Astrophysical Gasdynamics Notes:
1. From particles to fluids
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1 Introduction

We want to derive the equations that describe the time avolatf the state of a gas.
The first question then becomes: What quantities define tteeata gas?

1. How much there is, so the number densityor the mass density.
2. How it moves, so the velocity, or momentum densityu (systemic motion).

3. Internal motions of the gas particles, expressed asymeessor temperaturd’,
or internal energyé.

4. Other quantities, such as composition, magnetic fietd, et

The minimum set is the first three, so we need a set of equatiesribing the time
evolution of these quantities.

To arrive at these equations there are different ways. Otweuse conservation prin-
ciples (mass, momentum, energy) and thermodynamics. $higiway it is done in
the book. The other way is to use the tools of statistical raeids, i.e. considering
a gas as a collection of particles. Because the latter giseshetter insight in when
the equation of gas dynamics apply, and the fact that gasstemd particles is more
important in astrophysical contexts, we will follow thisthdere.

2 Distribution function

Consider a collection oV gas patrticles of equal mass. Each particle has a position
x and a velocityv. We can thus put it in a 6-dimensiongthase space (called ) of
position and velocity, and count the number of particleshim &-dimensional volume
(x: x+ 0x,v: v+ 0v). Doing this gives us thdistribution function f(x, v, t):

N(x:x+6x,v:v+dv,t) = f(x,v,t)0x0v ()

Now this is something you have seen before. Famous distibfinctions are the
Bose-Einstein and Fermi-Dirac distribution functions,fosons and fermions respec-
tively. Since we are not dealing with quantum effects, we es@ that other famous



distribution function, the Maxwell-Boltzmann distribati function
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which gives the distribution of the particles over velagitin an equilibrium system
at temperaturd’. This distribution function does not depend on positionause the
system is at equilibrium. The microscopic quantities aseghrticle massn, velocity

v, mean velocityvy, and the macroscopic quantities are the temperafuand the
number density of particles. kg is the Boltzmann constant, connecting energy and
temperature.

3 Collisionless systems

Equilibrium systems are rather boring, so what we would i&k& find a way to de-
scribe the time evolution of (x, v,t). What isdf/dt? Sincef is a function oft, x
andv, we can start by writing

df of ox of ov Of
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Do we need more terms after that, likév/9t>? No, as we know from classical
mechanics, if a system can be described with a HamiltoHiéx, v, t) we do not need
more equations than

v=a=-VH
x=v=V,H (4)

whereV, is the gradient in the velocity coordinatéd/dv,, d/0v,,d/0v,). If we
have only outside forces working on the particles, suchfasxists, and can be written
asH = u?/2 + ¢(x). However, if the forces on a particle depend on neighbouring
particles, for example due to collisions, we cannot finddawhich depends only or
andv.
Let us now consider the case of no collisions, a so-calldistmiless system.The evo-
lution of f is then particularly simple, a$f/d¢ = 0. This can be shown by realizing
that f is a density, and hence must obey the equation of contindégiied from the
principle of mass conservation). As shown in the book (Seigt this means
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whereu is the 'velocity’ for the densityf. In u-space this velocity is the six-dimensional
vector(v, a), so the continuity equation becomes

of o 0 B

This can be rewritten as
af ox of ov Of

a‘f‘a'afx‘f'a'afv‘f'f(v'v"‘vv'a)zo (7

2



From the Hamilton relations, Eq. 4 we know that
V.-v+V,-a=V-(V,H) -V, - (VH)=0 (8)
So, the evolution of can be written as

Af _0f ox of ov of _of | 0f . Of

dt — ot ot ox ot ov ot Ox oy 0 ©)

an equation known as theollisionless Boltzmann Equation. This equation can be
used for all kinds of systems consisting of particles, faaraple low density stellar
systems.

If we consider a volumézdv in phase space, then it will contaivi = fdxdv particles.
Following these particles, they will at a later time be camed in a volumedz'dv’.
However, for a collisionless systenf, will not have changed in this volume (since
df/dt = 0), and since particle numbé¥ is conserved, this implieg&cdv = d2'6v,
i.e. the shape of the volume can change, but not its totakvaltis is generally true
for a system which can be described by a Hamiltonian.

4 Collisions

For a typical gas, collisions are important, so the equalias to be modified. An
important parameters when considering collisions is thamieee path

A =V2ra®n (20)

for number density: and particle size.. For collisions to matteA < L, the size of
our system. For collisions to be a pertubation (rather thagrmanent condition of the
collection of particles) we neetl > a. In the latter case we speak of a ‘dilute gas’.
For a dilute case, their effects can be seen as a perturlmtitire case of no collisions
(see Fig. 1), so the Boltzmann equation becomes

dr _

= =C (11)

whereC' describes the effects of collisions. If we can find a good eraidtical de-
scription forC' we are in business. The description of the effects of coltision the
distribution function was the major achievement of LudwigitBmann.

Remember that we are after the evolution of the gas densitycity, and energy. But
these quantities can be derived from the distribution fionct:

o0 = [ mftxviv (12)
aG) = [viexviav/ [ fxviav (13)
Bx) = [ gmotrieviiv/ [ focviiv (14)
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Figure 1: The effect of collisions on the distribution fuioct

sodf/dt will give usdp/dt, dv/dt, de/dt.
We now write

df
T = = Uin — Lou 1
- = C = Cin — Cout (15)

whereCy, refers to collisions that add tf, andC,,; to collisions that take away from
f (see Fig. 2). We assume that the collisions are binary, aadhbbrt range nature (so
the particles are for example not charged).

The number of collisions between two beams of particles dathsities: andnq, and
velocitiesv andv; can be written as

On, = nnq|v — v1]|0dQ (16)

whereo is the cross section for collisions ati the direction of the scattered particles.
The densities: andn; can be written ag’ f(x, v)dv and [ f1(x, v1)dvy, so that the
term for particles scattered out 6fx, v)oxdv becomes

Cout :/dvl/def1|v—v1|a a7

The particles that collide intd(x, v)dxdév come from regions of phase spacg, v')
and(x},v}) and thus

Ciy = / dv! / dQf' fi|v' — v} (18)

The next crucial step is to realize that

1. Collisions can be considered to be reversible, i.e. ifciblsion between parti-
cles of velocityv andv; leads to velocities”” andv/, then the reverse is also
true.
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Figure 2: A sketch of the principle behind tlig, andC,, terms in the derivation of
the Boltzmann equation.

2. Conservation of momentum and energy implies that
vivy = v+ (19)
1 1
= §|V/|2 + §|V/1|2 (20)
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or equivalentlylv — v{| = |v/ — v{|
3. A collision between two particles is a Hamiltonian systém (v, v;) phase
space), sovovi=6v’iv]

This allows us to rewrit€’;, — C,,; as one term

c= [avi [0l - wlotr'f; - 1) (21)

wheref, fi, f/ and f| are the same functions, but evaluated at different vetsitj
vy, v andvy.
This then leads to the famo@®ltzmann Equation

%+V.%+a.%:/dvl/dmv—vlla(f/f{—ff1) (22)

a non-linear integro-differential equation. One shoukllize that the above derivation
cuts some corners, and this equation actually hides quitea mteresting physics,

and has been the source of many discussions. We will use thentzmn equation can
be used to derive the equations of gas dynamics.

5 Stationary solution of the Boltzmann equation

It is useful to first consider the solution for the stationeage, without outside forces.
Forthiscasé f /0t = 0 andf(x,v,t) = f(v), sodf/dx = 0. Without outside forces



a=0.
All of this implies that the total collisional terr@’ should be zero, of'f{ = ffi.
Taking the logarithm, this can be rewritten into

log f(v) +log f(v1) = log f(v') 4 log f(v}) (23)

This form reminds one of a conservation law. If a (velocitpeledent) quantity (v)
is conserved in collisions, then

X(v) 4+ x(v1) = x(v') + x(v1) (24)

So, the stationary solution for the distribution functiandoe written as a sum of all
conserved quantitieg,

log f(v) = Co + XnCrxn(V) (25)

where theC’s are constants. As we saw before, there are only two vgldeipendent
conserved quantities, namely momentum and energy, So Werii&n

1Og f(V) =Cp + Cl|v|2 + Copvy + C2y'Uy + Co,0, (26)

which can be rewritten dsg f(v) = log A — B(v — vp)? or f(v) = Aexp(—B(v —
vp)?). With all the proper normalizations this becomes the MakBeltzmann distri-
bution function, Eg. 2.

The resultis thus that the stationary solution for the Bolimn equation is the Maxwell-
Boltzmann distribution function. This is the reason whyg is so useful. Any initial
condition left to itself will evolve to this distribution. dte however that its deriva-
tion relies on binary short range collisions, and the absefcon-conservative forces.
When these conditions not holgg will not necessarily be the equilibrium solution.
It is also possible to show thdfg represents the state of maximum entropy, and thus
that entropy always increases as a given initial state egotowardsfyg. This is
known as Boltzmann’s H-theorem, and is of course closebtedl to the 2nd law of
thermodynamics.

6 Macroscopic quantities

As mentioned above, we can derive macroscopic quantitkesdensity and energy
from the distribution functiory. Let us consider a quantity

[aver=ni@) (27)
The time evolution of) can be found from the Boltzmann equation.
of  ox of ov Of _/

If x is a quantity which is conserved in binary collisions, one show that

/ dvxC =0 (29)
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This means that we can write the time evolution of such a dyagtas (using the
summation convention)

g/dvxf—l—g/dvxvif—/dvaiax—&- (30)
ot x; 0x;
0 ox da;
[avatsan - [avigha- [anSE=0 @

The 4th term is zero (through the divergence theorem), sditomes

0 0 ax ox da; B
an(x) + (“)Tcin@l)o —-n <11Z 3xi> -n <a, Bvi> - n<avix> =0 (32)

For an acceleration due to a conservative force, the lastitealso zero.

6.1 Mass
For x = m the mass of the patrticles this then gives
dp 0 _Op B
E—Faxipuz—g—kv pu =0 (33)

The continuity equation, describing the evolution of the gas density. Here we have
defined the mass density= nm and the mean (or bulk) velocity of the particles as
u = (v).

6.2 Momentum

Forx = mwv; the momentum in thg direction we get

Ipfvj) | 0
% + 5z, (PLUivi)) = pa; =0 (34)

Now (v;) = w; , but (v;v;) # v;v;. Let us define the difference between a particle
velocity and the mean velocity as = v; — u;, and construct a tensérso that

Pij = p(wwy) = p((vivy) — usuy) (35)
then 0 0 0P,
pu; o op;
ot * o0x; puit o0x; +pa (36)

Themomentum or Euler equation.
Note that the book defines a stress tengpmwhich is related td by o;; = p(v;v;) =
Pij + pujuy.



6.3 Energy

Fory = %mvz the kinetic energy of the particles, it makes sense divideitiio the
energy connected with the mean veloc%taym2 and the remaindefu - w + %mwz.
As (u-w) = u-(w) = 0since(w) = 0, the equation becomes

9
o’

(0 (0) 4 (g + w4 W) = pu-a (37)

The ((u; + w;)|u + w|?) term can be written out as follows
(i 4 w;) (u; + wy)?) = v?u; + 2u - (ww;) + u;(w?) + (ww?) (38)

We define the internal energy of the gaspéds= %pr, and the conduction heat flux
asq = p(iw?w), then

0 (1 o 9 (1 4 9¢; =0
T <2pu —|—p€> +8xiul <2pu +p€> +8xi + 8xiujP” =pu-a (39

Theenergy equation. We will call %qu + p€ the total energyr.

6.4 Closure relation

These three equations are general but not a closed set ssnbhawe 5 equations, but
13 quantitiesy, u, £, andP?.

What can we do with the excess unknowns? They seem to be rétathd miscro-
scopic behaviour of the fluid, and so we need the distribiftiootion to say something
about them. For an equilibrium case, thisfigg, but this would be very boring. So,
let us assuméncal Maxwell-Boltzmann. In this case

3/2 2
m mw
Pj=p <W) /dwwiwj exp < QkBT) = nkgTd;; (40)

a diagonal matrix, ang& = %nkBT. Only the diagonal terms survive because the
off-diagonal terms are asymmetric around zero and thusrgiveontribution under the
integral. Similarly, one can show that the heat conductiexdlis equal to zero (since

it involves a symmetric integral over the asymmetric fumictiv; w?).

Now as we know from thermodynamics, the ten 7" is the gas pressuge We will
therefore use this instead of the temperature.

The set of equations thus becomes

dp

Opu;

g? + V- puju = =V;(p) + pa; (42)
OF

E+V~(E+p)u:pu-a (43)

INote thatpE = %p(w2> and thatP;; = p(w;w;), so thats; P;; = 2p€, thus we have 13 quantities,
not 14.



known as the set dtuler equations for an inviscid fluid.

Now these equations are not the full fluid equations, sineg &ssume that = fus
everywhere (although not necessarily same fyg). Obviously in real fluids there
will be deviations fromfy;z, and these give rise to so-called ‘transport phenomena’
such as viscosity and thermal conduction. However, in phirsics these transport
phenomena are often unimportant and many astrophysicensgscan be described
with the set of Euler equations. We will later return to colesithe terms introduced
by deviations from a local Maxwell-Boltzmann distribution

It is important to realize that we have removed the infororatabout the motions of
the individual particles through the introduction of thaderP, which occurs in the
Euler equations through the pressure terms. So, you coulthatthe appearance of
pressure terms is our punishment for not wanting to dealtiéhmotions of inidividual
particles.



