Late Stages of Stellar Evolution

Low to Intermediate Mass Stars

Section 6: Mass Loss

AGB Stars Lose Mass

Really? Well, yes!

Remember Mira? In the UV (Galex) it looks like this:

2° ≈ 4 pc

Consistent with previous mass loss estimates of 3×10^{-7} M_{\odot}/yr and a velocity of 5 km/s. Age: 450,000 years (from simulations).

Initial Final Mass Relation

- From the point of view of stellar evolution, we want to know the total amount of mass loss.
 - Or: if we start the MS with 1 M_{\odot} , what will be the mass of the final WD?
 - This is known as the initial-final mass relation (IFMR).
- Measured from WD populations in (open) clusters.

Catalan et al. (2008)

Mass Loss Recipes

• Reimers (1975):

$$\dot{M}_{\text{Reimers}} = 4 \times 10^{-13} \eta \frac{(L/L_{\odot})(R/R_{\odot})}{(M/M_{\odot})}$$

$$M_{\odot} {
m yr}^{-2}$$

Blöcker (1993):

$$\dot{M}_{\rm Bl} = 4.83 \times 10^{-9} \left(\frac{M}{M_{\odot}}\right)^{-2.1} \left(\frac{L}{L_{\odot}}\right)^{2.7} \dot{M}_{\rm Reimers}$$

Vassiliadis & Wood (1993):

$$\dot{M}_{
m VW} = \min(\dot{M}_{
m rad pres}, \dot{M}_{
m superwind})$$

 $\dot{M}_{\rm radpres} = \frac{L/c}{v_{\rm exp}} \,,$

with
$$v_{ ext{exp}} = -13.5 + 0.056 \Pi (ext{days})$$

$$\log_{10} \dot{M}_{\text{superwind}} = -11.4 + 0.0123\Pi (\text{days})$$

Mass Loss Measurements

Mass loss rates

Velocities

Mass Loss and Pulsations

Correlation between Π and M exists, but does not look simple.

•

Stellar Wind Theory

- The mass loss from AGB stars is characterized by high mass loss rates and low velocity, which has been difficult to reproduce.
 - After the work of Bowen (1988) the idea that AGB winds are driven by radiation pressure on dust forming in a pulsating atmosphere, has become accepted.
 - The modelling has been refined since then and has been successful in explaining typical AGB winds, but it is still not able to give a fully consistent theory.

Schematic Picture

Woitke

Complexity of Mass Loss Modelling

Fig. 6.2. Schematic overview of the interactions between the physical and chemical processes in the dust-forming AGB CSE. From [76]

Hydrodynamics

 $1\,\mathrm{d}p$

 $\rho \, \mathrm{d}r$

GM

 $\frac{1}{r^2} + f(r)$

- Mass conservation (steady): $\dot{M} = 4\pi r^2 \rho v$, $v \frac{\mathrm{d}v}{\mathrm{d}r} = -$
- Momentum conservation (steady): • Energy: assume an isothermal gas

From this the wind equation:

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{v}{v^2 - \bar{c}_{\mathrm{s}}^2} \left(\frac{2\bar{c}_{\mathrm{s}}^2}{r} - \frac{\mathrm{d}\bar{c}_{\mathrm{s}}^2}{\mathrm{d}r} - \frac{GM}{r^2} + f(r) \right)$$

Critical point when v=c.

• For $f(r) \approx 0$, only weak mass loss (Sun: $10^{-14} \text{ M}_{\odot} \text{ yr}^{-1}$).

Stellar Wind Diagram

Applying the Force

• When there is a force, the critical point moves from $r_c = GM/2c_s^2$ to $r_c = \frac{GM}{2\bar{c}^2} - \frac{f(r_c)r_c^2}{2\bar{c}_c^2}$

Since at $r=r_c$ we have $v=c_s$, and $\dot{M} = 4\pi r^2 \rho v$, the density at the critical sets the mass loss rate. If the critical point moves in $(f(r_c) > 0)$, the mass loss rate

will increase.

However, if a force is applied in the region r>r_c, the mass loss rate will *not* go up. Instead the wind will acquire a higher velocity.

Three Wind Regions

r=r_

Atmosphere-like Solution: Exponential Atmosphere

r<r_c

∂p/∂r term dominates

Wind-like Solution: Power laws

r>r_c

∂p/∂r term unimportant

$$\rho(r) = \rho_0 \exp\left\{-\frac{r - r_0}{H} \frac{r_0}{r}\right\}$$
$$H = \frac{c_s^2}{GM} r_0^2$$

Hydrostatic atmosphere

If force has r² behaviour:

$$r_{\rm c}(\Gamma) = \frac{GM(1-\Gamma)}{2\bar{c}_{\rm s}^2}$$

Scale Height Problem

- For a hydrostatic atmosphere solution, the shift of the critical point is not enough.
- M=1 M_{\odot}, R_{*}=300 R_{\odot}, T_{eff}=2500 K \rightarrow H/R_{*}=0.05 Even Γ =0.5 gives mass loss rates 10⁻¹⁶ M_{\odot}yr⁻¹.
- Here the pulsating atmosphere comes to the rescue: the pulsational movements periodically 'lift up' the atmosphere. How much: $\frac{1}{2}M_{s}v_{0}^{2} = -GMM_{s}\left(\frac{1}{r_{max}} - \frac{1}{r_{0}}\right) \Rightarrow$

$$\frac{1}{2} \overline{M_{s}} v_{0}^{2} = -GMM_{s} \left(\frac{1}{r_{max}} - \frac{1}{r_{0}} \right)$$
$$\frac{r_{max}}{r_{0}} = \left(1 - \left(\frac{v_{0}}{v_{esc}} \right)^{2} \right)^{-1}$$

- M=1 M_o, R_{*}=300 R_o \rightarrow v_{esc}=35 km/s.
- With $v_0 = 10$ km/s, we get $r = 1.3R_*$

Detailed Pulsation Calculations

r=1.5R.

Atmospheric density profile changed!

Radiation Pressure Force

• The force responsible for mass loss from AGB stars is radiation pressure on dust.

For this force we can write

$$\Gamma_{\rm d} = \frac{\kappa_{\rm rp} L_*}{4\pi c G M}$$

- What is the maximum we can get out of the radiation field?
- The radiation carries a momentum hv/c per photon, or a total momentum rate of L/c. Equating this to the total momentum rate in the wind, we get

 $\dot{M} = L_* / (cv_\infty) \,,$

 This called the single scattering limit since it assumes that each photon only interacts once with a dust particle.

Multiple Scattering

 However, at the radiation energy rate (L) and compare this to the kinetic energy rate in the wind:

d

$$L_{\text{wind}} = \frac{1}{2}\dot{M}v_{\infty}^{2} \qquad L_{\text{wind}}/L_{*} = \frac{1}{2}v_{\infty}/c \ll 1$$
• More can be extracted through *multiple scattering*!
$$m = 4\pi r^{2} dr$$

$$dv_{\alpha} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM}{r^{2}} + f(r)$$

$$+ c_{\alpha} + \int_{r_{c}}^{\infty} \frac{GM}{r^{2}}(1 - \Gamma_{d})\rho 4\pi r^{2} dr = 0$$

$$\pi_{w} = \int_{r_{c}}^{\infty} \kappa_{rp}\rho dr$$

$$\dot{M}v_{\infty} = \frac{L_{*}}{c}\left(\frac{\Gamma_{d}-1}{\Gamma_{d}}\right)\tau_{w} \approx \frac{L_{*}}{c}\tau_{w} \quad \text{for} \quad \Gamma_{d} \gg 1$$

Multiple Scattering Limit

$$\dot{M}v_{\infty} = \frac{L_*}{c} \left(\frac{\Gamma_{\rm d}-1}{\Gamma_{\rm d}}\right) \tau_{\rm w} \approx \frac{L_*}{c} \tau_{\rm w} \quad \text{for} \quad \Gamma_{\rm d} \gg 1$$

2c

 v_{∞}

Absolute energy limit:

More realistic:

$$\tau_{\rm w} < \frac{c}{v_{\infty}} = 27 \sqrt{\frac{\dot{M}/10^{-5}}{L/10^5}}$$

 $\tau_{\rm w} <$

So, through multiple scattering, the wind momentum can be an order of magnitude higher!

Wind Velocity

 The final wind velocity can be obtained from looking at the wind equation beyond r_c:

$$v\frac{\mathrm{d}v}{\mathrm{d}r} = -\frac{1}{\rho}\frac{\mathrm{d}p}{\mathrm{d}r} - \frac{GM}{r^2} + f(r) \qquad \mathsf{d}p/\mathsf{d}r\approx\mathbf{0} \qquad v\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1}{2}\frac{\mathrm{d}v^2}{\mathrm{d}r} = \frac{GM}{r^2}(\Gamma_{\mathrm{d}} - 1)$$
$$v^2(r) = v_{\mathrm{f}}^2r_{\mathrm{c}}) + v_{\infty}^2\left(1 - \frac{r_{\mathrm{c}}}{r}\right)$$
$$v_{\infty}^2 \equiv \frac{2GM_*}{r_{\mathrm{c}}}(\Gamma_{\mathrm{d}} - 1) = v_{\mathrm{esc}}\frac{R_*}{r_{\mathrm{c}}}(\Gamma_{\mathrm{d}} - 1)$$

M=1 M_{\odot}, L=10⁴ L_{\odot}, r_c=2×10¹⁴ cm \rightarrow v_{∞}=16 km/s.

Dust Formation

- Radiation pressure on dust, so we need dust formation.
- Two types of dust
 - M-type stars: 'dirty' silicates
 - C-type stars: amorphous carbon grains
 - Dust formation:
 - Hydrodynamics: density, temperature
 - Chemistry: first step is molecules
 - Nucleation: condensing seed nuclei from gas phase
 - Solid-gas interaction: grain growth

Presolar grains extracted from meteorites

Al₂O₃ 0.1 parts per million Size ~ 1-5μm

Dust Formation: Non-Equilibrium

- Temperature acts as a threshold
 - Set by dynamics and radiative transfer.
 - Generally decreases outward, but highly time dependent.
 - Density determines efficiency
 - Set by dynamics.
 - Dynamics (pulsations) sets the time scale
 - Shocks restrict time available, but also help by increasing the density.

For dust to drive the mass loss, it needs to form in sufficient quantities at the right location $(r \sim r_c)!$

Complexity of Mass Loss Modelling

Fig. 6.2. Schematic overview of the interactions between the physical and chemical processes in the dust-forming AGB CSE. From [76]

Radiation-Hydrodynamic Model

Susanne Höfner (Uppsala)

Classical Nucleation Theory

- Statistical theory which only considers the 'size' of the seed nuclei.
- f(N): the fraction of nuclei that contain N monomers (e.g. C-atoms).
 - $\partial f(N_i)/\partial t = \text{growth}(N < N_i) \text{growth}(N > N_i) \text{diminishment}(N < N_i) + \text{diminishment}(N > N_i) =$
 - Growth: sticking, absorption. Dimishment: evaporation, 'sputtering', dust-dust collisions
- Since N can be 10^{12} , what is often solved for are moments of f(N), e.g. total surface area:

 $K_2 = \sum f(N) N^{2/3}$ N_{l}

Gas-Dust Coupling

- Radiation pressure accelerates the dust particles, which form only some 1% of the mass. To launch a wind, momentum has to be transferred to the gas.
 - This transfer happens through the so-called drag force.

For small dust grains:

$$egin{aligned} f_{
m drag} &= \sigma_{
m d} n_{
m g} n_{
m d} m_{
m g} |v_{
m coll}| v_{
m drag} \ \end{aligned}$$
 with $v_{
m drag} &\equiv |v_{
m g} - v_{
m d}| \end{aligned}$

 $v_{\rm coll} = v_{\rm thermal} \sqrt{\frac{64}{9\pi} + \left(\frac{v_{\rm drag}}{v_{\rm thermal}}\right)}$

The drag force tries to minimalize v_{drag}, but is also proportional to it \rightarrow equilibrium value for v_{drag} . Often assumed v_{drag}≈0 (perfect coupling), but dependence of f_{drag} on grain size can give interesting

and

(time-dependent) effects.

Dust around O-rich AGB Stars

- Models work well for Cstars.
- For O-stars, the seed nuclei are thought to be Al₂O₃ (corundum), Fe, Tioxides.
- Difficult to condense these out at the right position.
 - 'Dirty' silicates (Mg_xSiO_4, Fe_xSiO_4) needed for high opacity.
- No current working model.

Figure 2 Plots of condensation temperature versus total gas pressure P for various minerals, assuming normal cosmic abundances. The dash-dot curve indicates conditions where half of the CO is destroyed by interaction with H_2 .