Astrophysical Gasdynamics Notes:
2. More about shocks

November 26, 2007

1 Introduction

Shocks are treated in Chapter 7 of Clarke & Carswell. Thisudent contains some
further material about fluid shocks and discontinuities.

2 Shock jump conditions

There are various ways to write the shock jump conditionse flost common way
(not given in the book) is to express it in terms of the shotkéh numberM. This
M corresponds to thé1; in the book, that is, it is given by, /c; wherew, is the
pre-shock velocity, measured in the shock frame.

The Rankine-Hugoniot conditions can then be manipulatedadrform
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referred to as the shock jump conditions. Since the solenpeber determining the
magnitude of the jump i3, this number is often used to express the strength of the
shock, for example as in “a Mach 10 shock”.

3 Refraction across shocks

The velocity component perpendicular to the shock is redaceoss the shock front.
The velocity components parallel to a shock do not changesadhe shock. This
means that a shock in thedirection changes the flow direction if there arand z
components to the velocity vector. See Fig. 1.



Figure 1: A shock refracting the velocity vector.
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Figure 2: The relation between the observer’s and shockdsaohreference.

4 Framesof reference

The shock jump conditions were derived for the shock franee the frame of refer-
ence in which the shock does not move. This gives the easiesk gump conditions.
However, one often needs to calculate results in anothereete frame, for example
that of a star. This is then called the observer’s or lab framehis frame the shock
will be moving. Let’s call the shock velocity in the lab framg,, the pre- and post-
shock velocities in the lab framé& andu’, and the pre- and post-shock velocities in
the shock framey; andu,. Then obviouslyy; o = u’L2 — vgn. See Fig. 2.

Since the shock jump conditions can be conveniently writtderms of the pre-shock
Mach number in the shock franiet, it is also good to realize tha! = (u} —vsn)/c1.



5 Contact discontinuities

Looking back at the relations that let to the Rankine-Hugbaonditions (egs. (7.3),
(7.6), (7.8) in Calarke & Carswell) one can see that theywallmother, seemingly
trivial solution:
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andno condition on the densities. This solution does corresporal physical phe-
nomenon, one calledantact discontinuity: a surface without pressure or velocity dif-
ferences, bubith a density jump. A contact discontinuity never forms spoatarsly,
but always originates from an initial discontinuity. Sinte pressure is the same on
either side, but the density is not, contact discontinsiideparate areas of different
entropy. Because of this they are also referred to as enwapgs.
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Figure 3: The impossible expansion shock.

6 Expansion waves

Shock waves can be said to be compression waves: materg@akcgetpressed in a
shock. Contact discontinuities are entropy waves. Tha tkimd of wave is the so-
calledexpansion wave, which is basically the reverse of a shock wave: materiabstrs
in with a low velocity and high pressure, and leaves with ahhiglocity and low
pressure. Mathematically, expansion waves could also s$modfinuities. However,
this would mean that in such an expansion shock internaggneould be converted
into bulk kinetic energy, or equivalently, that the entrapyowered (see Fig. 3). This
goes against the 2nd law of thermodynamics.

So expansion waves are not discontinuities, but smootlisitran waves, where both
p andp change to conserve entropy. Expansion waves are also knewarefaction
waves, as the density is lowered in them.

Expansion waves for example occur when you pull out a pisaon, the gas has to
adjust to the new larger volume (Fig. 4).
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Figure 4: An example of an expansion wave.



