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Instabilities and perturbations may ultimately lead to a state of random density, velocity
and pressure variations, known as turbulence. Turbulence is important in astrophysics
and earth-based applications, but turns out to be extremelydifficult to describe. In fact,
no general theory for turbulence exists.
Since we are talking about random variations, a theory of turbulence has to be statisti-
cal. In some sense one can argue that one has to construct another layer of statistics on
top of the particle picture

v = w + u = w + u + u
′ (1)

Since by constructionu′ = 0, analysis of turbulence is about higher order termsu
′
u
′

(just as it was aboutw2 in the statistical treatment of particle velocities. As thew2

term led to pressure or internal energy of the gas, also turbulence studies focus on the
turbulent energy.

Figure 1: Hierarchy of turbulent eddies.

Unlike the random particle velocities, turbulence has a scale, meaning that turbulent
flows have structure. The image often used is that of turbulent ‘eddies’: a hierarchy of
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bigger eddies containing smaller eddies, that again consist of even smaller eddies, up
to the scales where dissipation sets in. This image led to theKolmogorov picture of the
distribution of turbulent energy over length scales

E(k) = Cǫ2/3k−5/3 (2)

whereǫ in the energy input rate, andk is the Fourier wavelength,2π/l, l the length
scale. This relation was derived by Kolmogorov from heuristic and dimensional ar-
guments, but seems to give a fairly accurate description of the energy spectrum of
turbulence.
As we defined before the Reynolds numberR for a system of sizeL, velocityV and
kinematic viscosityν is given by

R =
LV

ν
(3)

If a region is turbulent, theR is large, or in other words, viscosity will suppress turbu-
lence. The biggest eddies in the system will haveLV /ν ≫ 1, and smaller eddies will
have smaller values ofR, until at some scaleld, the conditionldud/ν ∼ 1 is reached,
and the turbulent energy is dissipated.
If the energy is fed in at the largest scalesL andV at a rate per unit massǫ, then for a
steady flow of energies from large to small scales

ǫ ∼ u3/l (4)

(from dimensional arguments) implying thatu ∼ (ǫl)1/3. At the scale of the systemL,
V this should also hold, defining the input energy rate per massunit asǫ ∼ V 3/L. At
the dissipation scaleld we haveldud ∼ ν, and sold ∼ ν3/4ǫ−1/4 andud ∼ (νǫ)1/4.
This then implies that

L

ld
∼ R

3/4 (5)

V

vd
∼ R

1/4 (6)

So given the Reynolds number of the system the dissipation scale and velocity can be
found.
To get the energy spectrumE(k), one should realize that thatk ∼ l−1. At scalek the
energy is given by

E(k)dk ∼ E(k)k ∼ u2
∼ (ǫl)2/3

∼ (ǫ/k)2/3 (7)

which then gives Eq. 2. One can also derive this from dimensional analysis assuming
thatE(k) only depends onk andǫ. Obviously, the spectrum will be cut off at small
k because of the size of the system (L) and at highk because the dissipation scale is
reached (kd). Experiments for many different systems show this relation to be valid
and quite universal.
SinceR is large for most astrophysical systems, turbulence occursfrequently. Exam-
ples are
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Figure 2: The Kolmogorov energy spectrum for turbulence. The k’s corresponding to
the size of the system and the dissipation scale are calledkf andkν respectively.

• turbulent convection in stars

• turbulence in molecular clouds

• turbulent boundary layers around jets

• atmospheric turbulence causing astronomical seeing

• · · ·
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