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1 Introduction

We want to derive the equations that describe the time evolution of the state of a gas.
The first question then becomes: What quantities define the state of a gas?

1. How much there is, so the number densityn, or the mass densityρ.

2. How it moves, so the velocityu, or momentum densityρu (systemic motion).

3. Internal motions of the gas particles, expressed as pressurep, or temperatureT ,
or internal energyρE .

4. Other quantities, such as composition, magnetic field, etc..

The minimum set is the first three, so we need a set of equationsdescribing the time
evolution of these quantities.
To arrive at these equations there are different ways. One isto use conservation prin-
ciples (mass, momentum, energy) and thermodynamics. This is the way it is done in
the book. The other way is to use the tools of statistical mechanics, i.e. considering
a gas as a collection of particles. Because the latter gives us a better insight in when
the equation of gas dynamics apply, and the fact that gas consists of particles is more
important in astrophysical contexts, we will follow this path here.

2 Distribution function

Consider a collection ofN gas particles of equal massm. Each particle has a position
x and a velocityv. We can thus put it in a 6-dimensionalphase space (calledµ) of
position and velocity, and count the number of particles in the 6-dimensional volume
(x : x + δx,v : v + δv). Doing this gives us thedistribution function f(x,v, t):

N(x : x + δx,v : v + δv, t) = f(x,v, t)δxδv (1)

Now this is something you have seen before. Famous distribution functions are the
Bose-Einstein and Fermi-Dirac distribution functions, for bosons and fermions respec-
tively. Since we are not dealing with quantum effects, we canuse that other famous
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distribution function, the Maxwell-Boltzmann distribution function

fMB(v) = n

(

m

2πkBT

)3/2

exp

[

−m(v − v0)
2

2kBT

]

(2)

which gives the distribution of the particles over velocities in an equilibrium system
at temperatureT . This distribution function does not depend on position because the
system is at equilibrium. The microscopic quantities are the particle massm, velocity
v, mean velocityv0, and the macroscopic quantities are the temperatureT and the
number density of particlesn. kB is the Boltzmann constant, connecting energy and
temperature.

3 Collisionless systems

Equilibrium systems are rather boring, so what we would likeis to find a way to de-
scribe the time evolution off(x,v, t). What isdf/dt? Sincef is a function oft, x

andv, we can start by writing

df

dt
=

∂f

∂t
+

∂x

∂t
· ∂f

∂x
+

∂v

∂t
· ∂f

∂v
+ · · · (3)

Do we need more terms after that, like∂2
v/∂t2? No, as we know from classical

mechanics, if a system can be described with a HamiltonianH(x,v, t) we do not need
more equations than

v̇ = a = −∇H

ẋ = v = ∇vH (4)

where∇v is the gradient in the velocity coordinate:(∂/∂vx, ∂/∂vy, ∂/∂vz). If we
have only outside forces working on the particles, such anH exists, and can be written
asH = u2/2 + φ(x). However, if the forces on a particle depend on neighbouring
particles, for example due to collisions, we cannot find anH which depends only onx
andv.
Let us now consider the case of no collisions, a so-called collisionless system.The evo-
lution of f is then particularly simple, asdf/dt = 0. This can be shown by realizing
thatf is a density, and hence must obey the equation of continuity (derived from the
principle of mass conservation). As shown in the book (Sect 2.1), this means

∂f

∂t
+ ∇ · fu = 0 (5)

whereu is the ’velocity’ for the densityf . In µ-space this velocity is the six-dimensional
vector(v,a), so the continuity equation becomes

∂f

∂t
+

∂

∂x
· (fv) +

∂

∂v
· (fa) = 0 (6)

This can be rewritten as

∂f

∂t
+

∂x

∂t
· ∂f

∂x
+

∂v

∂t
· ∂f

∂v
+ f (∇ · v + ∇v · a) = 0 (7)
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From the Hamilton relations, Eq. 4 we know that

∇ · v + ∇v · a = ∇ · (∇vH) − ∇v · (∇H) = 0 (8)

So, the evolution off can be written as

df

dt
=

∂f

∂t
+

∂x

∂t
· ∂f

∂x
+

∂v

∂t
· ∂f

∂v
=

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0 (9)

an equation known as theCollisionless Boltzmann Equation. This equation can be
used for all kinds of systems consisting of particles, for example low density stellar
systems.
If we consider a volumeδxδv in phase space, then it will containN = fδxδv particles.
Following these particles, they will at a later time be contained in a volumeδx′δv′.
However, for a collisionless system,f will not have changed in this volume (since
df/dt = 0), and since particle numberN is conserved, this impliesδxδv = δx′δv′,
i.e. the shape of the volume can change, but not its total value. This is generally true
for a system which can be described by a Hamiltonian.

4 Collisions

For a typical gas, collisions are important, so the equationhas to be modified. An
important parameters when considering collisions is the mean free path

λ−1 =
√

2πa2n (10)

for number densityn and particle sizea. For collisions to matterλ ≪ L, the size of
our system. For collisions to be a pertubation (rather than apermanent condition of the
collection of particles) we needλ ≫ a. In the latter case we speak of a ‘dilute gas’.
For a dilute case, their effects can be seen as a perturbationon the case of no collisions
(see Fig. 1), so the Boltzmann equation becomes

df

dt
= C (11)

whereC describes the effects of collisions. If we can find a good mathematical de-
scription forC we are in business. The description of the effects of collisions on the
distribution function was the major achievement of Ludwig Boltzmann.
Remember that we are after the evolution of the gas density, velocity, and energy. But
these quantities can be derived from the distribution function f :

ρ(x) =

∫

mf(x,v)dv (12)

u(x) =

∫

vf(x,v)dv/

∫

f(x,v)dv (13)

E(x) =

∫

1

2
mv2f(x,v)dv/

∫

f(x,v)dv (14)
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Figure 1: The effect of collisions on the distribution function.

sodf/dt will give usdρ/dt, dv̄/dt, de/dt.
We now write

df

dt
= C = Cin − Cout (15)

whereCin refers to collisions that add tof , andCout to collisions that take away from
f (see Fig. 2). We assume that the collisions are binary, and ofa short range nature (so
the particles are for example not charged).
The number of collisions between two beams of particles withdensitiesn andn1, and
velocitiesv andv1 can be written as

δnc
= nn1|v − v1|σδΩ (16)

whereσ is the cross section for collisions andδΩ the direction of the scattered particles.
The densitiesn andn1 can be written as

∫

f(x,v)dv and
∫

f1(x,v1)dv1, so that the
term for particles scattered out off(x,v)δxδv becomes

Cout =

∫

dv1

∫

dΩff1|v − v1|σ (17)

.
The particles that collide intof(x,v)δxδv come from regions of phase space(x′,v′)
and(x′

1
,v′

1
) and thus

Cin =

∫

dv′

1

∫

dΩf ′f ′

1
|v′ − v′

1
|σ (18)

.
The next crucial step is to realize that

1. Collisions can be considered to be reversible, i.e. if thecollision between parti-
cles of velocityv andv1 leads to velocitiesv′ andv

′

1
, then the reverse is also

true.
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Figure 2: A sketch of the principle behind theCin andCout terms in the derivation of
the Boltzmann equation.

2. Conservation of momentum and energy implies that

v + v1 = v
′ + v

′

1
(19)

1

2
|v|2 +

1

2
|v1|2 =

1

2
|v′|2 +

1

2
|v′

1
|2 (20)

or equivalently|v − v1| = |v′ − v
′

1
|

3. A collision between two particles is a Hamiltonian system(in (v, v1) phase
space), soδvδv1=δv′δv′

1

This allows us to rewriteCin − Cout as one term

C =

∫

dv1

∫

dΩ|v − v1|σ(f ′f ′

1
− ff1) (21)

wheref , f1, f ′ andf ′

1
are the same functions, but evaluated at different velocitiesv,

v1, v′ andv
′

1
.

This then leads to the famousBoltzmann Equation

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
=

∫

dv1

∫

dΩ|v − v1|σ(f ′f ′

1
− ff1) (22)

a non-linear integro-differential equation. One should realize that the above derivation
cuts some corners, and this equation actually hides quite a bit of interesting physics,
and has been the source of many discussions. We will use the Boltzmann equation can
be used to derive the equations of gas dynamics.

5 Stationary solution of the Boltzmann equation

It is useful to first consider the solution for the stationarycase, without outside forces.
For this case∂f/∂t = 0 andf(x,v, t) = f(v), so∂f/∂x = 0. Without outside forces
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a = 0.
All of this implies that the total collisional termC should be zero, orf ′f ′

1
= ff1.

Taking the logarithm, this can be rewritten into

log f(v) + log f(v1) = log f(v′) + log f(v′

1
) (23)

This form reminds one of a conservation law. If a (velocity dependent) quantityχ(v)
is conserved in collisions, then

χ(v) + χ(v1) = χ(v′) + χ(v′

1
) (24)

So, the stationary solution for the distribution function can be written as a sum of all
conserved quantitiesχn

log f(v) = C0 + ΣnCnχn(v) (25)

where theC ’s are constants. As we saw before, there are only two velocity dependent
conserved quantities, namely momentum and energy, so we canwrite

log f(v) = C0 + C1|v|2 + C2xvx + C2yvy + C2zvz (26)

which can be rewritten aslog f(v) = log A − B(v − v0)
2 or f(v) = A exp(−B(v −

v0)
2). With all the proper normalizations this becomes the Maxwell-Boltzmann distri-

bution function, Eq. 2.
The result is thus that the stationary solution for the Boltzmann equation is the Maxwell-
Boltzmann distribution function. This is the reason whyfMB is so useful. Any initial
condition left to itself will evolve to this distribution. Note however that its deriva-
tion relies on binary short range collisions, and the absence of non-conservative forces.
When these conditions not hold,fMB will not necessarily be the equilibrium solution.
It is also possible to show thatfMB represents the state of maximum entropy, and thus
that entropy always increases as a given initial state evolves towardsfMB. This is
known as Boltzmann’s H-theorem, and is of course closely related to the 2nd law of
thermodynamics.

6 Macroscopic quantities

As mentioned above, we can derive macroscopic quantities like density and energy
from the distribution functionf . Let us consider a quantityQ

∫

dvQf = n〈Q〉 (27)

The time evolution ofQ can be found from the Boltzmann equation.
∫

dvQ

(

∂f

∂t
+

∂x

∂t
· ∂f

∂x
+

∂v

∂t
· ∂f

∂v

)

=

∫

dvQC (28)

If χ is a quantity which is conserved in binary collisions, one can show that
∫

dvχC = 0 (29)
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This means that we can write the time evolution of such a quantity χ as (using the
summation convention)

∂

∂t

∫

dvχf +
∂

xi

∫

dvχvif −
∫

dvfvi
∂χ

∂xi
+ (30)

∫

dv
∂

∂vi
(χfai) −

∫

dvf
∂χ

∂vi
ai −

∫

dvfχ
∂ai

∂vi
= 0 (31)

The 4th term is zero (through the divergence theorem), so this becomes

∂

∂t
n〈χ〉 +

∂

∂xi
n〈viχ〉 − n

〈

vi
∂χ

∂xi

〉

− n

〈

ai
∂χ

∂vi

〉

− n

〈

∂ai

∂vi
χ

〉

= 0 (32)

For an acceleration due to a conservative force, the last term is also zero.

6.1 Mass

Forχ = m the mass of the particles this then gives

∂ρ

∂t
+

∂

∂xi
ρui =

∂ρ

∂t
+ ∇ · ρu = 0 (33)

The continuity equation, describing the evolution of the gas density. Here we have
defined the mass densityρ = nm and the mean (or bulk) velocity of the particles as
u = 〈v〉.

6.2 Momentum

Forχ = mvj the momentum in thej direction we get

∂ρ〈vj〉
∂t

+
∂

∂xi
(ρ〈vivj〉) − ρaj = 0 (34)

Now 〈vj〉 = uj , but 〈vivj〉 6= vivj . Let us define the difference between a particle
velocity and the mean velocity aswi = vi − ui, and construct a tensorP so that

Pij = ρ〈wiwj〉 = ρ(〈vivj〉 − uiuj) (35)

then
∂ρuj

∂t
+

∂

∂xi
ρuiuj = −∂Pij

∂xi
+ ρaj (36)

Themomentum or Euler equation.
Note that the book defines a stress tensorσij which is related toP by σij = ρ〈vivj〉 =
Pij + ρuiuj .
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6.3 Energy

For χ = 1

2
mv2 the kinetic energy of the particles, it makes sense divide this into the

energy connected with the mean velocity1

2
mu2 and the remaindermu · w + 1

2
mw2.

As 〈u · w〉 = u · 〈w〉 = 0 since〈w〉 = 0, the equation becomes

∂

∂t
ρ(u2 + 〈w2〉) +

∂

∂xi
ρ〈(ui + wi)|u + w|2〉 = ρu · a (37)

The〈(ui + wi)|u + w|2〉 term can be written out as follows

〈(ui + wi)(ui + wi)
2〉 = u2ui + 2u · 〈wwi〉 + ui〈w2〉 + 〈wiw

2〉 (38)

We define the internal energy of the gas asρE = 1

2
ρw2, and the conduction heat flux

asq = ρ〈 1

2
w2

w〉, then

∂

∂t

(

1

2
ρu2 + ρE

)

+
∂

∂xi
ui

(

1

2
ρu2 + ρE

)

+
∂qi

∂xi
+

∂

∂xi
ujPij = ρu · a (39)

Theenergy equation. We will call 1

2
ρu2 + ρE the total energyE.

6.4 Closure relation

These three equations are general but not a closed set since we have 5 equations, but
13 quantities:ρ, u, E , andP

1.
What can we do with the excess unknowns? They seem to be relatedto the miscro-
scopic behaviour of the fluid, and so we need the distributionfunction to say something
about them. For an equilibrium case, this isfMB, but this would be very boring. So,
let us assumelocal Maxwell-Boltzmann. In this case

Pij = ρ

(

m

2πkBT

)3/2 ∫

dwwiwj exp

(

− mw2

2kBT

)

= nkBTδij (40)

a diagonal matrix, andρE = 3

2
nkBT . Only the diagonal terms survive because the

off-diagonal terms are asymmetric around zero and thus giveno contribution under the
integral. Similarly, one can show that the heat conduction flux q is equal to zero (since
it involves a symmetric integral over the asymmetric functionwiw

2).
Now as we know from thermodynamics, the termnkBT is the gas pressurep. We will
therefore use this instead of the temperature.
The set of equations thus becomes

∂ρ

∂t
+ ∇ · ρu = 0 (41)

∂ρui

∂t
+ ∇ · ρuiu = −∇i(p) + ρai (42)

∂E

∂t
+ ∇ · (E + p)u = ρu · a (43)

1Note thatρE =
1

2
ρ〈w2〉 and thatPij = ρ〈wiwj〉, so thatΣiPii = 2ρE , thus we have 13 quantities,

not 14.

8



known as the set ofEuler equations for an inviscid fluid.
Now these equations are not the full fluid equations, since they assume thatf = fMB

everywhere (although not necessarily thesame fMB). Obviously in real fluids there
will be deviations fromfMB, and these give rise to so-called ‘transport phenomena’
such as viscosity and thermal conduction. However, in astrophysics these transport
phenomena are often unimportant and many astrophysical systems can be described
with the set of Euler equations. We will later return to consider the terms introduced
by deviations from a local Maxwell-Boltzmann distribution.
It is important to realize that we have removed the information about the motions of
the individual particles through the introduction of the tensorP, which occurs in the
Euler equations through the pressure terms. So, you could say that the appearance of
pressure terms is our punishment for not wanting to deal withthe motions of inidividual
particles.
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