
5 Pulsations

Most AGB stars are variable stars, due to the fact that they pulsate. The periods are
long, from 10 to 1000s of days, and they are therefore calledLong Period Variables,
or LPVs. These long periods make it time-consuming to collect accurate light curves.
In recent years a lot of progress has been made in this area dueto several large area
surveys programs (aimed at the more fashionable subject of micro-lensing) such as
MACHO, OGLE, EROS and MOA.
Note however that the first ever variable star discovered in modern astronomy was an
AGB star,o Ceti (Fabricius, 1596), from then on known asMira. When later stars with
similar variability characteristics were discovered these were called Mira variables.
The LPVs are observationally divided into several classes (see Fig. 15)

Mira variables They have very regular light curves, with amplitude∆V > 2.5m, and
periodsΠ > 100 days.

Semi-regular variables (SRVs) These have fairly regular light curves with∆V <
2.5m, andΠ > 20 days.

Irregular variables (Irr) These have irregular light curves, with small∆V and no
clear period.

Note that these definitions are based on theoptical light curves. The bolometric varia-
tions in luminosity are often much less dramatic, see Fig. 16. It is also true that many
Irr’s just suffer from a poor sampling of their light curves,and on closer inspection do
show signs of specific period(s).
Some AGB stars are so heavily obscured by their circumstellar material that they have
no observable optical emission. The so-called OH-IR stars are only observable in the
infrared (and from their OH maser emission), and are variable with very long periods,
more than 500 days.

5.1 Period-Luminosity Relations

As expected from the theory of pulsations, relations exist between period and lumi-
nosity. A major breakthrough was made after the MACHO results allowed the deter-
mination ofΠ andL for a large sample of AGB stars in the Large Magellanic Cloud
(LMC), see Fig. 17. A series of relations can be discerned, denoted by A, B, C, D, E in
the figure. The ratios between the A, B, and C periods suggest that

C fundamental mode radial pulsations (Miras)

B first overtone mode radial pulsations (SRVs)

A second overtone mode radial pulsations (SRVs)

Relation D is a mystery, either it represents another type ofpulsation (non-radial), or
it is connected to binarity. Relation E is definitely associated with binaries (Derekas et
al. 2006).
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Figure 15: Examples of light curves of Mira variables (top four panels) and semiregular
variables (bottom six panels) in the LMC from the Macho database. The bandpass of
the lightcurves is MACHO blue, which is centered near 0.53µm, similar to the visual
bandpass. All red giants in the MACHO database seem to show distinct periodicities
at some times, but without high quality light curves such as these, they would possibly
be classified as irregular.
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Figure 16: Lightcurve for the Mira variable RR Sco in the bandpasses UBVRIJHKL.
The UBVRI light curve come from Eggen (1975), while the JKHL light curves are
from Catchpole et al. (1979).
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Figure 17: The period-luminosity relations for a sample of MACHO observations.
Several sequences can be discerned, showing that AGB stars pulsate in different modes.
The stars indicated with plus signs are eclipsing binaries.From Derekas et al. (2006)
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Figure 18: The period-luminosity diagram for a sample of redgiants in the Large
Magellanic cloud (LMC), observed in the OGLE project. OSARGvariables are shown
as blue points (RGB as light blue, AGB as dark blue). Miras andSRVs are marked
with pink (O-rich) and red (C-rich) points. Light and dark green points refer to O-rich
and C-rich Long Secondary Period variables, respectively (binaries?). Yellow points
indicate ellipsoidal red giants. From Soszyński et al. (2007).

Before the MACHO results, there was very little data to work with, and one tried to
derive stellar radii using interferometry, so as to establish the mode of the pulsations.
Those measurements showed Miras to be first overtone pulsators. Since the MACHO
results show them to be fundamental mode pulsators, the conclusion is that there is
something wrong with the interferometric measurements of stellar radii. Recent results
show that some AGB stars may be aspherical (Ragland et al. 2006).
The story does however not end here. More recent data from theOGLE survey has
revealed a large group of variable red giant stars that have been called OSARGs (OGLE
Small Amplitude Red Giants). Some of these are on the RGB (showing that also those
stars are variable), some on the AGB. These stars occupy mostof the A and part of the
B sequence from the MACHO data (Soszyński et al. 2007, see Fig. 18). The proper
Mira and SRVs lie on two sequences indicated by C and C′ in Fig. 18, corresponding
to fundamental mode and first overtone pulsators. Differences between C- and M-stars
can also be seen. Clearly the interpretation of all this variability data is still variable
itself.

5.2 Theory of Pulsations

There is a large body of work on understanding stellar pulsation, the foundations of
which were layed by Eddington. Much of this work concentrates on hotter stars with
radiative stellar envelopes, which simplifies the theory compared to the convective en-
velopes of the cool AGB stars. The hotter stars are for example the Cepheid variables
(important for the cosmological distance scale) and RR Lyrae stars.
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The theory of pulsation is basically a stability analysis for stars, i.e. studying how a star
reacts to perturbations. From such an analysis one obtains

• frequencies of modes

• whether or not the star is stable against these modes.

Stability analysis usually starts with linear perturbations: small variations around an
equilibrium solution, neglecting the higher order (non-linear, quadratic and higher)
terms in the equations. For AGB stars matters are complicated by the fact that one tries
to calculate the stability of a convective stellar envelope, but no fully self-consistent
theory for convection is available.

5.2.1 Estimate of luminosity-period relations

The fundamental mode is a radial pulsation with its wavelength equal to the stellar
diameter

Π = 2R∗/cs (28)

wherecs is the (adiabatic) sound speed,c2
s = γadp/ρ.

By assuming that the variations are around an equilibrium solution, one can use the
Virial Theorem

−Ωgrav = 2Kthermal = 3
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Sincedm
dr = 4πr2ρ, this can be rewritten as
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The graviational energy of the star is
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whereα is a dimensionless number which depends on the internal density structure of
the star. Combining the expression for the gravitational and thermal energies through
the Virial Theorem gives
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which means that the pulsation period for the fundamental mode will depend on the
average density of the star. Using typical parameters for a Mira, M = 1 M⊙, R =
200 R⊙, α = 2, one obtainsΠ ≈ 0.3 years.
The above analysis also leads immediately to a period-luminosity relation
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(33)
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A more elaborate perturbation calculation, assuming adiabatic conditions, but using

p(m, t) = p0(m) [1 + δp(m) exp iωt] (34)

ρ(m, t) = ρ0(m) [1 + δρ(m) exp iωt] (35)

r(m, t) = r0(m) [1 + δr(m) exp iωt] (36)

leads to a series of frequenciesω0, ω1, ω2, etc., which are the fundamental mode, the
first overtone, second overtone, etc. Expressed as a period,the relation between theΠ
values of these modes is

Πn ∝
√

n + 1〈ρ〉− 1

2 (37)

5.2.2 The κ mechanism

For a star to be actually pulsating in one or more of these modes, energy needs to be
fed in at the right time during a pulse cycle. As first realizedby Eddington, the key is
to block energy transport during the compression phase. This raises the pressureafter
compression, leading to expansion and restoration of the state at the start of the cycle.
If energy transport is radiative, it is inversely proportional to the opacityκ, so in order
to achieve the effect described above, we need to increaseκ upon compression. A
reasonable approximation for the opacity inside a star is Kramer’s opacity

κ ∝ ρT−3.5 (38)

For this opacity law, the density increase in a compression goes in the right direction
of increasing the opacity, but this effect will be more than offset by the decrease of the
opacity caused by the temperature increase during compression. So, standard stellar
opacity will not trigger pulsations.
However, in zones of partial ionization (of either He or H), the heat added by com-
pression will be mostly used to increase the ionization fraction, and will hardly raise
the temperature. Then as the density goes up, and the temperature remains constant,
the opacity will go up. This is known as theκ mechanism for stellar pulsations, and
it explains the pulsational instabilities in Cepheids and RR Lyrae stars. In fact, the re-
quirement of having these zones while still keeping a radiative stellar envelope, defines
a region in the HR-diagram known as the instability strip.

5.2.3 Pulsation models for AGB stars

For AGB stars energy transport is dominantlyconvective, and thus independent of the
opacity, so in the simplest interpretation theκ mechanism should not work. The obser-
vations show this conclusion to be wrong. However, to explain the pulsational instabil-
ity in AGB stars one needs a dynamic theory of convection, forwhich currently only
approximations exist (‘mixing length theory’). Models based on this approximation of
convectice energy transport are the only ones that are available, and should hopefully
give at least a qualitative understanding of the pulsational behaviour of AGB stars.
Figure 19 shows some results from such a model. The top panel shows that most energy
is transported convectively, and also indicates the the H and He ionization zones, which
are still important for the model. The bottom panel shows howthe radial excursion is
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rougly proportional for the fundamental mode, while the first overtone is concentrated
towards the photosphere. The third panel shows the so-called partial work integral
Wr which is the sum of all the work done interior ofr during one pulsation cycle. The
regions whereWr increases with radius contribute to exciting the pulsation, the regions
of negativeWr gradient are damping pulsations. Clearly the H and He ionization zones
contribute to exciting the pulsation. The second panel shows the quantityJΣ2

r, the
absolute gradient of which shows which regions contribute most to the period. For the
fundamental mode it are the top layers of the H ionization zone which contributes most
to determining the pulsation period. For the first overtone no regions clearly dominates.

5.3 Non-radial pulsations

Stars may also pulsate non-radially: angular patterns of pulsation in addition to the
radial patterns. Not much is known about non-radial pulsations in AGB stars, but they
are sometimes invoked to explain observed asymmetries (forexample in the mass loss).
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Figure 19: Various properties of a model Mira variable withL = 5000 L⊙ andM =
1 M⊙ and solar metallicity plotted against radius within the star. The fundamental
mode period of the model is 333 d, similar to that of the prototypical Mirao Ceti. Top
panel: logT (dotted line) and the fraction of the energy flux carried by convection
(solid line); second panel: the partial integralJΣ2

r for the fundamental mode (solid
line) and the first overtone (dotted line); third panel: the partial work integralWr for
the fundamental mode (solid line) and the first overtone (dotted line); bottom panel:
the real partδR of the eigenfunction for the fundamental mode (solid line) and the first
overtone (dotted line), where the eigenfunction is defined to have complex amplitude
(1.0,0.0) at the stellar surface. Based on Fox & Wood (1982).
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