Late Stages of Stellar Evolution

Low to Intermediate Mass Stars

Introduction

Stars evolve because of two (irreversible) processes:

Nuclear burning (in the core)
Mass loss (from the surface)

Massive stars (M > 9 M_o) lose mass during most of their lifes, and finally explode as supernovae.
Low and intermediate mass stars (M < 9 M_o) only lose

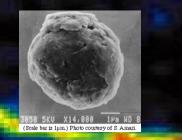
large amounts of mass towards the end of their evolution, and end up as White Dwarfs.

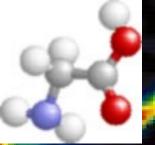
 Without mass loss, stars with masses as low as 4 M_o would explode as supernovae.

Relevance of Lower Mass Stars

- Stars that end up as WDs may seem less spectacular than those that become SNe, but they are important in the lifecycle of gas/dust in galaxies.
 - Most stars are low mass stars:
 - The initial mass function of stars can be approximated with the Salpter function: $\frac{dN}{dM} \propto M^{-2.35}$
 - Using this we see that >90% of stars have a mass between 0.8 and 8 M_{\odot} .

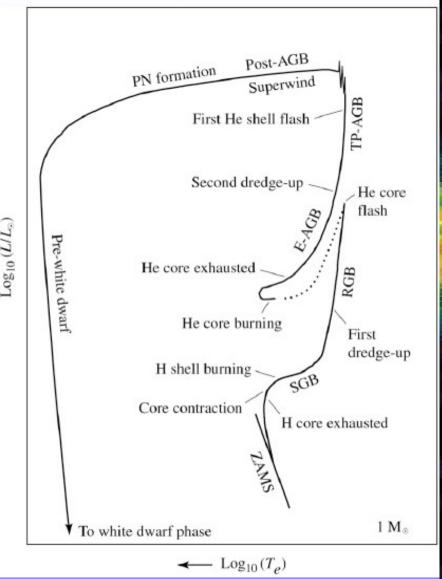
The lower mass limit is set by the lifetime of stars:


 $t_{\rm evol} \propto M^{-2.5}$


• Stars with a mass of 0.8 M_{\odot} take longer than 14 Gyr to evolve off the Main Sequence.

The Life Cycle of Gas & Dust

- Stars form from the interstellar gas, which to a large extent comes from previous generations of stars. This is known as the life cycle of gas & dust.
 - Although lower mass stars do not enrich the ISM as much as SNe, they still contribute substantially (and dominate the budget of certain elements).
- Lower mass stars are also the main producers of dust grains in galaxies, both Si-based and C-based.
 - The complex chemistry in their circumstellar envelopes allows the formation of complex (organic even)


molecules.

Evolution across the HR-Diagram

- After the MS, our stars evolve through 6 phases:
 - Sub-Giant Branch
 - Red Giant Branch (RGB) phase.
 - Horizontal Branch (HB) phase.
 - Asymptotic Giant Branch (AGB) phase.
 - Planetary Nebula (PN) phase.
 - White Dwarf (WD) phase.

Course Contents

- Review of Stellar Evolution
- Evolution on the AGB
 - Thermal pulses, nucleosynthesis and dredge-up Pulsation
- Mass loss
- Circumstellar Envelope
- Post-AGB Evolution

Basic Stellar Evolution

Equations:

Mass conservation:

dM

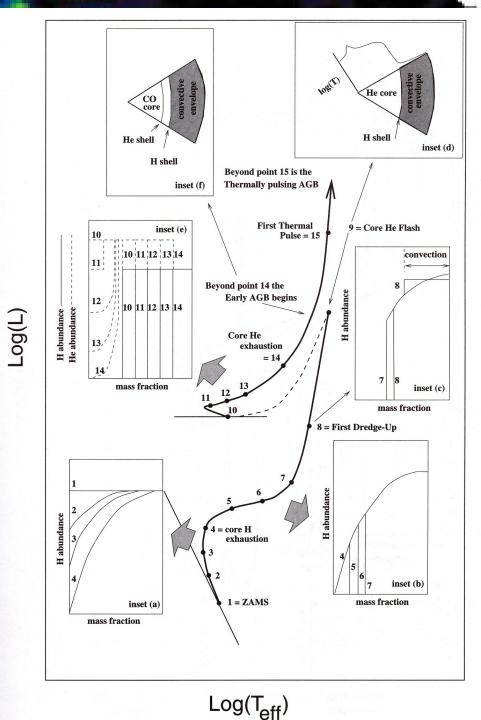
$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$
Hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{GM_r \rho}{r^2}$$
Energy production:

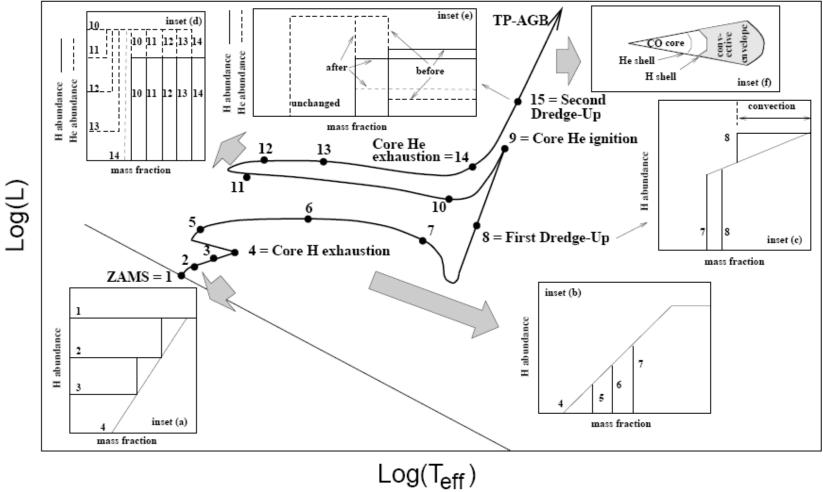
$$\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon$$

Energy transport:

 $\frac{\mathrm{d}T_r}{\mathrm{d}r} = \begin{cases} -\frac{3}{4ac} \frac{\bar{\kappa}\rho}{T^3} \frac{L_r}{4\pi r^2} & \text{if } \frac{\mathrm{d}\ln P}{\mathrm{d}\ln T} > \gamma/(\gamma - 1) \text{ (radiative diffusion)} \\ -\left(1 - \frac{1}{\gamma}\right) \frac{\mu m_{\mathrm{H}}}{k_{\mathrm{B}}} \frac{GM_r}{r^2} & \text{if } \frac{\mathrm{d}\ln P}{\mathrm{d}\ln T} < \gamma/(\gamma - 1) \text{ (adiabatic convection)} \end{cases}$


combined with

Equation of state: $p = p(\rho, T, \text{composition})$ Nuclear reactions: $\epsilon = \epsilon(\rho, T, \text{composition})$


Opacity: $\bar{\kappa} = \bar{\kappa}(\rho, T, \text{composition})$

$1 M_{\odot}$ Star

- 1-4: Core H-burning
- 4-8: H-shell burning
 8: Convection, 1st dredge-up
- 9: He-core flash
- 9-14: Core He-burning14- : AGB

Some Mass Limits

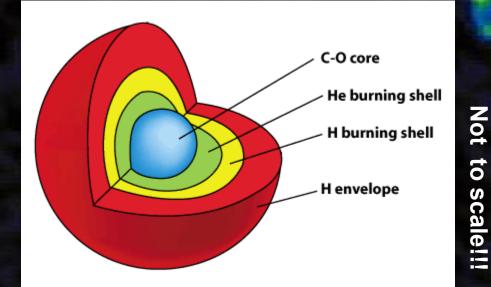
Main Sequence: M_{ZAMS} $\begin{cases} < 1.3 M_{\odot} & \text{pp-chain dominates} \\ > 1.3 M_{\odot} & \text{CNO-cycle dominates} \end{cases}$

 $\text{RGB: } M_{\text{ZAMS}} \begin{cases} < 2.3 M_{\odot} & \text{electron-degenerate He-core} \\ > 2.3 M_{\odot} & \text{non-degenerate He-core} \end{cases}$

 $M_{\rm ZAMS} < 0.6 M_{\odot}$ He-burning never starts

 $M_{\rm ZAMS} \begin{cases} < 9 M_{\odot} & {
m electron-degenerate C/O \ core} \\ > 9 M_{\odot} & {
m non-degenerate C/O \ core} \end{cases}$

Shells Sources


- The three rules of thumb for active shell sources: Associated with a density jump (due to composition difference between core and shell)
 - Position fixed in time (due to thermal feedback). For example r_{shell}=0.03R_o throughout most of the post-MS evolution of a 1 M_o star.
 - Shells mirror the expansion/contraction of their interiors.

Core contraction (Active Shell) Envelope expansion Core expansion (Active Shell) Envelope contraction

Stellar Evolution on AGB

Once on the AGB, all stars have a similar structure;

- C/O core
- He-shell
- Intershell region
- H-shell
- H-envelope

Their evolution is therefore also similar, although still mass-dependent.

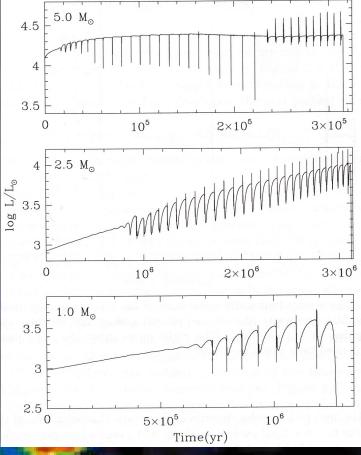
The evolution is dominated by occasional activity of the He-shell: thermal pulses.

Early AGB

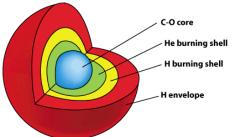
- The period before the first thermal pulse is known as the early AGB (E-AGB).
 - Stars with M > 4 M_{\odot} lose their active H-shell during this period, and the convective envelope can reach down and mix up processed material: Second Dredge Up.
 - Both 1st and 2nd Dredge-Up bring up CNO-processed material: ⁴He↑ ¹²C↓ ¹³C↑ ¹⁴N↑

At the end of the E-AGB all stars have an active H-shell and an inactive, but growing He-shell.

Thermally Pulsing AGB

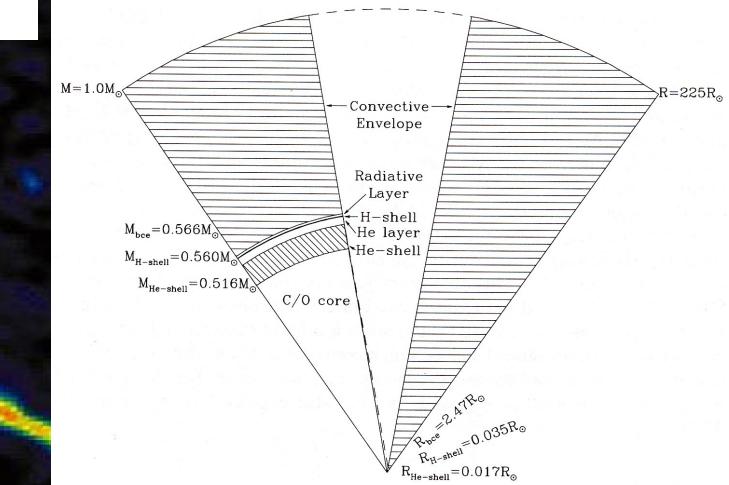

- The rest of the AGB is known as the TP-AGB, as the evolution is dominated by a series of TPs: short outbursts of the He-shell, separated by longer periods of H-shell activity.
- At the same time the star starts to lose material from its surface, with rates of the order $10^{-7} M_{\odot}/yr$.
- The luminosity of these stars ranges from 10^3 to $10^4 L_{\odot}$, so they consume something like $10^{-8} M_{\odot}$ /yr in nuclear fusion.
 - The conclusion is that mass loss dominates the evolution on the AGB!

AGB Evolution

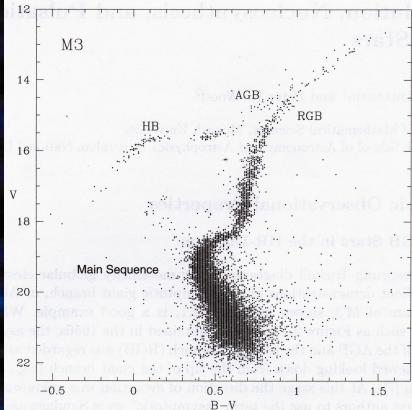

Time Scales

Luminosity Evolution

$M_{\rm i}$	$M_{ m f}$	$M_{\mathrm bol}$	$t_{\rm MS}$	$t_{\rm EAGB}$	$t_{\rm EAGB}$	t_{TPAGB}	t_{TPAGB}	
[M _☉]			[Gyr]	[Myr]	t_{MS} [%]	[Myr]	$t_{\rm MS}$ [%]	
	and the	- united	2	Z=0.016				
1.0	0.57	-4.0	11.3	12	0.16	0.50	0.004	
1.5	0.60	-4.5	2.7	9.2	0.34	0.83	0.03	
2.0	0.63	-4.9	1.2	7.9	0.66	1.20	0.10	
2.5	0.67	-5.1	0.62	1.1	0.18	2.20	0.35	
3.5	0.75	-5.7	0.23	2.8	1.2	0.43	0.19	
5.0	0.89	-6.2	0.10	1.2	1.2	0.26	0.27	
19			2	Z=0.004	19 June -			
1.0	0.59	-4.5	6.7	8.0	0.12	0.87	0.01	
1.5	0.64	-4.9	2.1	6.3	0.30	0.97	0.05	
2.0	0.67	-5.2	0.89	6.7	0.75	1.60	0.18	
2.5	0.69	-5.5	0.46	5.2	1.1	1.30	0.27	
3.5	0.85	-6.0	0.18	2.2	1.2	0.25	0.14	
5.0	0.94	-6.5	0.08	0.6	7.3	0.31	0.39	



Internal Structure


Not to scale!

To scale: very inhomogeneous!

History

- The name Asymptotic Giant Branch was introduced by Sandage & Walker (1966) to describe the observed bifurcation of the Red Giant Branch in HR-diagrams of Globular Clusters:
- Nowadays we use the term AGB for the evolutionary phase when stars become Red Giants for the second time

Thermal Pulses

- The He-core flash is a run-away process because the core is supported by the pressure of degenerate electrons, decoupling the pressure from the temperature. The He-shell in AGB stars is non-degenerate. Why then does the ignition of the He-shell lead to a thermal run-away?
 - The process was first discovered by Schwarzschild & Härm (1965) in their stellar evolution calculations. They also identified the cause:
 - Temperature dependence of the 3α process (∝ T⁴⁰).
 Small width of the shell region.

Gravothermal Specific Heat

- When a certain amount of heat is added to a pocket of gas, its temperature will change according to: dT = 1 dq
- Under isolated circumstances C the specific heat depends only on the gas properties.
- If in addition we require that the gas is part of a system in hydrostatic equilibrium, we obtain instead

$$C_* = C_p \left(1 - \nabla_{\mathrm{ad}} \frac{4\delta}{4\alpha - 3} \right) \quad \rho \propto p^{\alpha} T^{-\delta} \quad \nabla_{\mathrm{ad}} = \left(\frac{\mathrm{d} \ln p}{\mathrm{d} \ln T} \right)_{S}$$

 $\mathrm{d}t$

 $C \, \mathrm{d}t$

For a monatomic gas ∇_{ad} =0.4, α = δ =1, so C_* =-0.6 C_p <0.

- Adding heat brings down the temperature!
- Explanation: upon heating, the gas pocket will expand, pushing the upper layers out, doing work, losing energy.

Adding Energy Production & Opacity

 A more complete picture requires that we take into account the energy production rate ε and the energy transport (proportional to the opacity κ):

 $\kappa \propto \rho^p T^q$

This gives an expression:

 $\epsilon \propto \rho^{\lambda} T^{\nu}$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{K}{C_*} \frac{\mathrm{d}T}{T}$$

$$K = \frac{L}{M} \left[(\nu + q - 4) + \frac{\delta}{4\alpha - 3} (3\lambda + 3p + 4) \right]$$

 For negative feedback K and C_{*} need to have opposite signs, for positive, the same.

Feedback and Stability

- For a stable situation we need negative feedback: a small temperature increase will lead to higher energy production due to nuclear processes. If this leads to an even higher temperature, we have a run-away process.
 For the pp-chain: v=4, λ=1, for Kramer's opacity q=-3.5, p=1, so *K*>0 and C_{*}<0, and the situation is stable.
 - For 3α in a degenerate core: v=40, λ =2, making K still positive, but now α =3/5, δ =0, so C_{*}>0, and we have positive feedback, and a thermal run-away (until the equation of state is changed).

Shell Sources

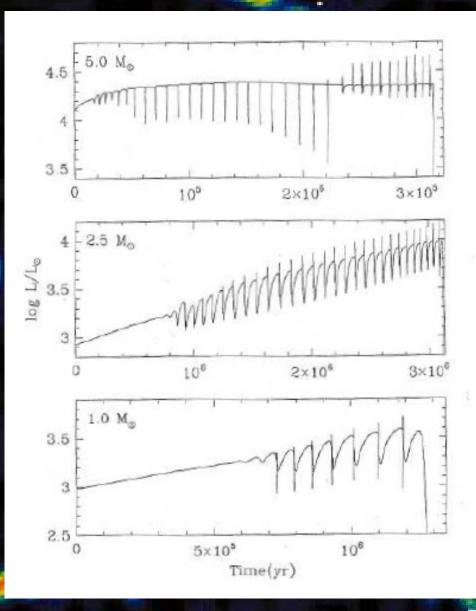
- If we want to apply this to shell sources, we have to realize that they have a much smaller volume than a spherical core region.
 - A small expansion of a shell region will lead to a drop in the density, but will not consume much energy in pushing away the outer layers.

$$dV = \frac{3}{r}Vdr$$

$$dV = \frac{1}{D}VdD = \frac{r}{D}\frac{V}{r}dD$$

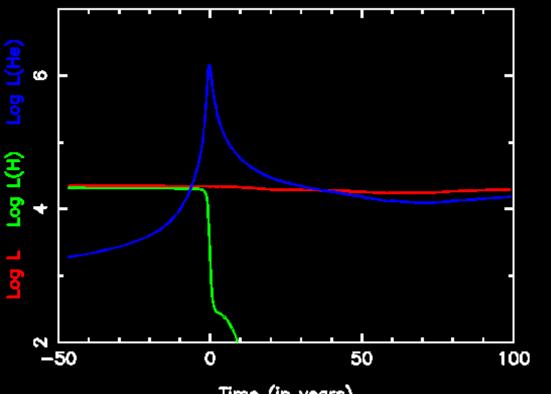
$$C_* = C_p\left(1 - \nabla_{\rm ad}\frac{4\delta}{4\alpha - 3}\right)$$

$$C_*^{\rm shell} = C_p\left(1 - \nabla_{\rm ad}\frac{4\delta}{4\alpha - r/D}\right)$$


If D<r/4 then C, will still be positive! Unstable!</p>

Interpulse Times

The time between thermal pulses depends on the mass of the star.
 Numerical modelling shows

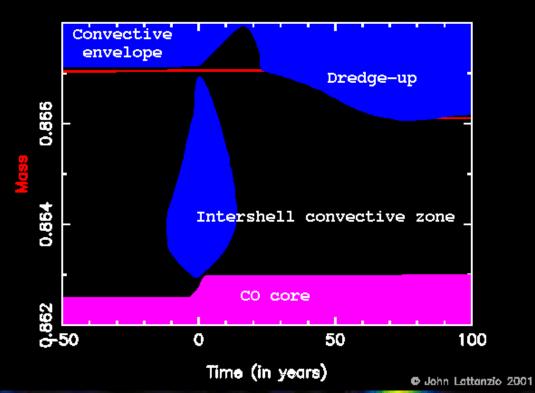

 $\log \tau_{\rm p} = 4.5(1.678 - \frac{M_{\rm core}}{M_{\odot}}) \qquad ({\rm years})$

- For 1 M_{\odot} with $M_c=0.6 M_{\odot}$: 70,000 years For 5 M_{\odot} with $M_c=1.0 M_{\odot}$: 1,100 years
- Peak luminosity: 10⁹ L_o.

What Happens During a TP

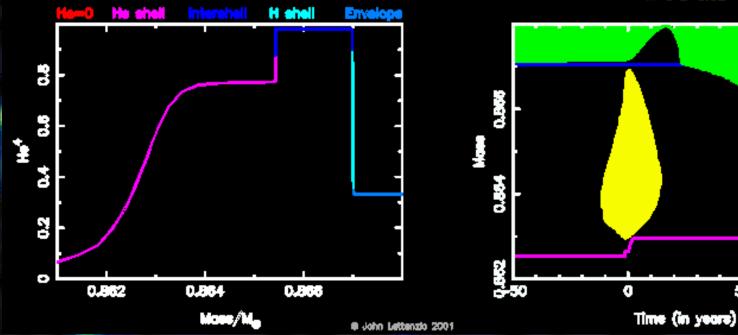
He-luminosity \bullet goes up many order of magnitude. **H-luminosity** goes down (Hshell extinguished). Total luminosity remains almost constant

M=5 Z=0.02


Time (in years)

[🛛] John Lattanzio 2001

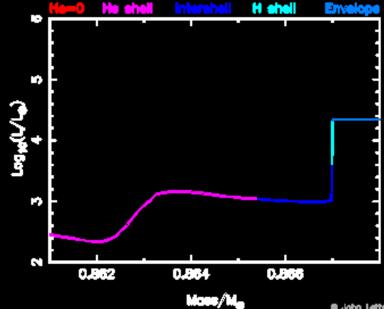
Interior Structure During TP


- Blue areas: convective.
- C/O core grows rapidly
 Convective envelope pushed out.
- Intershell convective zone develops.
- After end of pulse, convective zone moves back in.

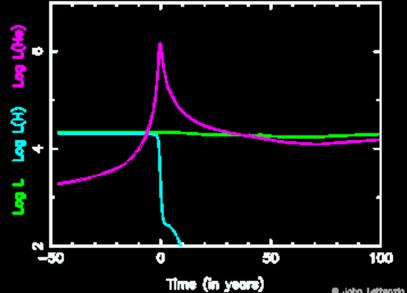
M=5 Z=0.02

Animated TP Evolution: ⁴He

M=6 2=02


M=5 Z=0.02

100


50

Animated TP Evolution: L

M=5 Z=0.02

John Lettenzio 2001

John Lettenzio 2001

Anatomy of a TP

- "Off": He-shell is inactive, Hshell is active.
- "On": He-shell ignites, 10⁸ L_o. Convective zone develops in ISR. Lasts 10-100 years. "**Power-down**": L_{He} declines, expansion of ISR extinguishes H-shell. Overall L drops. Lasts 10-100 years. "Dredge-up": Convective envelope moves in, mixing up processed material. Lasts 10-100 years.

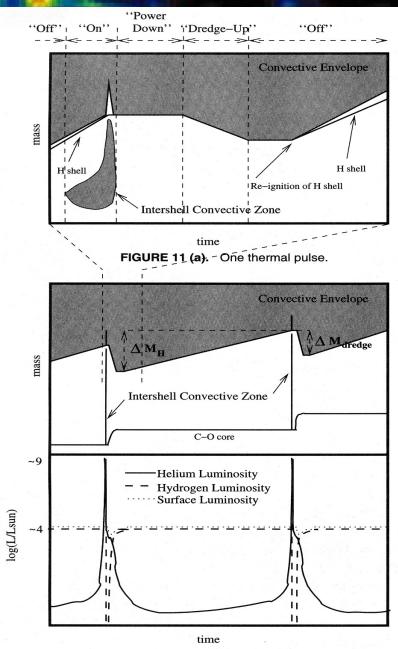
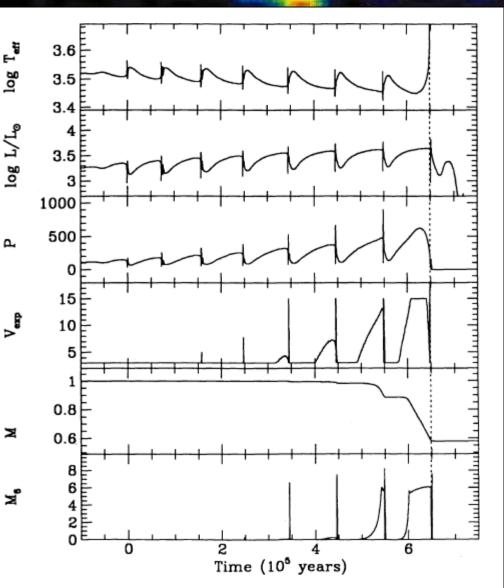
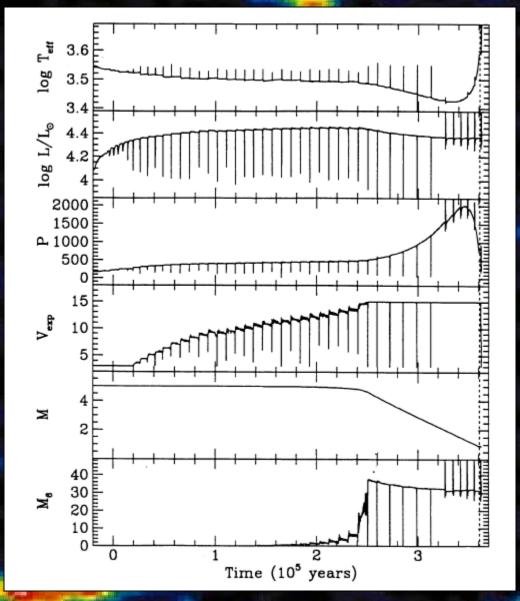



FIGURE 11 (b). Two consecutive thermal pulses

Evolutionary Calculations 1 M_o

Evolution of a 1 M_☉ star on the TP-AGB.
(Y,Z)=(0.25,0.008).
8 TPs.
Total TP-AGB lifetime: 650,000 years.


From Vassiliadis & Wood (1993).

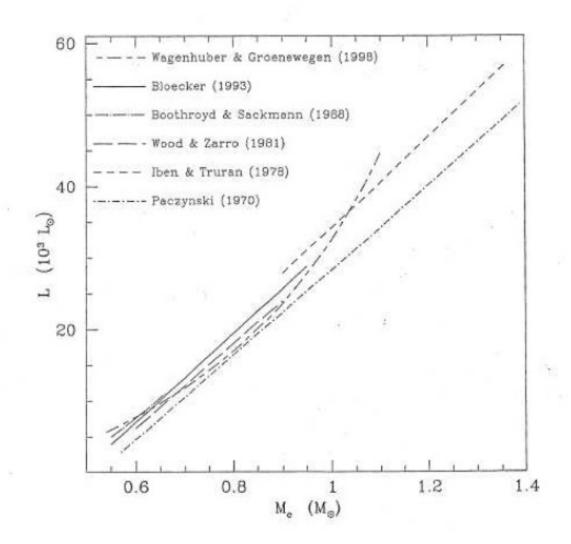
Evolutionary Calculations 5 M_o

Evolution of a 5 M_☉ star on the TP-AGB.
(Y,Z)=(0.25,0.008).
~40 TPs.
Total TP-AGB lifetime: 360,000 years.

From Vassiliadis & Wood (1993).

Core Mass – Luminosity Relation

- The luminosity during the "off" phase keeps going up as the star evolves along the TP-AGB.
 - This is connected to the growth of the core mass:

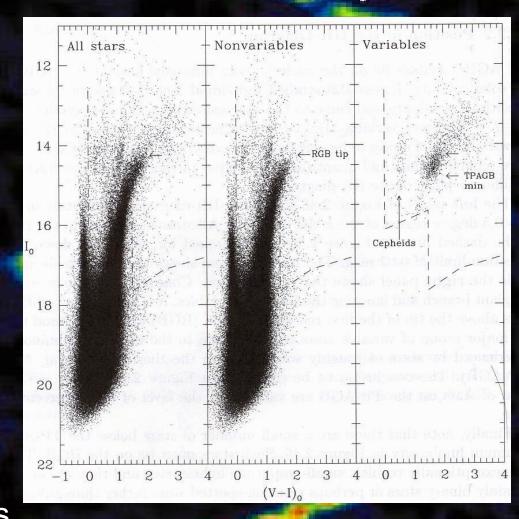

 $L_{\rm AGB} = 5.9 \times 10^4 (M_{\rm c} - 0.52)$ L_{\odot}

 The relation is due to the fact that the envelope is so extended that it becomes irrelevant for the energy producing region.

L-M_c relations exist for all giant phases, but on RGB: $L \propto M_c^8$. On the AGB this becomes $L \propto M_c$ because the higher luminosity leads to a domination of radiation pressure.

L-M_c Relations

Paczynski's relation was theoretically derived. Later L-M relations followed from stellar evolution calculations or 'synthetic evolution calculations', fitted to observations.


Luminosities Limits

AGB

 $L_{min} = 2800 L_{\odot}$ $L_{max} = 51000 L_{\odot}$

RGB: _ L_{max}= 2900 L_☉

Tip of the RGB is a useful concept for studying populations in other galaxies, but confusion with AGB stars may occur.

Luminosity - Colour Diagram

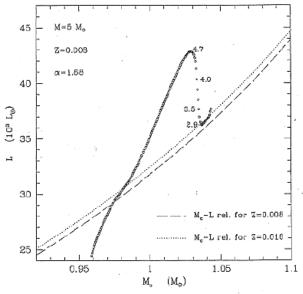
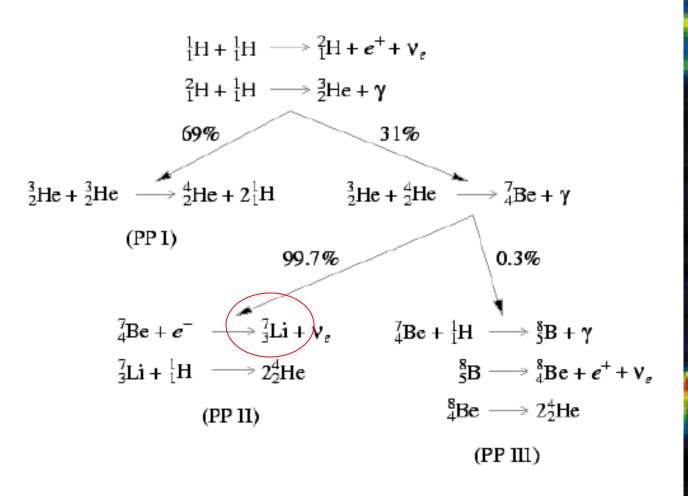

Life Times

TABLE 1 LIFETIMES OF MAJOR EVOLUTIONARY PHASES

М		-	-	-					τ_{FGB-C}	τ_{AGB}	τ _{tpagb}	τ_{AGB}
(M _☉)	Ζ	τ _{MS} (yr)	τ _{FGB-C} (yr)	^τ _{FGB} (yr)	τ _{нев} (yr)	τ _{EAGB} (yr)	τ _{традв} (уг)	τ_{AGB} (yr)	$\tau_{\rm HeB}$	τ _{FGB-C}	τ_{eagb}	$\tau_{\rm HeB}$
1.0	0.016	1.125E + 10	5.786E+07	3.563E+09	1.416E + 08	1.209E+07	4.946E+05	1.258E+07	0.409	0.218	0.041	0.089
1.5	0.016	2.742E + 09	5.197E+07	7.570E+08	1.359E+08	9.191E+06	8.266E + 05	1.002E + 07	0.373	0.193	0.090	0.038
2.0	0.016	1.236E + 09	5.454E+07	1.648E+08	1.509E+08	7.933E+06	1.175E + 06	9.108E+06	0.361	0.167	0.148	0.060
2.5	0.016	6.192E + 08	1.429E + 08	4.283E+07	2.805E + 08	1.084E + 07	2.184E + 06	1.303E + 07	0.051	0.911	0.201	0.046
3.5	0.016	2.307E + 08	1.669E + 06	1.110E + 07	9.142E + 07	2.793E+06	4.270E + 05	3.220E+06	0.018	1.929	0.153	0.035
5.0	0.016	9.560E+07	3.638E+05	2.578E + 06	2.353E+07	1.145E + 06	2.624E + 05	1.408E + 06	0.015	3.869	0.229	0.060
0.945	0.008	1.052E + 10	6.094E+07	3.038E+09	1.356E+08	1.057E+07	5.704E+05	1.114E + 07	0.449	0.183	0.054	0.082
1.0	0.008	8.129E + 09	4.860E+07	2.776E+09	1.336E + 08	9.600E+06	6.502E + 05	1.025E + 07	0.364	0.211	0.068	0.077
1.5	0.008	2.461E + 09	3.450E+07	5.140E+08	1.304E + 08	7.783E+06	9.385E + 06	8.721E + 06	0.265	0.253	0.121	0.067
2.0	0.008	1.018E + 09	4.458E+07	1.286E + 08	1.520E + 08	1.340E + 07	1.339E + 06	1.474E + 07	0.293	0.331	0.100	0.097
2.5	0.008	5.170E+08	9.028E+06	3.355E+07	2.209E + 08	1.035E + 07	1.827E + 06	1.217E + 07	0.041	1.349	0.177	0.055
3.5	0.008	2.009E + 08	1.100E + 06	9.042E+06	6.388E+07	3.032E + 06	3.509E+05	3.383E+06	0.017	3.075	0.116	0.053
5.0	0.008	8.567E + 07	2.496E+05	2.426E + 06	2.161E + 07	8.036E+05	3.601E+05	1.150E+06	0.012	4.662	0.448	0.053
0.89	0.004	1.096E + 10	6.276E+07	2.617E+09	1.294E+08	1.127E + 07	7.711E+05	1.204E + 07	0.485	0.192	0.068	0.093
1.0	0.004	6.650E + 09	5.872E+07	2.111E + 09	1.279E + 08	8.008E+06	8.684E+05	8.875E + 06	0.459	0.151	0.108	0.069
1.5	0.004	2.088E + 09	3.650E+07	4.202E + 08	1.268E + 08	6.302E + 06	9.667E+05	7.269E + 06	0.288	0.199	0.153	0.057
2.0	0.004	8.930E+08	3.693E+07	1.082E + 08	1.539E + 08	6.705E + 06	1.559E + 06	8.264E+06	0.240	0.224	0.233	0.054
2.5	0.004	4.604E + 08	5.953E+06	2.745E + 07	1.669E + 08	5.149E + 06	1.248E + 06	6.397E + 06	0.036	1.075	0.242	0.038
3.5	0.004	1.844E + 08	7.070E+05	6.868E+06	5.355E + 07	2.150E + 06	2.524E + 05	2.402E + 06	0.013	3.398	0.117	0.045
5.0	0.004	8.058E+07	1.759E+05	2.180E + 06	1.864E + 07	5.924E+05	3.123E+05	9.205E+05	0.009	5.143	0.527	0.049
1.0	0.001	5.737E+09	3.436E+07	1.344E+09	1.211E + 08	7.737E+06	1.357E+06	9.094E+06	0.284	0.265	0.175	0.075
1.5	0.001	1.603E + 09	3.633E+07	3.606E+08	1.222E + 08	4.962E + 06	1.127E + 06	6.088E + 06	0.297	0.168	0.227	0.050

Hot Bottom Burning

- This process happens in the more massive AGB stars (>5 M_☉, for solar metallicity Z=Z_☉, lower for lower metallicity).
 - It involves the base of the convective zone being involved in H-burning.
- HBB breaks the L-M_c relation, so the higher mass stars do not follow this relation. The observational evidence for this process comes from certain abundance variations.
- As well as the lack of high mass C-stars (see later).



HBB: Abundance Effects

- Since the H-burning occurs at the base of the convective envelope, it leads to changes in the surface abundances. Partly these are similar to the effects of the 1st and 2nd dredge-up, ⁴He↑ ¹²C↓ ¹³C↑ ¹⁴N↑
 - The reduction of ¹²C influences the formation of C-stars (see below).

However, also partial products can now enter the stellar envelope. The most interesting one is ⁷Li, which is an intermediate product of the pp-chain. Stars with increased ⁷Li have been found in both the MW and the Magellanic Clouds. The cosmic abundance of ⁷Li is important because it connects to big bang nucleosynthesis.

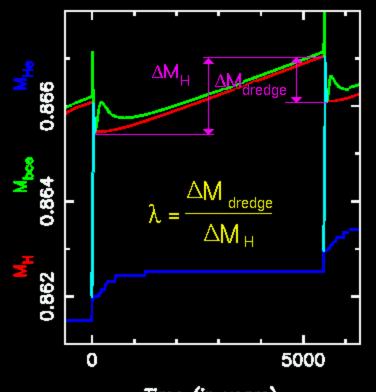
PP Chain

Third Dredge-Up

- As the convective envelope gets pushed out during a TP, and later moves back in again, formerly intershell material may end up in the stellar envelope. This is known as the 3rd Dredge-Up.
 - The difference with the other dredge-up events is that this material has been involved in He-burning, so the types of isotopes that are dredged up are very different. The most notable of these are
 - ¹²C

- s-process elements

3DUP Efficiency


The efficiency of the 3rd dredge-up is parametrized

via

 $\lambda = \frac{\Delta M_{\rm dredge-up}}{\Delta M_{\rm c}}$

This efficiency is not well known, but falls in the range 0.3 – 1.0.
It can be calibrated with measured abundances in AGB star populations.

M=5 Z=0.02

Time (in years) _{© John Lattanzio 2001}

Formation of Carbon Stars

- The most dramatic effect of the 3DUP is the formation of Carbon stars.
 - Since the early days of stellar spectroscopy (1860s, A. Secchi) a group of red stars with spectra dominated by lines of carbon molecules, has been known. This is peculiar since usually C/O < 1.
 - Only in the 1970s it was shown that the 3DUP can bring so much C that the abundance ratio C/O>1.
 - This requires a minimum number of TPs, so there is a minimum mass, \sim 1.5 M $_{\odot}$.
- HBB can turn the ¹²C in the envelope into ¹⁴N, so there is also a maximum mass, ~5 M_☉.

Surface Abundance Changes: 2.5 M_o

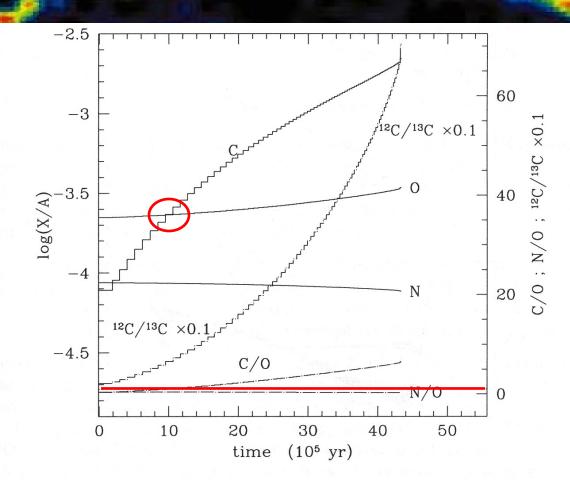
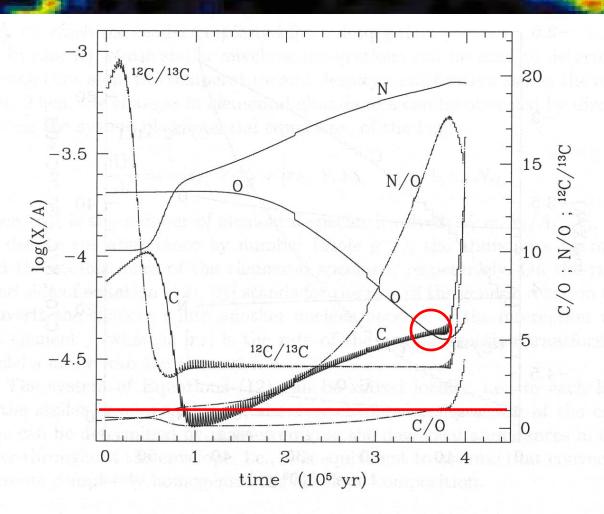
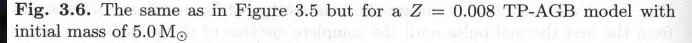




Fig. 3.5. Evolution of CNO surface abundances (by number, mole gr⁻¹) and ratios from the first thermal pulse until the complete ejection of the stellar envelope for Z = 0.008 TP-AGB model with initial mass of $2.5 M_{\odot}$. The efficiency parameter for the third dredge-up is assumed to be $\lambda = 0.5$; the mixing-length parameter is $\alpha = 2.0$. Based on synthetic calculations by [63]

Surface Abundance Changes: 5 M_o

The s-process

- Spectra of AGB stars also can show increased abundances of elements heavier than Fe: Zr, Ti, Tc.
- Nuclear burning does not produce elements heavier than Fe/Ni, since these have the highest binding energy per nucleon.
- These elements can only form through neutron capture.
- If the neutron flux is low, unstable nuclei will decay before capturing another neutron: slow neutron capture or s-process. Produces most stable isotopes.

Decay through β decay or inverse β decay:

 $^{210}\text{Bi} \rightarrow ^{210}\text{Po} + e^- + \bar{\nu}_e$

$$\rightarrow^{13} \mathrm{N} \longrightarrow^{13} \mathrm{C} + e^+ + \nu_e$$

Stepping through the Isotopes

						at reserves to			1 12682 C	1733 (1737 - 1	10000	N
	Se68	Se69	Se70	Se71	Se72	Se73	Se74	Se75	Se76	Se77	Se78	Se79
	35,5 8	27.4 s (3/2+)	41.1 m 0+	4.54 m 3/2-5/2-	8.40 d 0+	7.15 h 9/2+	0+	119.779 d 5/2+	0+	all.		1. DE6 y
	EC	ECp	EC	EC	EC	ec *	0.89	EC	9.36	7.63	23.78	₩ B-
H	TAXING MALES	000000000000000000000000000000000000000	and the second second	111 Contraction of the local sectors of the local s		141 C		White-			Contract Contract	
1	As67 42.5 s	As68 151.6 x	As69 15.2 m	As70 52.6 m	As71 65.28 h	As72 26.0 h	As73 80.30 d	As74 17.77 d	As75	As76 129778 d	As77 38.83 h	As78 90.7 m
	(5/2+)	3+	5/2+	4(+)	5/2+	2.	3/2+	2	32		3/2+	2.
	EC	EC	EC	EC	EC	EC	EC	EC.B	100	β.	p.	β-
	Ge66	Ge67	Ge68	Ge69	Ge70	Ge71	Ge72	Ge73	Ge74	Ge75	Ge76	Ge77
	2.26 h 0+	18.9 m 1/2+	270,8 d 0+	39,05 h 5/2-	(Helle	11.43 d	(r+			82.78 m	0+	11.30 h 7/2+
	and the second			1.1.1.1		\$	30	#	1.1.1.1.1	*	11112	*
	EC	EC	EC	EC	21,23	EC	27.66	7.73	35,94	ħ.	7.44	p
	Ga65 15.2 m	Ga66 9.49 h	Ga67 3.2612 d	Ga68 67.629 m	Ga69	Ga70 2h14 m	Ga71	Ga72	Ga73 4.86 h	Ga74 8.12 m	Ga75 120 s	Ga76 32.6 s
	3/2-	0+	3/2-	1+	3/2	2014.00	× _	Parto n	3/2-	(3-)	3/2-	(2+.3+)
	FC	EC	EC	EC	60.108	EC.5	39.892	*	R.	*	14.	R.
	Zn64	Zn65	Zn66	Zn67	Zn68	Zn69	Zn70	Zn71	Z.n72	Zn73	Zn74	Zn75
	2004	244.26 d	2,1100	Zno/	2000	4.4 m	14 y	2.45 m	46.5 h	23.5 \$	95.6 5	10.2 s
	0.+	5/2+	0.	14	-04	- J.			0.4	(1/2)=	0+	(7/24)
	48.6	EC	27.9	4.1	18.8	þ-	0.6	ß	β-	β-	₿.	
	Cu63	Cu64	Cu65	Cu66	Cu67	Cu68	Cu69	Cu70	Cu71	Cu72	Cu73	Cu74
	3/2	11,000	N	3098 m	61.83 h 3/2-	31.1 8	2.85 m 3/2-	4.5 s (1+)	19.5 s (3/2-)	6.6 s (1+)	3.9 s	1.594 s (1+.3+)
				23	JA 24	1+ 8	342-	*	10:2+7	(1+)	iii	(Terster)
		EC.B	30.83	β-	β-	ĝr-	₽	В	β	1P	Þ.	B/
	Ni62	Ni63	Ni64	Ni65 26172 h	Ni66 54.6 h	Ni67 21 s	Ni68 19 s	Ni69 11.4.5	Ni70	Ni71 1.86 s	Ni72 2.1 s	Ni73 0.90 s
	0+	1/2-		2001/20	04	(1/2-)	04	11.45	0.4	1.80 \$	0+	0.90 8
	3.634	B	0.926	8-	8	ße	B	B		B	8	B
-	0.004		11.760	M/	W		I.W.	11/		LW_	1 H	140

Limit of the s-process

 The s-process cannot produce elements heavier than Pb (Z=82) since at Pb there is a closed loop in the decay scheme:

 $\begin{array}{c} ^{209}\mathrm{Bi}+n \rightarrow ^{210}\mathrm{Bi}+\gamma \\ ^{210}\mathrm{Bi} \rightarrow ^{210}\mathrm{Po}+e^-+\bar{\nu}_e \\ ^{210}\mathrm{Po} \rightarrow ^{206}\mathrm{Pb}+^4\mathrm{He} \\ \end{array}$ $\begin{array}{c} ^{206}\mathrm{Pb}+3n \rightarrow ^{209}\mathrm{Pb} \\ ^{209}\mathrm{Pb} \rightarrow ^{209}\mathrm{Bi}+e^-+\bar{\nu}_e \end{array}$

Heavier elements require the r-process (operating in SN explosions).

Spectroscopic Evidence

- AGB stars can show clear signs of s-process elements: ZrO, TiO. Stars which show these lines particularly prominently get a special spectroscopic classification: S-stars.
 - The most convincing evidence for the s-process in AGB stars is the detection of Tc lines. Tc (Z=43) does not have any stable isotopes. The stablest isotope is 99 Tc with a half life of 2×10⁵ years.

As s-process elements have the same origin as the increase in the C abundance, it is thought that there is an evolutionary sequence $M \rightarrow S \rightarrow C$.

Neutron Source

- Although the evidence for the operation of the s-process is convincing, the process itself is not fully understood.
- The problem lies with the source of neutrons which is needed for the s-process.

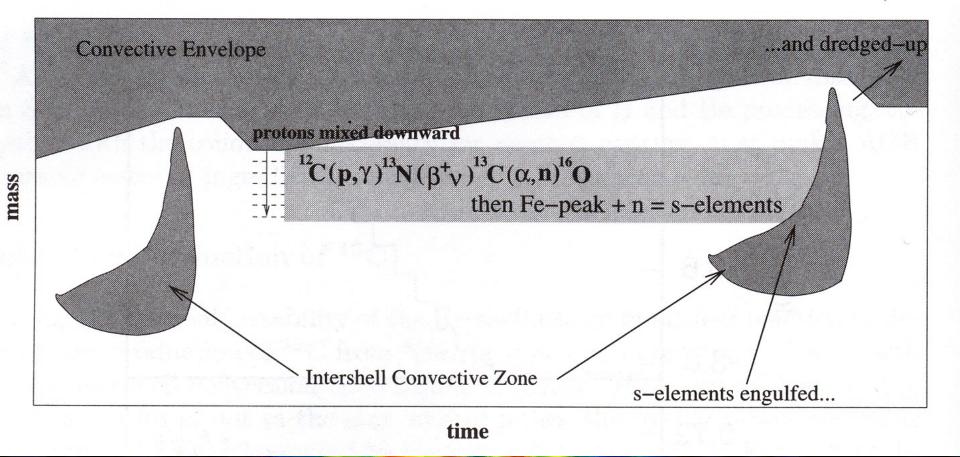
Best candidates:

$$^{13}\text{C} + ^{4}\text{He} \rightarrow ^{16}\text{O} + n$$

 $^{22}\text{Ne} + ^{4}\text{He} \rightarrow ^{25}\text{Mg} + n$

← Only in higher mass stars

To make ¹³C we need protons, but only just enough!!


 ${}^{12}\mathrm{C} + p \rightarrow {}^{13}\mathrm{N} + \gamma \rightarrow {}^{13}\mathrm{C} + e^+ + \nu_e$

 $^{13}\mathrm{C} + p \rightarrow ^{14}\mathrm{N} + \gamma$

← and gone it is!!!

The ¹³C Pocket

 Two consecutive TPs needed to get the s-process elements out.

