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12 Self-similar problems

Show using dimensional arguments that if the shock positionfor a blast wave is only a
function of timet, blast energyE and densityρ1, it canonly depend on these quantities
as

r ∝
(

Et2

ρ1

)1/5

(1)

Use similar arguments to show that if the energy input is continuous, and can be given
by a rateĖ, the shock position will instead vary as

r ∝
(

Ėt3

ρ1

)1/5

(2)

An example of this is a stellar wind running into an environment of densityρ1. Argue
that for a supersonic wind with velocityuw and mass loss ratėM , Ė is given by1

2Ṁu2
w.

13 Bernoulli’s equation

a) Show that for an adiabatic gas (with adiabatic indexγ), Bernoulli’s equation can
also be obtained from the total energy equation.
b) A container of heighth is filled with a fluid, and has a little hole near the bottom
through which fluid escapes. Use Bernoulli’s equation to show that the outflow velocity
through the hole is

√
2gh (and does not depend on the size of the hole), whereg is the

gravitational acceleration. This is known as Torricelli’sTheorem (see Fig. 1).

14 De Laval Nozzle

In the lecture we looked at the de Laval nozzle which is a device for producing super-
sonic flows. For it to work the flow has to make the (smooth) transition from subsonic
to supersonic at the narrowest place of the nozzle. In this problem we will assume a
polytropic gas.
a) Explain why the sonic point has to lie at the narrowest point Amin of the funnel.

1



Figure 1: Torricelli’s Theorem

Smin

Figure 2: A De Laval nozzle

b) Use Bernouilli’s principle to show that the sound speed atthis sonic point has to be

c∗ = c0

√

2/(γ + 1) (3)

wherec0 is the sound speed at the start of the nozzle, where density and pressure are
given byρ0 andp0, and the velocity (close to) zero.
c) Justify the assumption of isentropic flow, and using this assumption show that the
density at the sonic point has to be

ρ∗ = ρ0

(

2

γ + 1

)1/(γ−1)

(4)

d) Using these results show that for the nozzle to work the mass flux through the pipe
(Ṁ = ρuA) and the minimum cross sectionAmin have to be related by

Amin =
Ṁ

√
γp0ρ0

(

2

γ + 1

)(γ+1)/(2−2γ)

(5)

This condition is the equivalent of that on the mass loss ratein the case of a steady
stellar wind.

2



Figure 3: Schematic view of the structure of a radio jet.

15 The speed of radio jets

The radio lobes associated with powerful radio galaxies arecaused by jets of material
coming from the central black hole in the nucleus of the galaxy. The jet flow collides
with the tenuous gas in the intergalactic medium (IGM). In this collision a structure
forms as shown in Fig. 2. This structure contains the following:

• Mach Disk: a strong shock at the end of the jet

• Hot Spot: the region directly downstream from the Mach Disk with heated and
compressed jet material. This region shows up clearly in radio maps due to the
intense synchrotron radiation from relativistic electrons accelerated at the Mach
Disk.

• Contact Discontinuity (CD): the layer separating the shocked jet material from
the shocked IGM gas.

• Bow Shock: shock preceding the Hot Spot and Mach Disk in the IGM. This
bow shock forms because the whole structure of Mach Disk, HotSpot and CD
advance into the IGM at supersonic speeds.

The jet has a densityρj and a velocityvj , the IGM has a densityρIGM and a velocity
uIGM = 0 (both in the observer’s frame).
a) Given that both the shock associated with the Mach Disk andthe bow shock are
assumed to be strong (i.e. Mach NumberM ≫ 1), what is the typical density of
the shocked jet material and of the shocked IGM material? Usean adiabatic index
γ = 5/3.
Let us assume that the system of Mach Disk, CD and bow shock advances with a speed
uh into the (stationary) IGM. This speed is supersonic with respect to the IGM sound
speed. We look at this system from a reference frame moving with uh. The speed of
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the jet material in this frame equalsuj − uh and the speed of the IGM equals−uh. In
this frame the entire flow pattern is stationary.
Consider the ’central flow lines’ along the symmetry axis. Both the flow line originat-
ing in the jet and the flow line originating in the IGM end at thestagnation point where
the velocity of both the jet material and IGM material vanishes. This stagnation point
is indicated with a black dot in the figure.
Since the flow is stationary, the following quantity

E =
1

2
u2 +

γp

(γ − 1)ρ
(6)

is conserved along flow linesand across shocks
b) Argue why the preceding statement is true.
c) Use this conservation ofE and the typical post-shock densities from a) to calculate
the pressure on both sides of the stagnation point (i.e. in the shocked jet and IGM
material), assuming the following

• The pre-shock density isρj , and the jet speed is strongly supersonic so that
uj − uh ≫

√

γpj/ρj).

• The density in the IGM equalsρIGM, and the advance speed of the radio lobe is
strongly supersonic so thatuh ≫

√

γpIGM/(ρIGM).

d) At a contact discontinuity the densities may differ, but the pressures must be equal.
Show that this condition at the stagnation point, together with the typical density cal-
culated in a) determines the advance speeduh as

uh =
uj

1 +
√

η
(7)

with η = ρIGM/ρj , the density ratio of the IGM and jet material.

16 Sonic point

a) A stellar wind is maintained at a temperature ofT = 2×106 K by magnetic heating;
calculate the radius at which it achieves the isothermal sound speed if the star from
which it blows has massM . You may assume that the gas is atomic hydrogen. Evaluate
your answer whenM is the mass of the SunM⊙ = 2 × 1030 kg.
b) For the case of an isothermal wind, assume there is an extraoutward force work-
ing, of the mathematical formf = Bu(∂u/∂r). An example of a force with such a
dependence is radiation pressure due to optically thick spectral lines (Sobolev approx-
imation). Show that the critical point is located atrc = GM/(2c2

s) (cs the isothermal
sound speed) and that the velocity there isnot cs, but equal tocs/

√
1 − B. This shows

that the critical point and the sonic point in a stellar wind do not necessarily coincide.
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17 Bondi accretion

Isothermal gas of pressureρ0c
2
1 and densityρ0 at large distances from a star is steadily

accreted by this star of massM .
a) Calculate the accretion rate assuming that the gas remains isothermal. At what radius
does the infalling gas achieve the sound speed?
b) If c1 = 1 km/s andn∞ = 109 hydrogen molecules m−3 and the mass of the
hydrogen atom is1.66 × 10−27 kg, evaluate this radius in terms of the solar radius
R⊙ = 7 × 105 km.
c) Determine how long it will take a star of massM to double its mass.
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