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1 Introduction

Since analytical solutions to the fluid equations are only possible in a few limited,
idealized cases, the development of computers has led to a whole new branch of fluid
studies. In fact, fluid problems were among the first to be tackled with computers
(Manhattan project).
Unfortunately, the complexity of the equations also makes them hard to solve numeri-
cally. This has led to a large variety of methods for doing computational fluid dynamics
(CFD). It can be quite bewildering for a newcomer since the naming of the methods is
often obscure and inconsistent.
Here I will look at some of the basic principles which should give you an impression
of what CFD is about.

2 Upwind and CFL condition

We start with a simple advection equation in one dimension (1D)

∂ρ

∂t
+ u

∂ρ

∂x
= 0 (1)

To solve this numerically we introduce a discretization

xj = x0 + j∆x (2)

tn = t0 +

n−1
∑

n′=0

∆tn′ (3)

With this discretization we can write for example

ρn+1
j − ρn

j

∆tn
= −u

ρn
j+1 − ρn

j

∆x
FTFS (4)

= −u
ρn

j − ρn
j−1

∆x
FTBS (5)

= −u
ρn

j+1 − ρn
j−1

2∆x
FTCS (6)
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where FTFS stands for Forward Time, Forward Space, FTBS for Forward Time, Back-
ward Space, and FTCS for Forward Time, Centered Space. If onetries these three
approaches one finds that

1. FTFS is always unstable foru > 0, and sometimes stable foru < 0

2. FTBS is always unstable foru < 0, and sometimes stable foru > 0

3. FTCS is always unstable

4. FTFS foru < 0 and FTBS foru > 0 are only stable if∆tn < ∆x/|u|

These results imply that

1. One must take into account thedirection of the flow (a concept known as ‘up-
wind’).

2. One must make sure that within∆tn one cell only communicates with its neigh-
bours. This is of course related to thespeedof the flow.

Condition 2 leads to the so-called Courant-Friedrich-Lewy(CFL) condition

∆t <
∆x

max(|a|)
(7)

wherea are all the flow speeds in the problem. One often writes

∆t = ηCFL
∆x

max(|a|)
(8)

with ηCFL < 1, the so-called CFL number of the calculation.
For the advection equationa = u. However for the Euler equations one also needs to
take into account the sound speed:

a = max(|u − cs|, |u + cs|) (9)

This connects to the concept of the domain of dependence: only the region of space-
time bounded by the linesu− cs andu + cs can be reached by the point under consid-
eration. If∆t > ∆tCFL, pointxj should also affectxj+2, but the methods FTBS and
FTFS do not accomodate this. Hence their unstable characterin this case.
Figure 1 illustrates something else: for the Euler equations there is not asingleflow
direction. Depending on the values ofu andcs, the flow directions may be all positive
(needing FTBS), all negative (needing FTFS), or some positive and some negative.
Clearly a rather advanced method that can deal with multipleflow directions is needed
for the Euler equations.
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Figure 1: Characteristic directions in space-time delimiting the domain of dependence.

3 von Neumann stability analysis

How can we easily analyze the stability of a given method? This can be done using the
von Neumann stability analysis (linear stability analysis). Let’s consider our advection
equation with the FTFS method (Eq. 4), and writeρn

j asCn
k exp(ikj∆x), i.e. similar

to the linear stability analysis used before, but now on a discrete mesh. The idea of the
von Neuman method is to evaluate the ratioR = |Cn+1

k |/|Cn
k |. If R is larger than 1

for all cases, the solution will go to infinity for largen, and is unstable. Substituting
into Eq. 4 gives

Cn+1
k eikj∆x = Cn

k eikj∆x − λ
(

Cn
k eik(j+1)∆x − Cn

k eikj∆x
)

(10)

whereλ = u∆t/∆x. So

Cn+1
k = Cn

k − λ
(

Cn
k eik∆x − Cn

k

)

(11)

Cn+1
k

Cn
k

= 1 − λ(eik∆x − 1) (12)

= 1 + λ − λ cos(k∆x) − iλ sin(k∆x) (13)
∣

∣

∣

∣

Cn+1
k

Cn
k

∣

∣

∣

∣

2

= (1 + λ − λ cos(k∆x))
2

+ (λ sin(k∆x))
2 (14)

= 1 + 2λ(1 + λ)(1 − cos(k∆x)) (15)

which is only always smaller than 1 for2λ(1 + λ) ≤ 0, or

−1 ≤
u∆t

∆x
≤ 0 (16)

meaning thatu has to be negative, and the CFL condition needs to hold.
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4 Conservation

Let us look at the Euler equations which for a 1D, cartesian coordinate can be written
as

∂W

∂t
+

∂F

∂x
= 0 (17)

whereW = (ρ, ρu,E)T andF = (ρu, ρu2 +p, (E +p)u)T . A more general case also
accomodates forsource terms

∂W

∂t
+

∂F

∂x
= S (18)

whereS could be external source terms (force, heating, cooling, etc.), or geometric
source terms (non-intertial frame of reference, curvilinear coordinates).

t
n+1

t
n x

i−1/2 xxi i+1/2

Figure 2: Contour of integration in discretized space-time.

If one defines a cell on our mesh to run fromxi− 1
2

to xi+ 1
2

(with the cell centre atxi),
and a time interval fromtn to tn+1, one can write the integral form of the equations as

∫ tn+1

tn

∫ x
i+ 1

2

x
i−

1
2

∂W

∂t
dxdt +

∫ tn+1

tn

∫ x
i+ 1

2

x
i−

1
2

∂F

∂x
dxdt =

∫ tn+1

tn

∫ x
i+ 1

2

x
i−

1
2

Sdxdt (19)

where the double integral is actually a closed curve in space-time (Fig. 2).
This gives

∫ x
i+ 1

2

x
i−

1
2

W(x, tn+1) − W(x, tn)dx +

∫ tn+1

tn

F(xi+ 1
2
, t) − F(xi− 1

2
, t)dt =

∫ tn+1

tn

∫ x
i+ 1

2

x
i−

1
2

Sdxdt (20)

Note that we can define the cell averaged state, and the time averaged flux as

〈W(xi, t)〉 =
1

∆x

∫ x
i+ 1

2

x
i−

1
2

W(x, t)dx (21)

F̂(x, tn+ 1
2
) =

1

∆t

∫ tn

tn

F(x, t)dt (22)
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and with these we can write

〈W(xi, tn+1)〉 = 〈W(xi, tn)〉 +
∆t

∆x

[

F̂(xi− 1
2
, tn+ 1

2
) − F̂(xi+ 1

2
, tn+ 1

2
)
]

+∆t〈Ŝ(xi, tn+ 1
2
)〉 (23)

which holdexactly.

F

F
<W>

i−1/2

i+1/2

x xx
i−1/2 i 1+1/2

Figure 3: Illustration of the principle of conservative methods.

ForS = 0 this form is known as the conservative form, since in it the conserved quan-
tities W only change because they receive or give to their neighbours. The spatially
integrated values remain constant. See Fig. 3 for an illustrative sketch. The effect of
the presence of a source term can be illustrated as in Fig. 4.

F

F
<W>

i−1/2

i+1/2

x xx
i−1/2 i 1+1/2

S

Figure 4: Illustration of the principle of conservative methods with a source term added.

Since the conservative form holds exactly, it is a useful framework for considering
and analyzing numerical schemes. If a method is formally dealing with cell-averaged
quantities〈W(xi, t)〉 it is called afinite-volumemethod. If instead it is working with
quantities defined at a given position,W

n
i = W(xi, tn), it is called afinite-difference

method (see Fig. 5). Note however that at the practical levelthere is not always a big
difference between the two views, or methods may be partly using the finite-volume
and partly the finite-difference perspective.

5



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Fine Volume Finite Difference

Figure 5: The ideas of finite volume and finite difference.

The conservative form does provide us with a general formulafor describing a numer-
ical method

W
n+1
i = W

n
i +

∆t

∆x

(

F
n+ 1

2

i− 1
2

− F
n+ 1

2

i+ 1
2

)

+ ∆tSn
i (24)

IgnoringS for now, this formula suggests that our task in designing a numerical hydro-

dynamics method is about finding a good recipe forF
n+ 1

2

i− 1
2

. Note that this flux in the

conservative form is a time-averaged flux

F̂(xi+ 1
2
) =

1

∆t

∫ tn

tn

F(xi+ 1
2
, t)dt (25)

≈ F(xi+ 1
2
, tn+ 1

2
) + O(∆t2) (26)

≈ F(xi+ 1
2
, tn) + O(∆t) (27)

So the more accurate results would be found for a flux value from the intermediate
time.
Conservative methods are useful because they automatically conserve the conserved
quantities, and the conservative form is also valid at shocks (as can be seen from the
shock jump conditions). Since shocks are discontinuities,they are in fact a big chal-
lenge for many numerical methods.

5 Lax-Wendroff method

The fact that we needF(xi+ 1
2
, tn+ 1

2
) = F

n+ 1
2

i+ 1
2

suggests the following simple, two step

approximation

1.Predictor W
n+ 1

2

i+ 1
2

=
1

2

(

W
n
i + W

n
i+1

)

+
∆t

2∆x

(

F
n
i − F

n
i+1

)

(28)

2.Corrector W
n+ 1

2

i = W
n
i +

∆t

∆x

(

F
n+ 1

2

i− 1
2

− F
n+ 1

2

i+ 1
2

)

(29)

whereF
n
i = F(Wn

i ). This method is known as the Lax-Wendroff method, or some-
times as the Richtmeyer method. It works well for smooth flows, but gives oscillations
near shocks and contact discontinuities. To avoid these theconcept ofartificial vis-
cosity was developed. Artificial viscosity for the Lax-Wendroff method consists of
replacing step 2 by

W
n+ 1

2

i = W
n
i +

∆t

∆x

(

F
n+ 1

2

i− 1
2

− F
n+ 1

2

i+ 1
2

)

+ ǫ
(

W
n
i+1 − 2Wn

i + W
n
i−1

)

(30)
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where the last term is the artificial viscosity term. It is called artificial viscosity because
its form is identical to that of a real diffusion or viscosity, but its coefficientǫ is chosen
purely for numerical reasons.
Although methods with artificial viscosity gave reasonableresults, many felt uncom-
fortable with the introducing an arbitrary, tunable and unphysical coefficientǫ. Note
also that the above method ignores the lesson we learned fromthe advection equa-
tion: we should take into account the direction of the flow, orrather (in case of the
Euler equations), the waves. Method thatdo take this into account are calledupwind
methods.

6 Flux splitting

One approach to implement the upwind idea, is calledflux splitting. The idea is that
the flux vectorF can be written asF = F

+ + F
−, whereF

+ is the part associated
with right-moving waves, andF− with left-moving waves (see Fig. 6)

������������������������

���� ����������

FL FR

FL FR
FRFL

+_+_

i+1/2

Figure 6: Flux splitting: splitting the fluxes left and rightof a cell interface into left
and right going fluxes.

Let us consider an interface between two cells. We can define aflux on the left hand
side of the interfaceFL = F(Wi) (for example), and on the right hand sideF

R =
F(Wi+1) (for example). We then split each of these two fluxes into right and left going
fluxes:FR = F

R+ + F
R−, FL = F

L+ + F
L−. The only parts that matter are those

that cross the interface, so we can take the interface flux to beFi+ 1
2

= F
R− + F

L+.
To illustrate this, let us assume that the flow is supersonic and moving to the right on
both sides of the interface. Then all waves are right going, so F

R− = F
L− = 0, thus

the interface flux becomesFi+ 1
2

= F
L+ which is correct: no information can travel

‘against’ a supersonic flow (see Fig. 7). If however the flow issubsonic, some smart
expressions forF+ andF

− are needed.
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Figure 7: Supersonic flow: all characteristics point to the right. As a consequence no
information should be transmitted to the left.
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Figure 8: The Riemann problem.

7 Riemann solvers

An even more sophisticated approach is the one used in so-called Riemann solvers, or
Reconstruction-Evolution methods. This approach, first suggested by Godunov, uses
the idea that one can consider the discretized distributionon the mesh as a series of dis-
continuities. The initial value problem for any discontinuity is known as the Riemann
problem,

W =

{

WL if x < x0

WR if x > x0
(31)

(see Fig. 8) and has known analytical solutions for the Eulerequation. If the CFL
condition holds, each interface between two cells can be considered to be an isolated
Riemann problem (Fig. 9). From the solution of the Riemann problem one finds di-
rectly how much mass, momentum and energy flows into a cell from the interface
under consideration:

F
n+ 1

2

i+ 1
2

= F(WRiemann(xi+ 1
2
, tn+ 1

2
)) (32)

This idea was formulated by Godunov in the 1950s, but was too expensive to imple-
ment. In the 1980s computers became fast enough, and also a series of simplerapprox-
imate Riemann solverswas found. These find an approximate solution to the Riemann
problem, good enough to obtain accurate fluxes (which is the only thing needed). The
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most popular approximate Riemann solver, is theRoe solver. A version of the Riemann
method popular in astrophysics is known asPPM (piecewise parabolic method, Colella
& Woodward 1984).
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Figure 9: Dividing a mesh into Riemann problems.

8 Multiple dimensions

Up to this point we have only considered 1D methods. How aboutmulti-dimensional
methods? In fact, truly multiple dimensional methods are rare. What is most widely
used is the technique of operator splitting (or more specifically dimensional splitting).
Suppose that the initial value problem to be solved is

∂f

∂t
= Lf (33)

with L some operator that can be written as

L = L1 + L2 + L3 + · · · + Lm (34)

Then the solution can be found by taking steps

fn+ 1
m = U1(f

n,∆t) (35)

fn+ 2
m = U2(f

n+ 1
m ,∆t) (36)

fn+ 3
m = U3(f

n+ 2
m ,∆t) (37)

etc... (38)

whereUk is the solution for∂f/∂t = Lkf .
Since the two-dimensional fluid equations can be written as

∂W

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (39)

we can use the operator splitting approach by first solving for the changes in thex
direction, and then using that solution to solve for the changes in they direction. To
avoid systematic effects, the order between these steps canbe alternated between time
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steps. Increased accuracy can be achieved by taking fractional time steps. For two
operators:

fn+ 1
3 = U1(f

n,∆t/2) (40)

fn+ 2
3 = U2(f

n+ 1
3 ,∆t) (41)

fn+1 = U1(f
n+ 2

3 ,∆t/2) (42)

This is sometimes known asStrang splitting.

9 Public codes

A number of public hydrodynamics codes exist to allow simulations without the need
of writing the code yourself. Well known examples are ZEUS, FLASH, NIRVANA
and the PENCIL code. However, the nature of the numerical solvers is still such that
one should be cautious when using them as so-called black boxes, especially for types
of problems for which they have not been used before.

10 Smooth Particle Hydrodynamics

There exists a technique which does not follow the concepts outlines above. It is called
Smooth Particle Hydrodynamicsand is quite popular in astrophysics (but not in other
disciplines). In this technique the fluid is not described ona discrete mesh, but rather
as a collection of particles. These particles sample the fluid continuum and each has
a density, velocity and pressure attached to it. The particles behave fluid-like because
they each influence a region around their current position, described by a kernel func-
tion (hence the termsmoothparticles).
One can describe this method as beingadaptive(particles concentrate in high density
areas) andLagrangian(particles follow the flow). It is described more extensively
in the Thompson book (copies attached). SPH works well for self-gravitating flows
(where particles tend to collapse to form smaller and smaller structures), but has prob-
lems with steep gradients such as found in shocks.
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