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1 Introduction

Since analytical solutions to the fluid equations are onlgsgade in a few limited,

idealized cases, the development of computers has led toke wbw branch of fluid

studies. In fact, fluid problems were among the first to be l&atkvith computers

(Manhattan project).

Unfortunately, the complexity of the equations also makest hard to solve numeri-
cally. This has led to a large variety of methods for doing patational fluid dynamics
(CFD). It can be quite bewildering for a newcomer since thming of the methods is
often obscure and inconsistent.

Here | will look at some of the basic principles which shouidegyou an impression
of what CFD is about.

2 Upwind and CFL condition

We start with a simple advection equation in one dimensi@) (1
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To solve this numerically we introduce a discretization
n—1
n’=0
With this discretization we can write for example
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where FTFS stands for Forward Time, Forward Space, FTBSdow&rd Time, Back-
ward Space, and FTCS for Forward Time, Centered Space. Ifr@sethese three
approaches one finds that

1. FTFS is always unstable far> 0, and sometimes stable far< 0

2. FTBS is always unstable far < 0, and sometimes stable far> 0

3. FTCS is always unstable

4. FTFS foru < 0 and FTBS foru > 0 are only stable iiA¢t,, < Az/|u
These results imply that

1. One must take into account thdeection of the flow (a concept known as ‘up-
wind’).

2. One must make sure that withix,, one cell only communicates with its neigh-
bours. This is of course related to thgeedof the flow.

Condition 2 leads to the so-called Courant-Friedrich-Lé@iL) condition

Az
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whereq are all the flow speeds in the problem. One often writes
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max(Jal)

At = nerL (8)
with nopr, < 1, the so-called CFL number of the calculation.

For the advection equatian= u. However for the Euler equations one also needs to
take into account the sound speed:

a:max(|u_cs|7|u+cs‘) (9)

This connects to the concept of the domain of dependency:tioalregion of space-
time bounded by the lines— ¢, andu + ¢, can be reached by the point under consid-
eration. IfAt > Atcrr, pointz; should also affect; o, but the methods FTBS and
FTFS do not accomodate this. Hence their unstable chaiiadtes case.

Figure 1 illustrates something else: for the Euler equatitiere is not aingle flow
direction. Depending on the valueswhndcs, the flow directions may be all positive
(needing FTBS), all negative (needing FTFS), or some pesdind some negative.
Clearly a rather advanced method that can deal with multipledirections is needed
for the Euler equations.
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Figure 1: Characteristic directions in space-time delmgithe domain of dependence.

3 von Neumann stability analysis

How can we easily analyze the stability of a given method thih be done using the
von Neumann stability analysis (linear stability analysist's consider our advection
equation with the FTFS method (Eq. 4), and wyiteasCy! exp(ikjAx), i.e. similar
to the linear stability analysis used before, but now on erdie mesh. The idea of the
von Neuman method is to evaluate the raio= |C};"|/|C?|. If R is larger than 1
for all cases, the solution will go to infinity for large and is unstable. Substituting
into Eq. 4 gives

C]rCLJrleiijw _ Clvczeiijw — (C]?eik(j-‘rl)Az _ C]’;Leiijx) (10)

wherel = uAt/Az. So
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which is only always smaller than 1 fan(1 + \) < 0, or
uAt
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1< —<0 (16)

meaning that: has to be negative, and the CFL condition needs to hold.



4 Conservation

Let us look at the Euler equations which for a 1D, cartesiardioate can be written

as
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whereW = (p, pu, E)T andF = (pu, pu® +p, (E +p)u)’. Amore general case also
accomodates fasource terms
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whereS could be external source terms (force, heating, cooling),ebr geometric
source terms (non-intertial frame of reference, curvdineoordinates).

=S (18)
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Figure 2: Contour of integration in discretized space-time

If one defines a cell on our mesh to run fram ; tox; 1 (with the cell centre at;),
and a time interval from,, to ¢,,. 1, One can write the mtegral form of the equations as
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where the double integral is actually a closed curve in spiace (Fig. 2).
This gives
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Note that we can define the cell averaged state, and the tietagad flux as
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(W (z;,t)) = A W (z,t)dx (21)
F(e,t,,,) = Ait/t F(z, t)dt 22)



and with these we can write
At
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which holdexactly
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Figure 3: lllustration of the principle of conservative ineds.

For S = 0 this form is known as the conservative form, since in it thesssved quan-
tities W only change because they receive or give to their neighbditite spatially

integrated values remain constant. See Fig. 3 for an iltiser sketch. The effect of
the presence of a source term can be illustrated as in Fig. 4.
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Figure 4: lllustration of the principle of conservative mmeds with a source term added.

Since the conservative form holds exactly, it is a usefuniaork for considering
and analyzing numerical schemes. If a method is formallyinigavith cell-averaged
quantities(W (z;,t)) it is called afinite-volumemethod. If instead it is working with
quantities defined at a given positioW = W (z;, t,,), it is called afinite-difference
method (see Fig. 5). Note however that at the practical ik is not always a big
difference between the two views, or methods may be parthguhe finite-volume
and partly the finite-difference perspective.
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Figure 5: The ideas of finite volume and finite difference.

The conservative form does provide us with a general forrfarldescribing a numer-

ical method At
n+1l _ n =y "+% _ n+% n
Wit = W (F - Fr )+ ars) (24)
IgnoringS for now, this formula suggests that our task in designingraerical hydro-
dynamics method is about finding a good recipeB’r?ff. Note that this flux in the
2

conservative form is a time-averaged flux
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So the more accurate results would be found for a flux value fitee intermediate
time.

Conservative methods are useful because they automwptazaiserve the conserved
guantities, and the conservative form is also valid at sh¢ak can be seen from the
shock jump conditions). Since shocks are discontinuitiesy are in fact a big chal-
lenge for many numerical methods.

5 Lax-Wendroff method

1
The fact that we neeB(z; 1,7, 1) = Fj:f suggests the following simple, two step
2

approximation

. n+ 1 1 n n At n n
1.Predictor WH_; =5 (WZ- + Wi+1) + AT (Fi - Fi+l) (28)
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2.Corrector W, tz Wi+ — (ij - F. +f) (29)
Al‘ =3 i+35

whereF} = F(W/). This method is known as the Lax-Wendroff method, or some-
times as the Richtmeyer method. It works well for smooth fldwa gives oscillations
near shocks and contact discontinuities. To avoid thesedheept ofartificial vis-
cositywas developed. Artificial viscosity for the Lax-Wendroff thed consists of
replacing step 2 by
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where the last term is the artificial viscosity term. It idledlartificial viscosity because
its form is identical to that of a real diffusion or viscosibut its coefficient is chosen
purely for numerical reasons.

Although methods with artificial viscosity gave reasonalgleults, many felt uncom-
fortable with the introducing an arbitrary, tunable and hwsical coefficient. Note
also that the above method ignores the lesson we learnedtireradvection equa-
tion: we should take into account the direction of the flowyather (in case of the
Euler equations), the waves. Method tdattake this into account are callegbwind
methods

6 Flux splitting
One approach to implement the upwind idea, is called splitting The idea is that

the flux vectorF can be written a¥ = F* + F~, whereF is the part associated
with right-moving waves, anf'— with left-moving waves (see Fig. 6)
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Figure 6: Flux splitting: splitting the fluxes left and rigbt a cell interface into left
and right going fluxes.

Let us consider an interface between two cells. We can defflux@n the left hand
side of the interfac&’ = F(W,) (for example), and on the right hand sifié’ =
F(W,;1) (for example). We then split each of these two fluxes intotrégid left going
fluxes: Ff = Fi+ 4 FE— FL = FL*+ + FE~. The only parts that matter are those
that cross the interface, so we can take the interface flug ]bpl =FE- L FLT,

To illustrate this, let us assume that the flow is supersomnbraovmg to the right on
both sides of the interface. Then all waves are right goio® %~ = F£~ = 0, thus
the interface flux becomes, , , = FLT which is correct: no information can travel
‘against’ a supersonic flow (see Fig. 7). If however the flolgudsonic, some smart
expressions foF  andF~ are needed.
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Figure 7: Supersonic flow: all characteristics point to tightt As a consequence no
information should be transmitted to the left.
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Figure 8: The Riemann problem.

7 Riemann solvers

An even more sophisticated approach is the one used in E®&iemann solveror
Reconstruction-Evolution methods. This approach, firggssted by Godunov, uses
the idea that one can consider the discretized distribatioihe mesh as a series of dis-
continuities. The initial value problem for any discontityus known as the Riemann
problem,
I WL if v < Zo
W{WR if 2 > a0 (31)
(see Fig. 8) and has known analytical solutions for the Eetgration. If the CFL
condition holds, each interface between two cells can bsidered to be an isolated
Riemann problem (Fig. 9). From the solution of the Riemarobfam one finds di-
rectly how much mass, momentum and energy flows into a cath filwe interface
under consideration:
n+i

FZ-Jr%Z = F(WRiemann (IH-% 5 tn-t,-% )) (32)
This idea was formulated by Godunov in the 1950s, but was tperesive to imple-
ment. In the 1980s computers became fast enough, and alsesadfesimple@pprox-
imate Riemann solversas found. These find an approximate solution to the Riemann
problem, good enough to obtain accurate fluxes (which is tietbing needed). The



most popular approximate Riemann solver, isRoe solver A version of the Riemann
method popular in astrophysics is knowrRPEM (piecewise parabolic method, Colella
& Woodward 1984).
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Figure 9: Dividing a mesh into Riemann problems.

8 Multipledimensions

Up to this point we have only considered 1D methods. How abuulti-dimensional
methods? In fact, truly multiple dimensional methods are.r&hat is most widely
used is the technique of operator splitting (or more spedi§icdimensional splitting).
Suppose that the initial value problem to be solved is

of
S =Lf (33)

with £ some operator that can be written as
£:£1+['2+['3+"'+£m (34)

Then the solution can be found by taking steps

it = UL(f A (35)
i = Us(f" e, At) (36)
= Us(fr At (37)
etc... (38)

whereUy, is the solution fol0 f /0t = Ly, f.
Since the two-dimensional fluid equations can be written as
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we can use the operator splitting approach by first solvingHe changes in the
direction, and then using that solution to solve for the geanin they direction. To
avoid systematic effects, the order between these stefsecalternated between time



steps. Increased accuracy can be achieved by taking fnattione steps. For two
operators:

s = Ui, At)2) (40)
TR = Uy(fs Al (41)
= Ui AL2) (42)

This is sometimes known &trang splitting

9 Public codes

A number of public hydrodynamics codes exist to allow sirtiales without the need
of writing the code yourself. Well known examples are ZEUSABH, NIRVANA
and the PENCIL code. However, the nature of the numericaksslis still such that
one should be cautious when using them as so-called blassbezpecially for types
of problems for which they have not been used before.

10 Smooth Particle Hydrodynamics

There exists a technique which does not follow the concagtses above. Itis called
Smooth Particle Hydrodynamiesd is quite popular in astrophysics (but not in other
disciplines). In this technique the fluid is not describedaatiscrete mesh, but rather
as a collection of particles. These particles sample thd @iantinuum and each has
a density, velocity and pressure attached to it. The pasgtibkhave fluid-like because
they each influence a region around their current positieacidbed by a kernel func-
tion (hence the terramoothparticles).

One can describe this method as bednigptive(particles concentrate in high density
areas) and.agrangian (particles follow the flow). It is described more extensyel
in the Thompson book (copies attached). SPH works well féfgsavitating flows
(where particles tend to collapse to form smaller and smsttectures), but has prob-
lems with steep gradients such as found in shocks.
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