Type Ia supernovae = thermonuclear explosions

Homogeous spectra

Exceptions

Delta m₁₅

Low Redshift Type Ia Template Lightcurves

Philips relation

Ζ

Type Ia progenitors

I. Double degenerate = merging binary white dwars

II. Single degenerate = white dwarf + MS or red giant

Only one progenitor known = Tycho

The progenitor of a Type Ia supernova

Explosion mechanism

Thermonuclear burning of C/O white dwarf as M > M_{Chandra}

Burning to NSE = ⁵⁶Ni

I. Deflagration = subsonic burning front. WD expands \Rightarrow density decreases \Rightarrow only center to NSE \Rightarrow C, O, Mg, Si, Ca on outside

II. Detonation = supersonic burning front. WD does not have time to expand \Rightarrow whole star to NSE \Rightarrow ⁵⁶Ni only

Observations: Lines of Si, Mg, ... at high velocity

No C/O at low velocity

Delayed detonation

Deflagration

Delayed det.

Riess et al 2006

Systematic effects?

- 1. Dust extinction. Use IR and elliptical galaxies
- 2. Evolutionary effects: C/O ratio depends on metallicity. Explosion energy depends on C or O.
- 3. Different progenitors? Some in star forming galaxies, some in ellipticals.
- 4. Contamination by Type Ib/c SNe

No strong indications of evolutionary effects are found

Hubble diagram in IR

FIG. 3.—Comparison between the mean optical/NIR R_{ν} -dependent extinction law from eqs. (2) and (3) and three lines of sight with largely separated R_{ν} values. The wavelength position of the various broad-band filters from which the data were obtained are labeled (see Table 3). The "error" bars represent the computed standard deviation of the data about the best fit of $A(\lambda)/A(V)$ vs. R_{ν}^{-1} with $a(x) + b(x)/R_{\nu}$ where $x \equiv \lambda^{-1}$. The effect of varying R_{ν} on the shape of the extinction curves is quite apparent, particularly at the shorter wavelengths.

Redshift in CMB frame (km/sec)

Conclusions

- 1. We do not know the progenitors
- 2. We do not understand the explosion mechanism
- 3. Type Ias are still good standard candles