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1 Deviations from Maxwell-Boltzmann
In deriving the Euler equations we have assumed that the distribution function can
locally be described as fMB. However, this is of course a simplification. Even if we
have two regions where this locally true, once exposed to each other, collisions between
particles that belong to different fMB distributions will push the evolution of the system
towards a new equilibrium fMB.
The interaction of particles belonging to different distribution functions gives rise to so-
called transport phenomena. As the Maxwell-Boltzmann distribution is characterized
by v and T we can expect the new terms associated with these transport phenomena to
have to do with differences in u and T .
We return to the Boltzmann equation, describing the evolution of the distribution func-
tion,

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C (1)

and instead of f = fMB take f = f (0) + g, where f (0) = fMB and g is a small
deviation. Only keeping the first order terms, the collision term now becomes∫

dv1
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′
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(2)

One can argue that an order of magnitude estimate for the collision term is

vrelσng ≈ vrel

λ
g =

g

τ
(3)

where τ is the typical time between collisions. This argument suggest the BGK ap-
proximation (Bhatnagar, Gross & Krook):

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= −g

τ
= −f − f (0)

τ
(4)

which means that f relaxes exponentially to the equilibrium value f (0) in a time τ .
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2 Chapman-Enskog expansion
To proceed further we use the so-called Chapman-Enskog expansion, in which f is
approximated as a series of deviations from the Maxwell-Boltzmann distribution

f = f (0) + αf (1) + α2f (2) + · · · (5)

where α is a measure of the role of collisions: α = λ/L (L being the size of the
domain). The first step is to take f (0) as the first approximation and solve for f (1) in
the collision term of the Boltzmann equation:

−g

τ
=

∂f (0)

∂t
+ v · ∂f (0)

∂x
+ a · ∂f (0)

∂v
(6)

Since f (0) is a Maxwell-Boltzmann distribution, it only depends on n, u and T , which
all only depend on time t and position x. So,

∂f (0)

∂t
=

∂n

∂t

∂f (0)

∂n
+

∂T

∂t

∂f (0)

∂T
+

∂u
∂t

· ∂f (0)

∂u
(7)

and similar expressions for ∂f (0)/∂xi.
Putting fMB into Eq. (7) and the equivalent expressions for the spatial derivative, and
then substituting these into Eq. (6), leads to an expression for g

g = −τ

[
1
T

∂T

xi
wi

(
m

2kBT
w2 − 5

2

)
+

m

kBT
Λij

(
wiwj −

1
3
δijw

2

)]
f (0) (8)

where we defined w = v − u (the random velocities of the particles, as before), and

Λij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(9)

the shear in the macroscopic velocity field.

3 Macroscopic quantities
We can now derive macroscopic quantities from this first order approximation for the
distribution function f = f (0)+g. Many terms remain the same as before (when f was
f (0)) because integrals over terms that are odd in wi give zero. This is to be expected
since the new terms should come from differences in the flow.

3.1 Heat conduction
We defined the heat flux as

q =
1
2
ρ〈w2w〉 (10)
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which was zero for f = f (0). For g the ∂T/∂xiwi terms result in an integral over w2,
an even term in wi. Evaluating

q =
ρ

2n

∫
dwww2g (11)

gives

q = −K∇T (12)

K =
τm

6T

∫
dww4

(
m

2kBT
w2 − 5

2

)
f (0) =

5
2
τn

k2
BT

m
(13)

This is the transport of internal energy due to the existence of a temperature gradient:
Heat conduction or thermal conduction. The book treated this in Sect. 4.4.2 as a
process for energy transport. Here we see that it is in fact due to transport phenomena
due to deviations from Maxwell-Boltzmann distribution.

3.2 Viscosity
Before we defined a tensor Pij = ρ〈wiwj〉. For f = f (0) = fMB we showed this
tensor to be diagonal, and the diagonal elements to be associated with the gas pressure:
Pij = pδij . For f = f (0) + g, the Λij term in g adds non-zero off-diagonal terms,
Pij = pδij + σ′

ij , with

σ′
ij = m

∫
dwwiwjg (14)

= −τm2

kBT
Λkl

∫
dwwiwj

(
wkwl −

1
3
δklw

2

)
f (0) (15)

This σ tensor is traceless (zeros on the diagonal) σ′
ii = 0 and symmetric σ′

ij = σ′
ji,

and is proportional to Λkl. However, Λkk = ∇ · u, and so not necessarily zero. This
suggests that we can write

σ′
ij = −2η

(
Λij −

1
3
δij∇ · u

)
(16)

where the second term between the brackets makes sure that the total expression is
traceless.
The coefficient η must follow from the evaluation of the integral (Eq. 15), for example
for σ′

12

σ′
12 = −τm2

kBT
Λkl

∫
dww1w2

(
wkwl −

1
3
δklw

2

)
f (0) (17)

= −2
τm2

kBT
Λ12

∫
dww2

1w
2
2f

(0) (18)

since the integral is only non-zero when k and l are a combination of 1 and 2. From
this we find

η =
τm2

kBT

∫
dww2

1w
2
2f

(0) = τnkBT (19)
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The tensor σ′
ij has to do with non-diagonal terms of Λij , so velocity variations per-

pendicular to the velocity direction, an effect known as shear. The property of fluids
associated with this is known as viscosity, and σ′

ij is known as the viscous stress tensor,
and η is the viscosity coefficient. Interestingly, the above derivation shows that since
τ = λ/〈v〉,

η =
1

4a2

√
mkBT

π
(20)

independent of the density of the gas! This seems counter-intuitive (many would say
that “denser fluids are more viscous”) but is in fact confirmed by experiments. The
reason is that although a denser gas has more particles to transport physical quantities,
the mean free path of these particles is shorter, and they are thus less efficient tran-
porters. One also sees that η ∝

√
T , which is understandable since with higher particle

velocity, physical quantities should be transported further. Note that this temperature
dependence only holds for gases. For liquids, viscosity goes down with temperature.

4 Navier-Stokes equations
These new effects, conduction and viscosity now have to be added to the fluid equa-
tions. The continuity equation does not change. The momentum equation now has a
more complicated tensor Pij , namely Pij = −pδij + σ′

ij and thus can be written as

∂ρu
∂t

+ ∇ · (ρuu) = −∇ · P + ρa = −∇p + η

[
∇2u +

1
3
∇(∇ · u)

]
+ ρa (21)

Note that for some special fluids, there is also a so-called bulk viscosity ζ which is
associated with a ∇ · u term:

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + η

[
∇2u +

1
3
∇(∇ · u)

]
+ ζ∇(∇ · u) + ρa (22)

This bulk viscosity is associated with diagonal elements for the viscous stress tensor σ,
which do not follow from the ideal, monatomic gas-type approach we used to derive
σ. The bulk viscosity is associated with internal degrees of freedom of the particles
in a non-ideal gas, which can be excited or de-excited through volume changes. It is
generally unimportant in astrophysical applications.
The energy equation becomes

∂E

∂t
+ ∇ · (E + P)u−∇ · (K∇T ) = ρu · a (23)

which by taking the pδij part out of Pij can be written as

∂E

∂t
+ ∇ · (E + p)u + ∇ · (σ′u)−∇ · (K∇T ) = ρu · a (24)

The ∇·(K∇T ) term only acts on the internal energy ρE , but the complicated ∇·(σ′u)
term (remember that σ′ is a tensor here) has contributions both to the kinetic and the

4



internal energy. Manipulation of the equations shows that the viscous heating term is
given by

2η

[
ΛijΛij −

1
3
(∇ · u)2

]
(25)

and is an energy sink for kinetic energy, and an energy source for the internal energy.
This shows that viscosity is an irreversible, dissipative process through which kine-
matic energy is turned into internal energy. It is often a small term in the equations.
The new set of equations for ρ, u and E is called the Navier-Stokes Equations. They
are similar to the Euler equations but contain extra terms of higher spatial derivatives of
the velocity and the temperature. This makes them harder to solve, but also introduces
the necessity for more boundary conditions.
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