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18 Accretion disks

In the lectures we looked at the structure of an accretion disk by considering a conti-
nuity equation and the tangential velocityuφ. Here we look at the two other velocities,
uR anduz.
a) Write down the general equations for the evolution ofuR anduz. Next write them for
the conditions of a steady, axi-symmetric disk:uz = 0, ∂uR/∂t = 0 and∂/∂φ = 0.
b) Assume that the disk is thin, so that the scale heightH ≪ R everywhere. Show that
this leads to the result thatcs ∼ HΩ, wherecs is the sound speed, andΩ the angular
velocity. The Keplerian speed at 1 AU around a 1 M⊙ star is about 30 km/s. How cold
does the disk need to be at that position ifH/R ∼ 0.01?
c) Show that the above also implies that the ratio of the pressure gradient and the
gravitational force in the equation foruR is very much smaller than 1. With this argue
that the equation foruR in fact shows us that the gas is approximately in Keplerian
rotation.
d) If the accretion disk has a positive pressure gradient, what deviation does this cause
on the rotation velocity of the gas? Solid bodies such as planetesimals and dust grains
orbit in principle with Keplerian velocity. Why? If they experience a drag force from
the gas, do you expect them to migrate in or out in the case of a positive pressure
gradient in the gas? If the gas pressure has a local maximum, what do you expect the
solids to do? And at a local minimum in gas pressure?
e) What accretion rate is needed for an accretion disc around a1 M⊙ protostar with
a 1 R⊙ radius to produce a luminosity of 1 L⊙? Is it likely that a large part of the
luminosity of such a protostar is due to accretion?

19 von Neumann Stability Analysis

The FTCS (Forward Time, Central Space) algorithm for the one-dimensional linear
advection equation
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a) Using the technique of von Neumann stability analysis, show that this method is
unconditionally unstable.
b) Rewrite the FTCS algorithm in conservative form, i.e. write it as
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and find an expression for the flux functionFj+1/2.
The BTCS (Backward Time, Central Space) algorithm for the one-dimensional linear
advection equation can be written as
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A method like this in which the fluxes depend on the solution for the next timetn+1 is
calledimplicit.

c) Explain how can you may use such an implicit method in practice if the changes
needed to calculate the new solution depend on the new solution itself?

d) Use the technique of von Neumann stability analysis to show that this method is
unconditionally stable, i.e. there is not even a CFL condition. Explain why this is
reasonable.

20 Conservation

We take the Euler equations for an isothermal gas (γ = 1), with isothermal sound speed
cs = 1.
a) Argue that in the isothermal case we only need to consider the continuity and mo-
mentum equations.
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Now consider three cells of a one-dimensional mesh,j − 1, j, j + 1. The cell size∆x
is 1. Our numerical method uses some recipe to calculate the fluxesF (ρu, ρu2 + p)
at the interfaces of these cells. The initial conditions at time tn for the state vector
W = (ρ, ρu)T are as follows:

• (2, 0.6), (?, 1.2), (2, ?)
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and at the end of time step at timetn+1 = tn + ∆t the state is

• (1.6, ?), (2.4, -0.1), (2.4, 1.96)

The fluxes for the four interfaces (j − 3/2 to j + 3/2) are

• (0.2, 1.04), (0.6, ?), (?, 3.48), (0.8, 2.32)

b) Find the missing values in the state and flux vectors (by considering the update of
W

n to W
n+1 with these fluxesF).

c) Find the CFL number for the time step∆t.
d) From the numerical values given above, find the flux recipe used. Do you think this
is a reasonable recipe for this problem? (think of the direction of the waves, i.e. the
domain of influence).
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