems radiative cooling can often riyathie flow. The program
super nova allows you to turn radiative cooling on and off. If you run witooling
you should have a file calledor ocool . t ab available in your working directory.
Without it the code will stop.

Below you will need the CPU time taken by the program. To g&, ttun the
program using théi me command:ti me ./ super nova. After it finishes, it will
report (among other things), the (user) CPU time used by ribgram.

3.1 Adiabatic Simulation

We start without radiative cooling, so typewhen asked whether to use it. We run the
simulation with the following parameters:

e mesh size: 4000 (or more)
e domain size2.5 x 10'% cm
en=9

ro =5 x 10 cm

po=13x10""¥gem3



TABLE |
PROPERTIES OF THE SELF-SIMILAR SOLUTIONS

n R\ /R, Ry/R, 4 P2/ Pi/m uy /g M, /M,
0 6 1.256 0.906 2 0.73 0.39 1.203 0.28
0 7 1.181 0.935 1.2 1.3 0.47 1233 0.50
0 & 1.154 0.950 0.7 a1 0.52 1.263 0.71
0 9 1.140 0.960 0.47 31 (.55 1.263 (.93
0 10 1.131 0.966 .33 4.3 0.57 1.260 1.1
0 12 1.121 0.974 0.19 1.2 0.60 1.255 1.6
0 14 1116 0,979 0,12 11 0.62 1,250 0
2 [ 137 0.958 062 39 0.21 1.006 0.44
2 ;| 1.299 0.970 0.27 78 .27 1.058 0.82
2 & 1.267 0.976 015 13 0.31 1.079 1.2
2 5 1.250 0.981 0.096 19 0.33 1.090 1.6
2 10 1.239 0.984 0.067 27 0.35 1.096 1.9
2 12 1.226 0.987 0.038 46 0.37 1.104 2.7
2 14 1.218 0.990 0.025 TG (.38 1.108 id

Figure 2: Table 1 from Chevalier (1982)

vo = 5.8 x 10 km s—1

To =10* K

Mying =5 x 1075 Mg yr!

Vwing = 10 km 5!

® lwind = 10* K

For the output times you can take 0.1 days, and for the tated 80 days. This will
lead to the outer shock running off the grid, at which poirt $fmulation will stop.
Note that the variations across the grid for many quantitiessuch that it is better
to plot the logarithm (logy) of these quantities.
A) Look at the output for 9 days. Identify the four regions amgd#discontinuities (use
as many flow quantities as you think is useful). Measure tbelsjump conditions and
derive the shock strengths (as measured by the Mach nuvbierthe shock frame)
in both the inner and outer shock.
B) The full set of parameters for the self-similar solutiongiigen in the table (Table
1). We will only use the ratios of the inner and outer shockitjos to the contact
discontinuity R,/ Rc, R2/Rc). Check these ratios for various times in the simulation.
Do the results match the self-similar solution for all tirdes



C) The x-ray emissivity of a hot gas can be approximated by {firee emission from
hydrogenR):

47m(H+)n(e*)% exp (];h;) ergs ' em 3 Hz ™! 4)
B

with f,, = 5.44436 x 10739, n the number density (of protons and electrons respec-
tively), T' the temperaturé; the Planck constant arigs the Boltzmann constant. Cal-
culate the emissivity at a photon energy of 100 keV, with edwadth of 1 keV att = 9
days. Which region produces substantial amounts of x-ragsan? Next calculate
the total x-ray luminosity (at 100 keV) of the supernova bynsuing over all radial
points (remember that the volume of each celltis2Ar. Do this for a sufficient
number of times to make an x-ray light curve (luminosity agatime).

D) Run the same simulation with only 2000 points. Compare tltessgary CPU time
with the 4000 points run. How can you explain the ratio? Hitmink of the CFL
condition.

3.2 Cooling Simulation

Run the same simulation, but now with radiative cooling on.

A) Look at the output for 9 days, and compare to the case wittaaliative cooling.
What has changed, and why?

B) Look in detail at the shock structures. Is the simulationdsg the cooling region?
If not, is it possible to make an estimate of the effectivahdtic indexy for the cooling

shock? Can you find a resolution for which the cooling regsoresolved?

C) Redo all of the x-ray calculation, and compare to the adiabrasult you found
before.
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2assuming the so-called Gaunt factors to be 1



