Part III Early stages in stellar evolution

PhD course originally developed by René Liseau Updated to Master level course by Alexis Brandeker

Early stages in stellar evolution

- L15 General Overview / Pre-collapse phase I
- L16 Pre-collapse phase II
- L17 Collapse phase I
- L18 Collapse phase II
- L19 Circumstellar disks I
- L20 Pre-main-sequence evolution
- L21 Circumstellar disks II debris disks

Circumstellar disks

• *Inevitable* consequence of star formation:

$$\Omega_{1}r_{1}^{2} = L_{1} = L_{0} = \Omega_{0}r_{0}^{2}$$

$$\rightarrow \Omega_{1} = \Omega_{0}(r_{0}/r_{1})^{2}$$

- Collapse compresses scale r from $r_0 \approx 0.2$ pc = 40000 AU to $r_0 \approx R_{\rm sol} = 0.005$ AU $\rightarrow r_0/r_1 \approx 10^7$ and $\Omega_1 \approx 10^{14} \Omega_0$
- Assumes conservation of angular momentum

Magnetic braking

Stahler & Palla : the *centrifugal radius*

$$\varpi_{cen} = 0.3 \operatorname{AU} \left(\frac{T}{10 \operatorname{K}} \right)^{\frac{1}{2}} \left(\frac{\Omega}{10^{-14} \operatorname{s}^{-1}} \right)^{2} \left(\frac{t}{10^{5} \operatorname{yr}} \right)^{3}$$

Figure 10.16 (a) Orientation of the orbital plane within a collapsing cloud. The plane is tilted from the rotation axis by the angle θ_0 . A fluid element has the instantaneous polar angle θ relative to the axis and crosses the equatorial plane at a radial distance r_{eq} , less than the maximum value ϖ_{cen} . (b) Near the position of the fluid element, mass continually flows downward through the shaded patch.

Predictions of disks

P.S. Laplace 1796, 1799

Exposition du systeme du monde Mechanique celeste

I. Kant 1755

Allgemeine Naturgeschichte und Theorie des Himmels

Predictions of disks

Lynden-Bell & Pringle 1974, MNRAS 168, 603:

Dust grain opacities

See Ph. Thebault's lecture

Beckwith et al. 2000, PP IV

40 observed SEDs of T Tauri Stars and `mean model' of star+disk

Gas Disks – Structure Models

Steady Disks around Single Stars

Boundary Conditions R_{in} : boundary layer, magnetosphere, hole? *R*_{out}: ad hoc? , interstellar turbulence? MHD/rotation (Hawley & Balbus 1995) Viscosity Opacity $\kappa = \kappa(\rho, T, ..., XYZ, ..., \zeta_0, ..., \chi_v, ...)$ Adams & Shu 1986 (flat) Models [examples] Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998,... 2003 Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D) Wolf 2003 (3D)

Two categories of disks observed

T Tauri Disks: around young stars (0.1 - 10 Myr) of half a solar mass (0.1 - 1 M_{sol}) at 150 pc distance (50 - 450 pc) in and/or near molecular clouds *Accretion Disks*

Debris Disks:around young ms-stars(10 - 400 Myr)of about a solar mass(1 - 2 M_{sol})at 20 pc distance(3 - 70 pc)in the general fieldVega-excess stellar disks

Frequency of disks

High Rate of occurence around young stars

NGC 2024	86%
Trapezium cluster	80%
IC 348	65%

Frequency of disks

Observed disk sizes

T Tauri/HABE disks

50 – 100 AU Dust: mm-continuum interferometry

100 – 300 AU Dust: scattered stellar light

300 AU Gas: CO lines (evidence for Kepler rotation)

Silhouette disks (``proplyds´´)

up to 1000 AU Dust: scattered stellar light

Observing disk masses

CO and Dust

Gas disk evolution time scales

$$t_{\rm dyn} \sim \alpha t_{\rm therm} \sim \alpha (H/R)^2 t_{\rm visc}$$

 $t_{dyn} \sim 1/\Omega_{Kepler}$ $\alpha \sim 10^{-3} - 10^{-2}$ H/R << 1if $T \sim R^{-1/2}$, $t_{visc} \sim R$ $t_{visc} \sim 10^5$ yr ($\alpha/0.01$)⁻¹ (R/10 AU)

Disk dispersal mechanisms

SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external star evap c = photoevaporation central star

All for Trapezium conditions

Physical Mechanisms Hollenbach et al. 2000 PPIV

Accretion signatures

From Camenzind (1990)

Accretion signatures

residual = profile - average

Disk lifetimes

Gas rich to gas poor evolution?

Disk evolution?

Discovery of debris disks

From Backman & Parece 1993, PPIII, 1253

Discovery of debris disks

From Backman & Parece 1993, PPIII, 1253

β Pictoris

Discovery image by Smith & Terrile 1984 (Sci. 226, 1421)

Properties

- Large (up to 1000 AU) dusty disks found around young main-sequence stars ~ 10 Myr – 1 Gyr
- Dust disk mass M $\sim 10^{-3}$ to a few M_{Earth}.
- Essentially free of gas
- Cold; typically 30 300 K
- Dominating dust emission from µm to mm sized grains

Observational difficulties

Late gas disk evolution?

- Young disks: gas/dust ~100 (?)
- Old disks: dust/gas ~100 (?)

More observational difficulties

Favourable case: β Pictoris

 β Pictoris found to be "shell" star by Slettebak (1975, ApJ, 197:137)

Favourable case: β Pictoris

mm/submm observations

Gas in emission

Sodium D1/2 lines toward β Pictoris

 β Pictoris

Conclusions

- Circumstellar disks are a consequence of star formation
- Disks are the formation environments for planets
- Disk lifetimes dictate the timescale available for planet formation
- Disks start out gas rich and end up dust rich
- Accretion is intimately linked to outflow