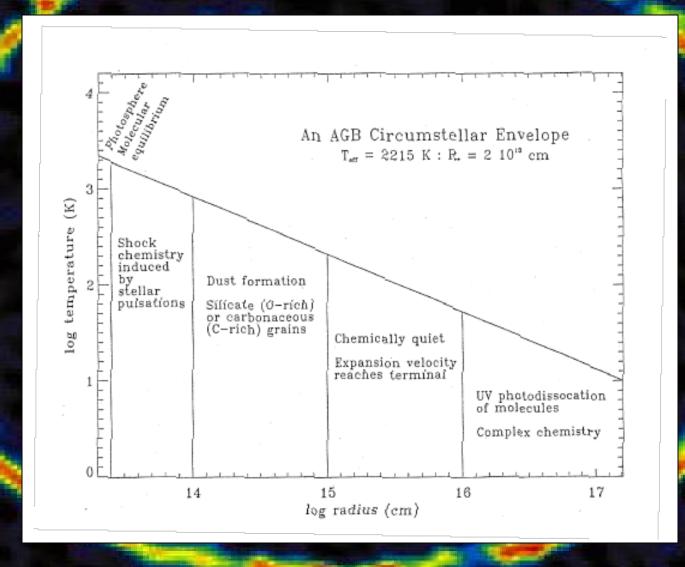

CSE Size and Density

- Because of mass loss, AGB stars are surrounded by a substantial circumstellar envelope (CSE).
- For a life time of 10⁶ years and a wind velocity of 10 km/s, these would be 10¹⁹ cm (3 pc) in size.
- Mixing with the ISM and motion through the ISM make them smaller. Size of observable CSE: ~10¹⁷ cm.
- For a constant velocity and mass loss rate:

$$n(r) = \frac{\dot{M}}{4\pi\mu m_{\rm H} v_{\infty} r^2} \simeq 10^6 \left[\frac{\dot{M}}{10^{-5} M_{\odot} {\rm yr}^{-1}} \right] \left[\frac{15 {\rm kms}^{-1}}{v_{\infty}} \right] \left[\frac{10^{15} {\rm cm}}{r} \right]^2 {\rm cm}^{-3}$$

Density Variations

- Nearest C-star: IRC10+216.
- Scattered light image, showing the dusty CSE, with density variations.


CSE Temperature

- The temperature of the CSE has two components:
- Gas temperature:
 - Drops with radius because of adiabatic expansion: T \propto r ^{-4/3}
 - In addition heating and cooling processes operate
 - Heating: collisions with dust grains
 - Cooling: line cooling (H₂O, CO, HCN)
 - Typical solution: $T_g(r) \approx 400 (10^{15} \text{ cm} / r)^{0.9}$

Dust temperature:

- Balance between heating and cooling:
 - Heating: absorption of star light (IR)
 - Cooling: radiation (longer wave lengths)
- For both the frequency-dependent absorption/emission is crucial.
- At different wavelengths you see different parts of the dusty envelope. T_d (r) ≈ T_{*} (R_{*} / 2r)^{0.4}

CSE Chemistry

Chemical Diversity

Table 5.1. The atoms and top 20 molecules produced in LTE calculations for Orich and C-rich stars with parameters as discussed in the text. f(X) is the fractional abundance of species X relative to H_2 . $[a(b) = a \times 10^b]$ [77]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-11-4-14		<u> </u>	<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O-rich			C-rich		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Species	f(X)	Species	f(X)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Н	2.1(-1)		3.5(-1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C	4.1(-13)		2.3(-6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N	5.8(-9)		1.4(-8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1.3(-6)		3.2(-12)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Si	4.0(-8)		6.3(-5)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S	2.6(-5)		3.4(-6)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P	4.7(-7)		6.2(-7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cl	5.2(-8)		8.4(-8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	H_2	1	H_2	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	CO		CO	1.6(-3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	H_2O	2.9(-4)	C_2H_2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	N_2	1.3(-4)	C_2H	1.1(-4)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	SiO		N_2	, ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	OH	9.0(-6)	HCN	8.5(-5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	SH	7.7(-6)	CS	2.3(-5)	
10 SiS 2.0(-7) CN 1.6(-6) 11 HF 1.7(-7) SH 7.0(-7) 12 TiO 1.6(-7) SiH 6.7(-7) 13 PO 9.7(-8) SiC ₂ 3.7(-7) 14 NP 8.2(-8) HCl 3.4(-7) 15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	8	H_2S	7.2(-7)	SiS	9.8(-6)	
11 HF 1.7(-7) SH 7.0(-7) 12 TiO 1.6(-7) SiH 6.7(-7) 13 PO 9.7(-8) SiC ₂ 3.7(-7) 14 NP 8.2(-8) HCl 3.4(-7) 15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	9	HCl	3.4(-7)	C_3H	9.5(-6)	
12 TiO 1.6(-7) SiH 6.7(-7) 13 PO 9.7(-8) SiC ₂ 3.7(-7) 14 NP 8.2(-8) HCl 3.4(-7) 15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	10	SiS	2.0(-7)	CN	1.6(-6)	
13 PO 9.7(-8) SiC ₂ 3.7(-7) 14 NP 8.2(-8) HCl 3.4(-7) 15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	11	HF	1.7(-7)	SH	7.0(-7)	
14 NP 8.2(-8) HCl 3.4(-7) 15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	12	TiO	1.6(-7)	SiH	6.7(-7)	
15 CO ₂ 6.3(-8) CH ₃ 2.6(-7) 16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	13	PO	9.7(-8)	SiC_2	3.7(-7)	
16 SO 4.0(-8) CH 1.6(-7) 17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	14	NP	8.2(-8)	HCl	3.4(-7)	
17 MgH 3.9(-8) C ₂ 6.2(-8) 18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	15	CO_2	6.3(-8)	CH_3	2.6(-7)	
18 AlH 3.2(-8) NP 5.5(-8) 19 AlOH 1.5(-8) SiO 4.8(-8)	16	SO	4.0(-8)	CH	1.6(-7)	
19 AlOH $1.5(-8)$ SiO $4.8(-8)$	17	MgH	3.9(-8)	C_2	6.2(-8)	
	18	AlH	3.2(-8)	NP	5.5(-8)	
20 CrH $1.5(-8)$ H ₂ S $4.4(-8)$	19	AlOH	1.5(-8)	SiO	4.8(-8)	
	20	CrH	1.5(-8)	H_2S	4.4(-8)	

LTE Chemistry Model

Chemical models for 3 different chemical compositions:

C<O

C≈O

C>O

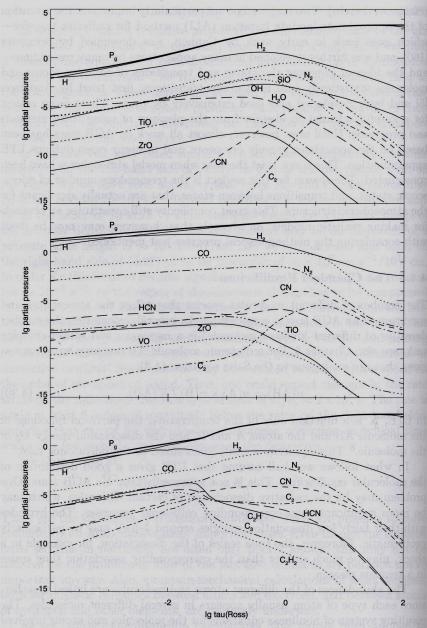
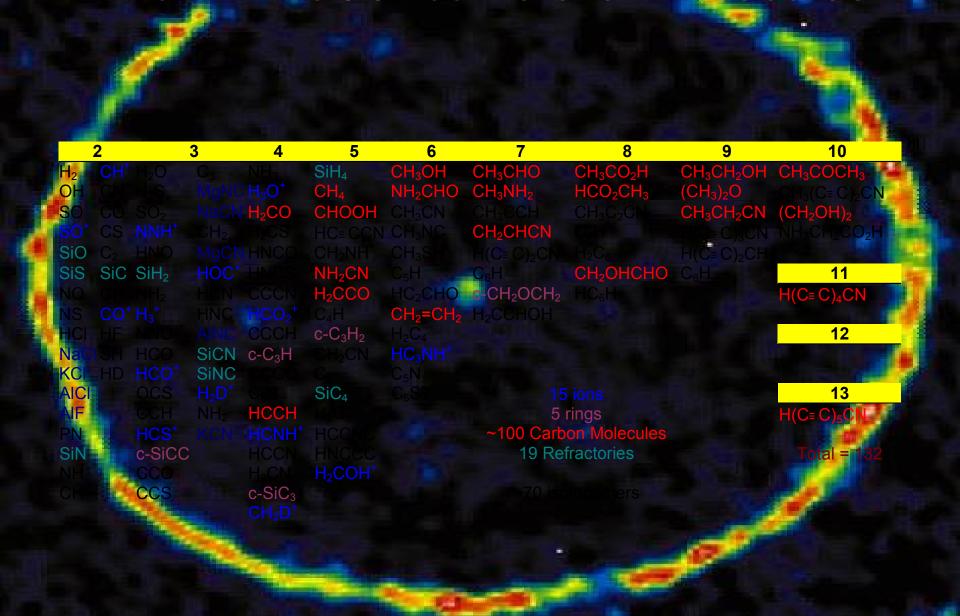
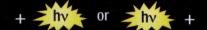



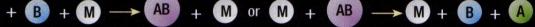
Fig. 4.5. Selected molecular partial pressures as a function of depth for three models with $T_{\rm eff} = 3000~{\rm K}$, $1~{\rm M}_{\odot}$, $\log g = 0.0$. The **top** panel represents an M giant (solar composition), the **middle** panel an S star ($\epsilon_{\rm C}/\epsilon_{\rm O} = 0.98$), and the **bottom** panel a carbon star ($\epsilon_{\rm C}/\epsilon_{\rm O} = 1.2$)

Known Inter/Circumstellar Molecules

Chemical Reactions in the Gas Phase

(a) radiative association


reverse reaction – photodissociation



(b) three-body reactions

reverse reaction - collisional dissociation

(c) neutral exchanges

- (e) recombination reaction
- (e1) radiative recombination (atomic)

(e2) radiative association

$$e^- + \mathbb{B} + \mathbb{M} \longrightarrow \mathbb{B} + \mathbb{M}$$

$$e^- + A \longrightarrow A$$

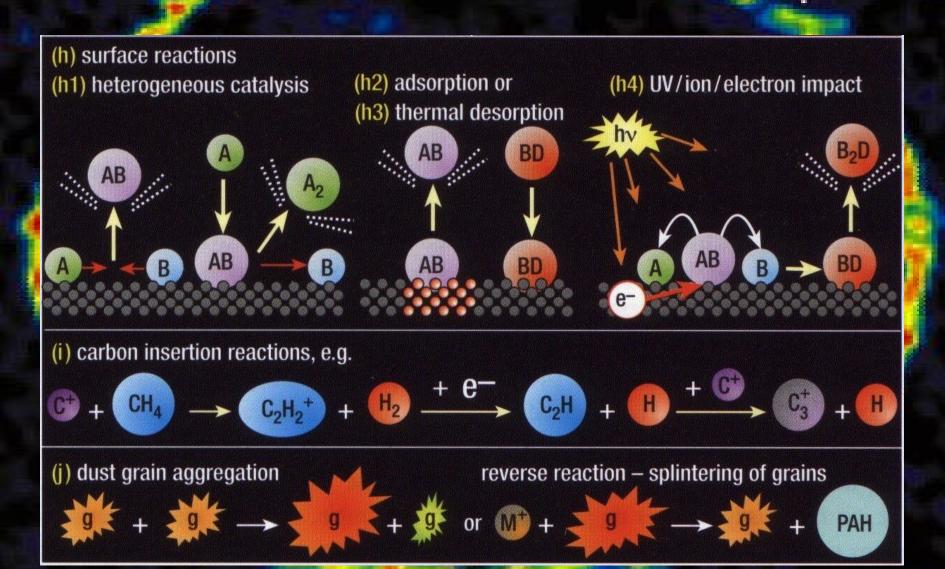
(e2) dissociative recombination (molecular)

$$AB + e^- \longrightarrow B^- + A$$

$$AB^+ + e^- \longrightarrow B + A$$

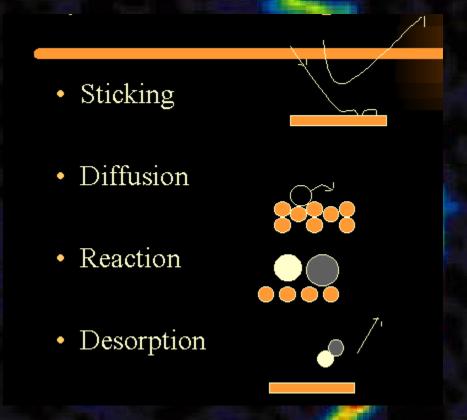
(d) ion-molecule reactions

charge transfer reactions

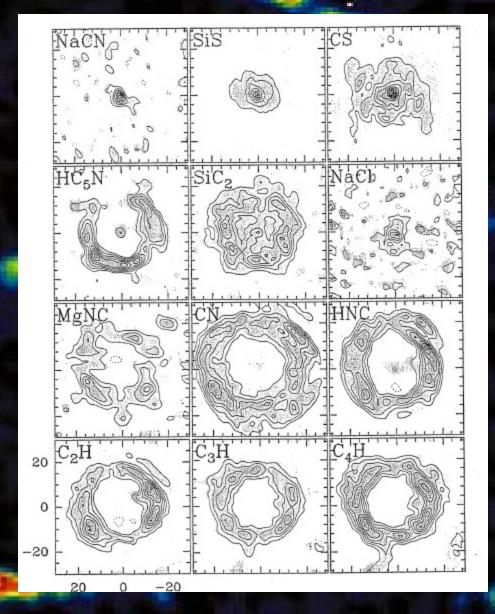

(f) negative ion reactions

$$A + A \rightarrow A_2 + e^{-}$$

- (g) condensation reactions
- AB (gas phase) AB (solid)


- Slowest reactions: neutralneutral
- **Fastest** reactions: radical-radical and moleculeion

Chemical Reactions on Grains

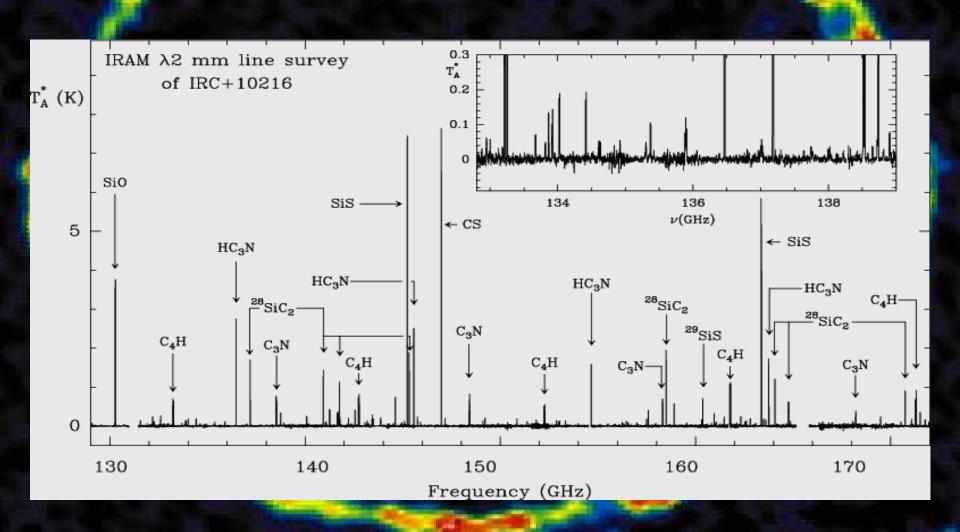

Physical/Chemical Processes on Dust

- Some chemical reactions (e.g. neutral-neutral) happen much more efficiently on the surfaces of grains.
- Best known example: formation of H₂.
- Also others: methanol for example.

Chemistry in Observations

- The complex chemical structure of AGB CSEs can be observed in some case.
- Here: **IRC+10216** (nearby extreme C-star).
- Molecular shells of varying radii:
 - Abundance of molecule
 - Temperature & radiation field (optical depth effects).

Chemical Networks


- To calculate the distribution of molecules, so called chemical networks are used:
 - ~12 elements (H, He, C, N, O, S, Si, Fe, Na, Mg, P, Cl).
 - ~400 molecules
 - ~4000 reactions (not all with known rates)
- Solve for chemical equilibrium:
 - formation rate = destruction rate.
- To calculate emissivity, the level populations need to be known, so also the radiation field (from star and molecular lines) and the temperature structure needs to be solved for.

Observational Regimes

- AGB stars and the material in their envelopes emit radiation at different wavelengths:
- Optical:
 - Stellar photosphere, atoms and molecules.
 - Near-infrared (1-5 µm):
 - CSE, molecules and dust features.
- Mid-infrared (5 25/40 μm):
 - Molecules, dust
- Far-infrared (25/40 200/350 μm):
 - Molecules, dust
- Submm/mm (0.3 5mm):
 - Molecules
- Cm:
 - SiO, H₂O, OH maser emission

Richness of the Submm/mm Regime

• IRC10+216 at 2mm:

Molecules Observed in Submm-Radio

- List of molecules detected in the submm-radio regime.
- Σ indicates the number of objects in which the molecule was found.
- The Σ=1 cases for C-molecules is mostly IRC +10216.

Molecule	Σ	Chemistry	Molecule	Σ	Chen	istry
1,101000110	_	O C			0	C
2-atomic: AlCl AlF CO CN CP CS KCl NaCl 3-atomic:	1 600 40 1 35 1	$\begin{array}{c} 2(-7) \\ 4(-8) \\ 5(-4) \ 1(-3) \\ 2(-7) \ 5(-6) \\ 2(-8) \\ 1(-7) \ 1(-6) \\ 2(-9) \\ 1(-9) \end{array}$	OH PN SiC SiN SiO SiS SO	2000 1 2 1 500 15 20	2(-4) 5(-6) 7(-7) 2(-6)	
AINC C ₂ H C ₂ S HCN H ₂ O H ₂ S HNC 4-atomic:	1 20 5 120 300 300 10	1(-9) $4(-6)$ $1(-6)$ $4(-6) 2(-5)$ $3(-4) 1(-6)$ $1(-5)$ $1(-7) 1(-7)$	 MgCN MgNC NaCN SiC2 SiCN SO2 	1 1 5 1 15	2(-6)	1(-9) 2(-8) 2(-8) 3(-7) 4(-9)
ℓ-C ₃ H C ₃ N C ₃ S 5-atomic:	2 5 1	4(-8) 3(-7) 3(-8)	• HC ₂ N NH ₃ SiC ₃	1 5 . 1	4(-6)	8(-9) 1(-7) 3(-9)
C ₄ H C ₄ Si c-C ₃ H ₂	5 1 5	3(-6) 3(-9) 3(-8)	HC ₃ N • HC ₂ NC H ₂ C ₃	10 1 1		1(-6) 2(-9) 2(-9)
6-atomic: C ₅ H C ₅ N(?) 7-atomic:	1	6(-8) 9(-9)	$\mathrm{CH_{3}CN}$ $\mathrm{H_{2}C_{4}}$	5 1		3(-9) 5(-9)
C ₆ H	1	8(-8)	$\mathrm{HC_5N}$	5		2(-7)
8-atomic: C ₇ H	1	3(-9)	$\mathrm{H_{2}C_{6}}$. 1		?
9-atomic: C ₈ H	1	1(-8)	HC7N	2		4(-8)
11-atomic: HC ₉ N	: 1	1(-8)				
Ions: HCO ⁺	2	1(-9)				

- For these long wavelengths, imaging is problematic due to the low resolution of single telescope dishes (λ/D).
- High resolution imaging requires interferometry. Only a handful submm/mm interferometers exist: IRAM Plateau de Bure, CARMA, SMA.

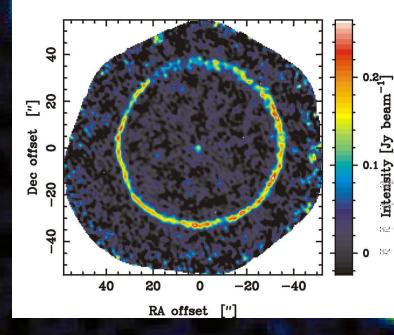
IRAM, PdB

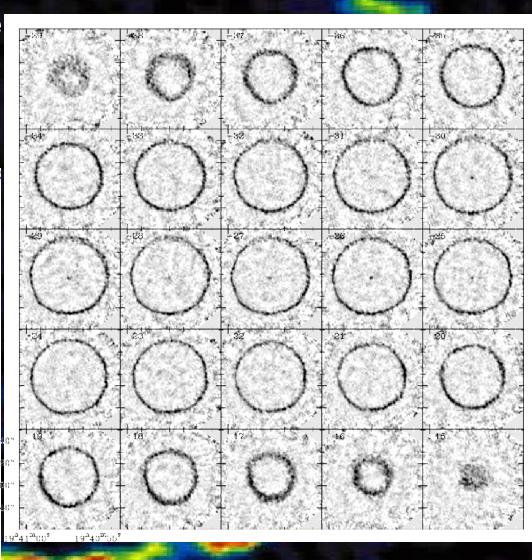
SMA with JCMT

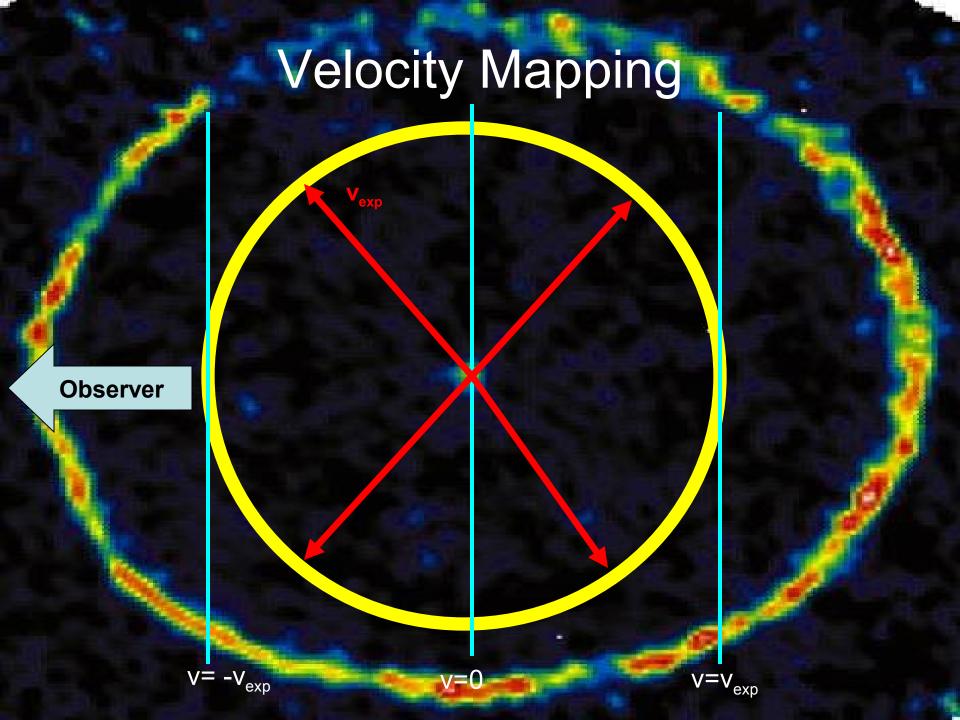
ALMA

- The Atacama Large Millimeter Array is currently under construction at a site at 5km altitude in the Chilean Andes. Partners: NRAO (USA), ESO, Japan.
 - ALMA will consist of some 50 antennas, and be the largest submm facility in the world.

Figure 1: A panoramic view of the ALMA Site facing south-west. The Atacama salt lake 2.5 km below the Site is seen to the right of the picture.

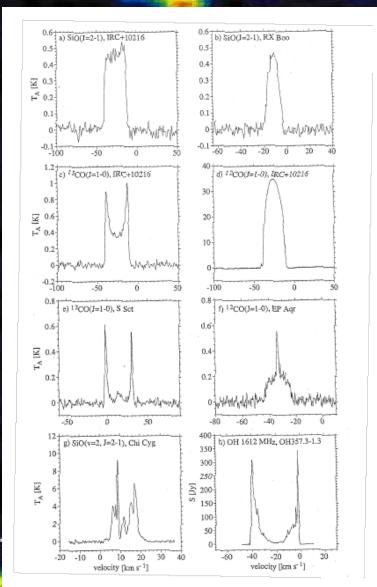

- Radio antennas provide signal over a range of frequencies.
- So, not only emission/image data, but also velocity data. In the best case this allow one to map a source as a function of frequency: image cube or channel maps.
- In the worst case this gives you only a line profile (no image data).


TT Cyg


Different velocities give you different cross section of the shell

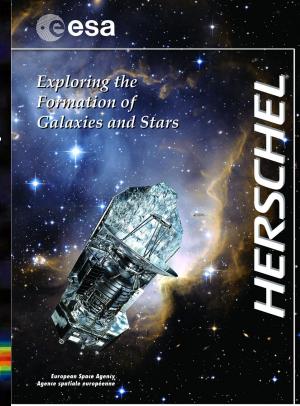
H. Olofsson, R. Lucas, P. Ber<mark>gman, K. Eriksson, B. Gustafsson, J. Bieging</mark> IRAM PdB interferometer data Beam: 2.2"x1.8" (PA=26°)

TT Cyg CO(1-0) v=-28.5 to -26.5 km s⁻¹



Line Shapes

- When good image capability is lacking (source is too small for your telescope), the velocity information can still be used to derive properties of CSE.
- a): optically thin, unresolved.
- b): optically thick, unresolved
- c): optically thin, resolved
- d): optically thick, resolved
- e): thin shell, resolved
- f): double component
- g,h): masers


Optically Thin & Thick Lines

- Line emission can be optically thin ('transparent') and optically thick ('opaque').
- Simplified description:
 - In the optically thin case you see emission from the entire emitting region (line width $\sim 2v_{exp}$).
 - In the optically thick case you only see emission from surfaces of optical depth ~1. Doppler shifts allow you to still see part of the interior (line width still ~ 2v_{exp}).

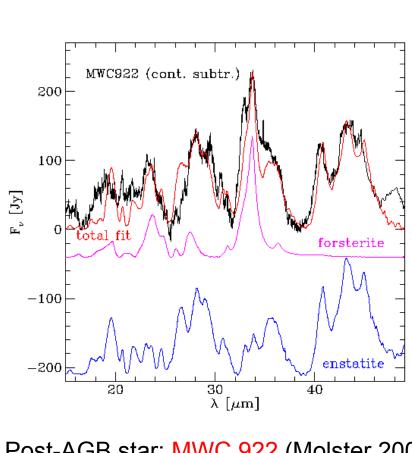
CO is so abundant, its lines quickly becomes optically thick.
 Observe ¹³CO lines for optically thin lines.

Far-Infrared Observations

- The FIR regime contains molecular lines, and thermal radiation from cold dust.
- It is not at all well explored, since the Earth's atmosphere blocks these wavelengths.
- There is only limited satellite data:
 - IRAS (1985): images at 60 and 100 μm.
 - Odin (2000-2007): H₂O and NH₃ detections.
- End of 2008: launch of Herschel (60 670 μm).

Near/Mid-Infrared Observations

 This wave length regime is partly observable from Earth, through various atmospheric windows.


Infrared Windows in the Atmosphere

Wavelength Range	Band	Sky Transparency	Sky Brightness
1.1 - 1.4 microns	J	high	low at night
1.5 - 1.8 microns	Н	high	very low
2.0 - 2.4 microns	K	high	very low
3.0 - 4.0 microns	L	3.0 - 3.5 microns: fair 3.5 - 4.0 microns: high	low
4.6 - 5.0 microns	M	low	high
7.5 - 14.5 microns	N	8 - 9 microns and 10 -12 microns: fair others: low	very high
17 - 40 microns	17 - 25 microns: Q 28 - 40 microns: Z	very low	very high
330 - 370 microns		very low	low

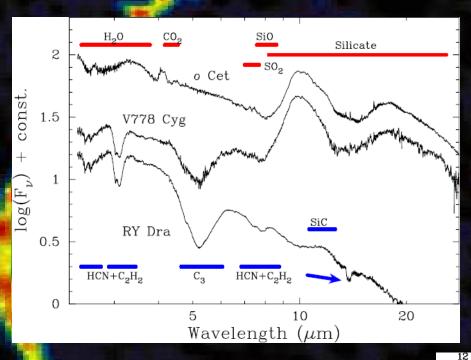
Near/Mid-Infrared Satellite Observations

- For a good continuous coverage of wide wavelength range, space-based spectroscopy is needed.
- Recent missions: ISO, Spitzer.
- Especially ISO revealed the richness of NIR/MIR spectroscopy.
- This wave length range shows absorption/emission lines, but also many features: broad absorption (Δλ/λ~0.1) due to complex molecules, ices and dust.
- These ISO spectra led to a new field, known as astromineralogy, the study of various minerals around stars and in the ISM and comparison to laboratory spectra (e.g. Fosterite (Mg₂SiO₄), Enstatite (MgSiO₃), Olivine ((Fe,Mg)SiO₄), Spinel (MgAl₂O₄))

Example of Astromineralogy

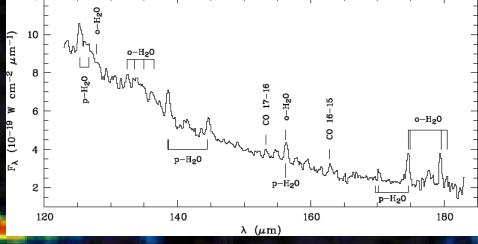
Lab

Observations


Post-AGB star: MWC 922 (Molster 2000)

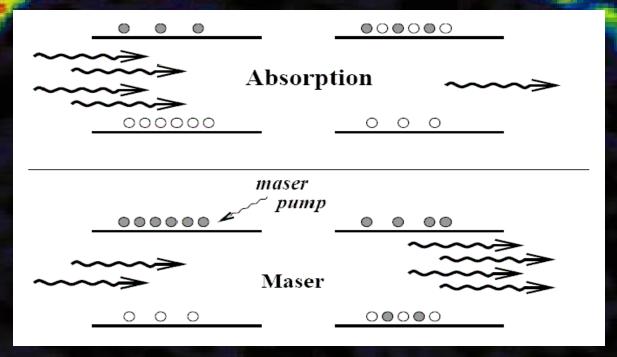
IR: Molecular Lines and Features

Molecul	- 7	Cl	mainta.	Molecu	lo V	Charista
Moiechi	e 2	Ferman	emistry	Moiecu	ie 2/	Chemistry
		_ 0	C			O . C
2-atomi	c:					
C_2	1		2(-6)	CS	1	3(-7)
CN	1		1(-5)	SiO	1	8(-7
CO .	10	?	4(-4)	SiS	1	4(-6
3-atomi	c:					•
C_3	1		1(-6)	HCN	3	2(-
C_2H	1		3(-6)	H_2O	2	1(-5)
CO_2	15	3(-7)) ` ' '	SO ₂	15	?
4-atomi	c:	,				
C_2H_2	7		5(-5)	NH_3	2	2(-7)
5-atomi	c:					,
C_5	1		1(-7)	SiH ₄	1	2(-7
CH_4	1		4(-6)			`
6-atomi	c:		. ,			
C_2H_4	1		1(~8)			


Feature	Identification
$[\mu m]$	
3.1	stretching of O-H bond in amorphous H ₂ O ice, O-CSE
9.7	stretching of Si-O bond in amorphous silicate, O-CSEs
11	amorphous Al ₂ O ₃ (?), O-CSEs
11.3	phonon mode in SiC lattice, C-CSEs
13	spinel(?), O-CSEs
15-50	>40 features in crystalline silicates, such as olivines
	(e.g., forsterite) and pyroxenes (e.g., enstatite), O-CSE
17	spinel(?), O-CSEs
18	bending of O-Si-O bond in amorphous silicate, O-CSE
19.5	magnesiowustite (Mg,Fe)O(?), O-CSEs
20	TiC(?), "21 μm feature," post-AGB C-CSEs
30.	MgS(?), peaks in the range 26-33 µm, C-CSEs
31.8	spinel(?), O-CSEs
43	crystalline H ₂ O ice, O-CSEs
62	crystalline H ₂ O ice, O-CSEs
62	dolomite, PN
92	calcite, PN

ISO Spectra

ISO, SWS spectrum for M and C-star, as well as a star showing a mixed chemistry (V778 Cyg).


ISO, LWS spectrum for M-star

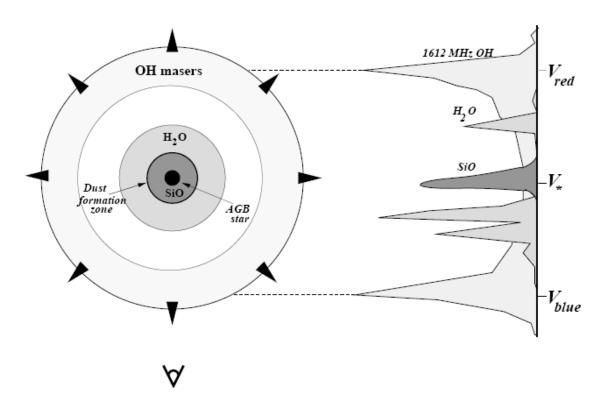
Masers

- A special class of observations from AGB stars are formed by the masers.
- AGB stars show maser emission in the (radio) lines of
 - SiO (43, 86 GHz)
 - $-H_2O$ (22 GHz)
 - OH (1612, 1622 MHz)
 - And some others (HCN, CS, SiS).
- The maser phenomenon occurs when there is a population inversion (higher energy state more populated than lower energy state).
- This requires a so-called 'maser pump' (collisions or radiation).

Maser Mechanism

- An inverted population means that instead of absorption stimulated emission becomes dominant.
- This leads to an amplification of the photon flux ('negative optical depth').

Maser Physics


- The maser emission gets amplified as long as the pump can counteract the de-excitation caused by the stimulated emission. Beyond that point the maser is said to 'saturate'.
 - Since the induced emission is like a positive absorption, far from saturation the intensity increases exponentially:

$$\frac{dI}{dz} = \gamma_0(\nu) \cdot I(z)$$

$$I(z) = I_{in} e^{\gamma_0(\nu)z}$$

This means that masers can be very bright, which makes them easily observable, and to very large distances.

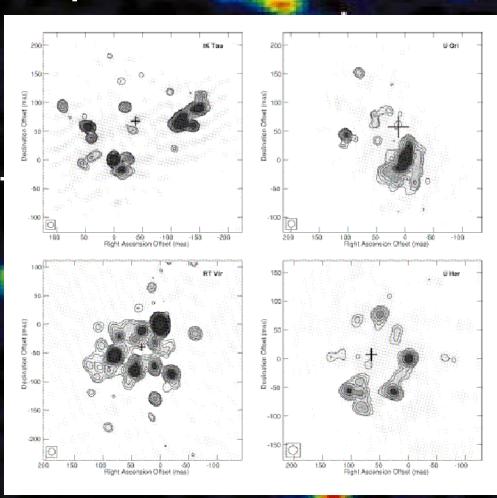

Different Zones

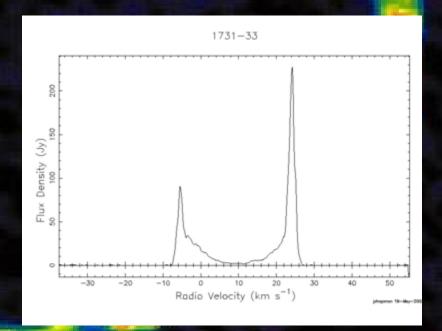
Figure 1.2: A schematic overview of the masers in a circumstellar envelope and their corresponding spectra. The two peaks in the OH spectrum correspond to the front and the back-side of the expanding envelope. The H_2O masers are found closer to the star and show much more irregular spectra. The SiO masers are found closest to the star and have a velocity closely centered on the stellar velocity.

Maser Spots

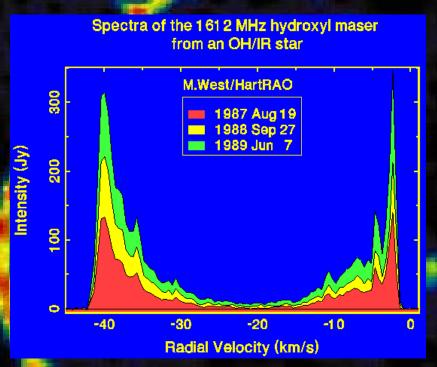
- The SiO and H₂O maser emission is dominated by maser spots: small regions of bright emission.
 - The spots show shell-like distributions, but are difficult to map back to any density distribution since the maser process is so non-linear.

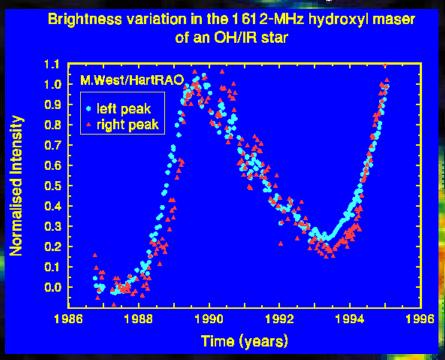
H₂O masers spots

OH Maser Shells

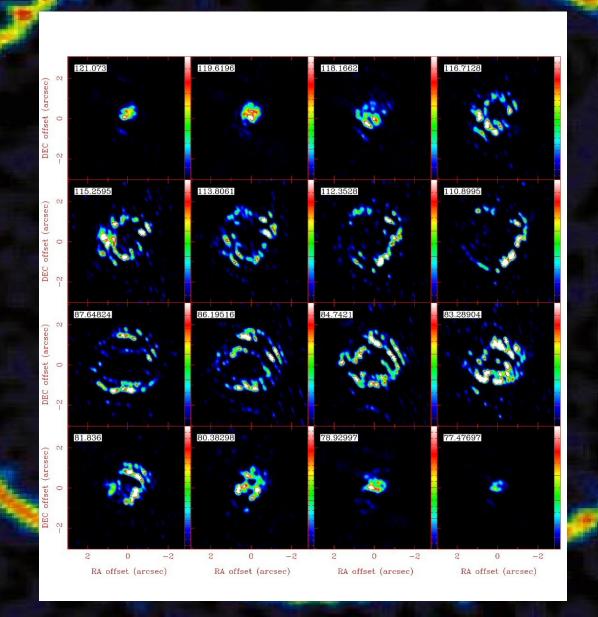

 The OH masers form in the photo-dissociation region of H₂O, so at relatively large radii, ~10¹⁷ cm.

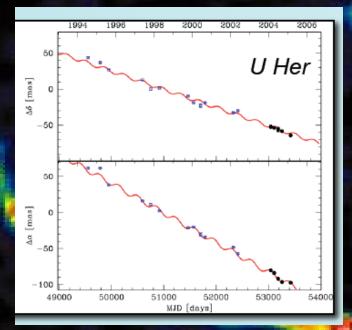
In contrast to the other two types, OH maser emission is often found in shell-like configurations.


The spectral line therefore consists of a characteristic


double peaked profile.

The pump for the OH maser is IR radiation from the star, and so the maser emission follows the variability of the star.


OH Maser Observations


- The variability of the two peaks are slightly out of phase, because of the light travel time from the star to the OH maser shell: Δt=D_{shell}/c
- If we measure the angular size of the shell, we can find the distance to the object.

OH Maser Shell Channel Maps

Astrometry with OH Masers

- For bright masers, it is also possible to observe them with Very Long Baseline Interferometry (VLBI). This gives a positional accuracy of 1mas.
 - Monitoring the movement of maser spots over many years allows you to find proper motion and parallax to the star:

<u>Source</u>	P-L	Hipparcos	VLBI distance
U Her	380 pc	532 pc	266 pc
S CrB	470 pc	417 pc	418 pc
RR AqI	540 pc	403 pc	633 pc
R Cas	200 pc	106 pc	176 pc
W Hya	90 pc	115 pc	98 pc

Errors on VLBI distance: 10-20%

Vlemmings et al.