
Notes for Cosmology course, fall 2005

Inflation and the Very Early Universe

Prelude

Galaxies, quasars, and supernovae tell us about the relatively recent universe.
The CMB tell us about the universe at the time of photon decoupling (zdec ≈
1100, tdec ≈ 400 000 yr.)
The observed abundances of light elements tell us about the universe at the
time of Big Bang Nucleosynthesis (znuc ≈ 3 × 108, tnuc ≈ 3 min).
We have a good understanding of the universe as far back as the time of
neutron-proton freezeout, at t ≈ 1 s.

Problems with the Hot Big Bang scenario:
The flatness problem: “The universe is (close to) spatially flat now, and
was even flatter in the past.”
The horizon problem: “The universe is nearly homogeneous and isotropic,
and was even more so in the past.”
The monopole problem: “The universe is not dominated by magnetic
monopoles.”

Solution: The first second!

The universe underwent a period of inflation; a period when the scale factor
increased exponentially for at least a hundred e-foldings (that is, a increased
by a factor of at least e100).

The flatness problem

The Friedmann equation:

1 − Ω(t) = −
κc2

R2
0a(t)2H(t)2

.

If κ = 0, then (at all times) Ω(t) = 1 ⇒ a perfectly flat universe is perfectly
flat at all times. At the present, we know

|1 − Ω0| < 0.2 (0.02) .



The density could equally well be Ω0 = 10−9, or Ω0 = 109, without violating
the laws of physics. Is there any underlying principle why the energy density
should be close to the critical density, or is it a coincidence? Perhaps the
initial conditions of the universe just happened to have the right values to
make the universe close to being spatially flat? Not bloody likely:

We can write

1 − Ω(t) =
H2

0 (1 − Ω0)

H(t)2a(t)2
,

and

1 − Ω(a) ≈

{

(1 − Ω0)a
2 ∝ t (radiation-dominated)

(1 − Ω0)a ∝ t2/3 (dust-dominated) .
(9)

The difference between Ω and 1, no matter how small it was at early times,
invariably increases with time during the radiation-dominated and dust-
dominated epochs of the universe’s expansion. Since |1 − Ω0| < 0.2, we
must have had

|1 − Ωrm| < 2 × 10−4 ,

and at the time of Big Bang Nucleosynthesis

|1 − Ωnuc| < 3 × 10−14 .

If we push our extrapolation to the Planck time at tP ≈ 5 × 10−44 s, we find

|1 − ΩP | < 10−60 ,

⇒ for Ω0 to be within shouting distance of one today, it had to be fanatically
close to one during the early stages of the universe.

The horizon problem

The horizon distance is given by

dhor(t) = ca(t)
∫ t

0

dt

a(t)
.

The current horizon distance is dhor(t0) ≈ 3ct0 ≈ 14 000 Mpc. Anything
further away from us at the present moment is causally disconnected from
us, e.g. two antipodal points on the surface of last scattering, 180◦ away
from each other. They haven’t had time to send messages to each other,



and in particular they haven’t had time to come into thermal equilibrium.
Nevertheless, they have the same temperature to within one part in 105!

Even worse, the horizon size at the time of last scattering was

dhor(tls) ≈ 0.4 Mpc ,

i.e. points more than 0.4 Mpc away from each other were totally ignorant of
each other. Two points that were 0.4 Mpc away from each other at the time
of last scattering, will be separated by an angle

δθ =
0.4 Mpc

13 Mpc
= 2◦ .

Nevertheless, we find δT/T ∼ 10−5 on scales much larger than 2◦. We can
divide up the surface of last scattering into 20,000 patches, the center of each
was out of touch with the other patches at the time of last scattering but
that all have δT/T ∼ 10−5.

The monopole problem

Currently, it is customary to talk about the four fundamental forces of nature:
gravitational, electromagnetic, weak, and strong. The strong and electroweak
forces should be unified in a single Grand Unified Force at a particle energy
of EGUT ∼ 1015 GeV, corresponding to a temperature of TGUT ∼ 1028 K.
The universe had a temperature equal to the GUT temperature when its
age was tGUT ∼ 10−36 s. (The GUT energy, you will note, is still 4 orders
of magnitude smaller than the Planck energy, EP ∼ 1019 GeV. The Planck
energy is the energy at which the ultimate unification of forces occurs. At the
Planck energy, the gravitational, strong, and electroweak forces all unite to
form a single force.)

When the temperature dropped below the GUT temperature the universe un-
derwent a phase transition that ought to result in the creation of magnetic
monopoles (analogous to the flaws and bubbles that are created in ice as it
freezes) with mass mMc2 ∼ EGUT ∼ 1015 GeV. The typical distance between
magnetic monopoles will be comparable to the horizon size at tGUT ⇒ the
number density

nM(tGUT) ∼
1

(2ctGUT)3
∼ 1082 m−3 ,



and energy density

ǫM (tGUT) = mMc2nM(tGUT) ∼ 1094 TeV m−3 .

⇒ the universe should be dominated by magnetic monopoles at t > 10−16 s.

The Inflation Solution

Inflation is defined as an epoch when the expansion was accelerating out-
ward, i.e. ä > 0. As an example, assume that the universe was temporarily
dominated by a cosmological constant:

ȧ

a
= Hi =

√

Λi

3
.

and

a(t) ∝ exp





√

Λi

3
t



 .

A period of exponential growth during the universe’s early, radiation-dominated
phase can resolve the flatness, horizon, and monopole problems.

If the exponential growth was switched on at a time ti, and lasted until tf ,
we may write the scale factor as

a(t) =











ai(t/ti)
1/2 t < ti

aie
Hi(t−ti) ti < t < tf

aie
Hi(tf−ti)(t/tf)

1/2 t > tf

(7)

Between the time ti and tf , the scale factor increased by a factor

a(tf)

a(tf)
∼ eHi(tf−ti) = eN .

Let’s assume a model for inflation, with ti ≈ 10−36 s and N ∼ 100 (tf ∼
2 × 10−34 s).

Resolving the flatness problem: During a radiation-dominated era,

|1 − Ω(t)|rad ∝ t ,



the deviation of Ω from one grows with time. During an inflationary era (or
any Λ-dominated era),

|1 − Ω(t)|inf ∝ e−2Hit ,

the deviation of Ω from one decreases exponentially with time. Suppose that
prior to inflation, the universe was strongly curved, with

|1 − Ω(ti)| ∼ 1 .

The deviation of Ω from one immediately after inflation would then be (for
N ∼ 100)

|1 − Ω(tf )| ∼ e−2N ∼ e−200 ∼ 10−87 .

Even if the universe wasn’t particularly close to being flat prior to inflation,
100 e-foldings of inflation will flatten it like a pancake!

Resolving the horizon problem: The horizon distance is

dhor(t) = a(t)c
∫ t

0

dt

a(t)
.

At the beginning of inflation we have (radiation-domination) ⇒

dhor(ti) = 2cti .

The horizon distance at the end of inflation will be

dhor(tf) = aie
Nc

[

∫ ti

0

dt

ai(t/ti)1/2
+

∫ tf

ti

dt

ai exp[Hi(t − ti)]

]

.

If inflation goes on for many e-foldings,

dhor(tf) ≈ eNc[2ti + H−1
i ] .

For our model inflation

dhor(ti) ≈ 2cti ≈ 6 × 10−28 m ,

and immediately after inflation

dhor(tf ) ≈ eN3cti ≈ 2 × 1016 m ≈ 0.8 pc .



During the 10−34 s that inflation lasts, the horizon distance is increased from
submicroscopic scales up to parsecs. After the end of inflation, the horizon
reverts to growing at linear rate.

Immediately after inflation, the currently visible universe was crammed into
a sphere of radius

dp(tf ) ∼ a(tf)d(t0) ∼ 0.9 m .

Immediately prior to inflation, the currently visible universe was enclosed
within a sphere of radius

dp(ti) ∼ e−Ndp(tf) ∼ 3 × 10−44 m .

Thus, the currently visible universe had plenty of time to come into thermal
equilibrium before inflation started.

Resolving the monopole problem: If magnetic monopoles were cre-
ated before, or during, the inflationary era, then the number density of
monopoles is simply diluted to an extremely tiny value. During the time
when the universe is expanding exponentially (a ∝ eHit), the number den-
sity of monopoles is decreasing exponentially (nM ∝ e−3Hit). If the number
density of monopoles at ti ∼ tGUT ∼ 10−36 s was nM(ti) ∼ 1082 m−3, after
inflation, the number density was nM (tf) ∼ e−300nM(ti) ∼ 15 pc−3. The
number density today, is thus nM(t0) ∼ 10−61 Mpc−3. The probability of
finding even a single monopole in the visible universe is extremely small.

The Physics of Inflation

What triggers the start of the exponential expansion at ti ∼ 10−36 s and what
turns it off at tf ∼ 10−34 s?

Why doesn’t it dilute particles, such as photons, to undetectably low densi-
ties? After inflation, you would expect to find a single photon in a box 25
AU on a side, as compared to the 400 photons per cubic centimeter in the
universe today.

Why doesn’t it flatten out the local curvature due to fluctuations in the en-
ergy density? Inflation makes the universe TOO homogeneous and isotropic!



Assume that we have a scalar field φ with potential energy density V (φ).
The field φ contributes to the total energy density ǫ of the universe

ǫφ =
1

2h̄c3
φ̇2 + V (φ) .

An example is if φ is the elevation above sea-level, i.e. a kinetic and a potential
term.
The pressure is given by

Pφ =
1

2h̄c3
φ̇2 − V (φ) .

Assuming that φ̇ is small, we have

ωφ ∼ −1 ,

⇒ equivalent to a cosmological constant ⇒ exponential expansion.

To minimize the energy, the field settles into a minimum of the potential
energy V (φ), if such a minimum exists ⇒ inflation stops.

The energy which is lost by the scalar field goes into reheating the universe,
i.e. the reason why the universe isn’t very cold and dilute today is that the
energy density which drove inflation was dumped back into the universe in
the form of radiation which heated the universe back up to its pre-inflation
temperature. (Protons, neutrons, electrons, and so forth are then made by
pair production from the highly energetic photons.)

Inflation predicts that the density fluctuations immediately after inflation
would be

δǫ

ǫ
∼ e−100 ∼ 10−43 .

This would leave the CMB (and present universe) too smoothe. On submi-
croscopic scales, there are always quantum fluctuations in any field, i.e. on
quantum scales, the universe is intrinsically inhomogeneous. Inflation takes
the submicroscopic quantum fluctuations in the field φ and blows them up to
macroscopic scales. The energy fluctuations that result are the origin of all
the inhomogeneities that we see today. The Coma cluster, a huge agglomer-
ation of galaxies and dark matter, was once a tiny quantum fluctuation.



Summary

Our ever so succesful Big Bang model has a few problems, namely the flatness
problem, the horizon problem and the monopole problem. The solution to
these are inflation; the early universe underwent a period when the scale
factor increased exponentially (or at least ä > 0) for at least a hundred
e-foldings (that is, a increased by a factor of at least e100).


