
6 Mass Loss

As was pointed out earlier, mass loss dominates the stellar evolution on the AGB

Nuclear fusion ∼ 10−8 M⊙ yr−1

Mass loss > 10−7 M⊙ yr−1

Historically it took a long time to appreciate the full magnitude of mass loss on the
AGB since the circumstellar material (CSM) only emits appreciably at IR- and short
radio-wavelengths, which only became observable in the 1970s. After the data from
space infrared observatories such as IRAS (1984) became available, mass loss from
AGB stars could be studied systematically.

6.1 Initial-Final Mass Relation

From the point of view of stellar evolution, it is the total, integrated mass loss
∫

Ṁdt
hat is most important. This can be observationally constrained using theInitial-Final
Mass Relation, derived from White Dwarf masses in open clusters of known age and
distance, see Fig. 20. Due to the paucity of data, this IFMR isnot well extremely well
established and for example its metallicity dependence is disputed. However, it seems
clear that stars with mass 1—6M⊙ end up as WDs with masses∼ 0.5—1 M⊙.

6.2 Mass loss recipes

To include mass loss in evolutionary calculations requiresrelating it to the basic stellar
parameters. However, as we will see, we lack a detailed understanding of the phys-
ical processes behind the mass loss from AGB stars, so mass loss cannot be self-
consistently included in evolutionary calculations. However, a number of physical-
empirical relations have been suggested, and used in actualcalculations. The first of
these relations was proposed by Reimers (1975)

ṀReimers = 4 × 10−13η
(L/L⊙)(R/R⊙)

(M/M⊙)
M⊙ yr−1 (39)

whereη is a ‘fudge factor’. This relation was really only valid for RGB stars, but since
it was simple to use, it also became popular for use on the AGB (but with a higher
value forη).
From trying to reproduce the empirical IFMR, Blöcker (1995) proposed a modified
form for use during the AGB:

ṀBl = 4.83 × 10−9

(

M

M⊙

)−2.1(
L

L⊙

)2.7

ṀReimers (40)

Vassiliadis & Wood (1993) proposed another relation, whichwas derived from fits
to observed mass loss rates (see Fig. 21), imposing a maximummass loss due to a
radiation pressure limit (single scattering, see Eq. 55).

ṀVW = min(Ṁradpres, Ṁsuperwind) (41)
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Figure 20: The initial-final mass relation. Filled circles are binned points from open
clusters with four or more WDs; crosses are from clusters or binary systems with three
or fewer WDs. The solid line is a least-squares linear fit to these points. The dashed
line is the linear fit from Ferrario et al. (2005); the dotted line is the inversion of the
field WD mass distribution presented in that work. Open squares, which werenot
included in the fits, are from Dobbie et al. (2006) for GD 50 andPG 0136+251. The
agreement between these points and the extrapolation of thelinear fit is encouraging.
From Williams (2006).
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Figure 21: Mass loss ratėM (M⊙ yr−1) plotted against period for Galactic Mira vari-
ables of spectral type M and S (filled circles) and C (open circles) and for pulsating
OH/IR stars in the Galaxy (triangles) and the LMC (squares).The solid line is the an-
alytic fit used for low-mass stars (M < 2.5 M⊙) with the mass loss rates less than the
radiation-pressure driven limit. The dashed line is the equivalent relation for a 5M⊙

star, while the dotted line corresponds to mass loss at the radiation-pressure-driven
limit for a typical intermediate mass (5M⊙) LPV in the LMC with Mbol = −6.5 and
vexp = 12 km s−1.

with

Ṁradpres =
L/c

vexp
, with vexp = −13.5 + 0.056Π(days) (42)

log10 Ṁsuperwind = −11.4 + 0.0123Π(days) (43)

All these are popular recipes, but they lack any profound base in the fundamental
physics of the mass loss process.

6.3 Mass loss measurements

The estimated mass loss rates range from10−8 to 10−4 M⊙ yr−1 (see Fig. 22). The
highest values are often referred to as thesuper wind. Typical velocities for the mass
loss are in the range 5—30 km s−1 (see Fig. 23), so these are relatively slow winds.
However, since the temperatures in the winds are also low, they are still supersonic
(cs(100 K) ∼ 1 km s−1).
As we already saw in Fig. 21, there is a relation between mass loss rate and pulsational
period. However, this relation is not a simple one, probablybecause other factors (e.g.,
metallicity) come in. This is shown more clearly in Fig. 24 which contains a larger
sample of AGB stars (separated into M- and C-stars).
Measuring mass loss rates accurately is notoriously difficult. For a steady, spherically
symmetric mass loss we have

Ṁ = 4πr2ρv , (44)
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Figure 22: Mass loss rate distributions for two samples of M-stars, and two samples of
C-stars. For the optical C-stars, the subsample with stars within about 500 pc is darker.
From Olofsson (2004).
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Figure 23: Gas expansion velocity distributions for selected samples of M- and C-stars.
From Olofsson (2004).

40



Figure 24: Mass loss rate versus period for three samples of M-stars [SRVs (diamonds),
Miras (circles), and Galactic Center OH/IR stars (squares)], and a sample of optically
bright C-stars. From Olofsson (2004).

so if the velocity is constant,ρ ∝ r−2. However, both the mass loss rate and the
velocity may vary in time.
To measureρ(r) we need a ‘probe’ (atom, molecule, dust grains) emitting radiation.
This probe may have a position dependent abundanceA(r), depending on the chem-
istry in the gas. Furthermore, the emissivity of the probe may also vary with radius,
depending on the local temperature and radiative transfer effects. So, typically we mea-
sure only a small part of the circumstellar medium, and the above effects (abundance,
temperature, radiative transfer) are not always easily quantified. Examples of probes
for measuring mass loss are: CO thermal emission, dust thermal emission, OH maser
emission. We will come back to these later.
A sceptical estimate would be that observed mass loss rates are uncertain with∼ 1
order of magnitude.

6.4 Theory of pulsation/dust-driven mass loss

AGB winds are slow and have high mass loss rates, a combination that has been difficult
to achieve with stellar wind models. The observations suggest a connection with the
pulsational period (Fig. 24). The only successful models are based on pulsating stellar
atmospheres and radiation pressure on dust, see Fig. 28 for acartoon impression. We
will now describe this in some more detail.

6.4.1 Stellar Wind Equation

Stellar winds are radial flows in the star’s gravitational field, which means that they
need to fulfill certain strict criteria. The momentum equation for the gas can be written
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Figure 25: Mathematical solutions for the stellar wind equation. The only solution that
represents a stellar wind is the one accelerating through the critical point.

as

v
dv

dr
= −

1

ρ

dp

dr
−

GM

r2
+ f(r) (45)

(steady flow), wherev is the velocity,p is the pressure,ρ the mass density, andf(r)
some external force (responsible for driving the mass loss). Combining Eq. 45 with
44 and using the isothermal sound speedc̄2

s = p/ρ (different from the adiabatic sound
speedc2

s = γp/ρ), we get

dv

dr
=

v

v2 − c̄2
s

(

2c̄2
s

r
−

dc̄2
s

dr
−

GM

r2
+ f(r)

)

(46)

For v = c̄s this equation has a singularity. In Fig. 25 this point is indicated by (1,1).
The lines in that figure represent solutions to Eq. 46. The solution families II and III
are multivalued, and therefore unphysical. Stellar wind solutions need to start at low
velocity, and keep increasing their velocity until they reach some equilibrium velocity
(vinfty). Figure 25 show that there is only one solution that does, and this is the one
that goes through the point (1,1), orv = c̄s, the so-called critical point.
Without an external forcef(r) the mass loss is typically weak. This is for example the
case for the Sun (̇M⊙ ∼ 10−14 M⊙ yr−1). However, just applying any radial force
will not necessarily increase the mass loss rate. The radialdependence of the external
force is crucial for its effect on the wind.
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First note that for a constantc̄s (i.e. isothermal conditions), the position of the critical
point is

rc =
GM

2c̄2
s

−
f(rc)r

2
c

2c̄2
s

(47)

so if f(rc) > 0, rc moves inwards. Since the density is typically higher at smaller
radii, the effect is thatṀ increases.
However, iff(rc) = 0, andf(rc) > 0 for r > rc, the mass loss willnot increase.
Instead the wind will experience an extra acceleration beyondrc and achieve a higher
velocity. The conclusion is thus that high mass loss rates can only be achieved if the
extra force operates effectively at or belowrc.
When the external force is due to continuum radiation it typically has ar−2 component,
just like gravity. It is therefore useful to write

−
GM

r2
+ f(r) ≡ −(1 − Γ)

GM

r2
(48)

and with this definition Eq.47 becomes

rc(Γ) =
GM(1 − Γ)

2c̄2
s

(49)

Analysing the wind equation (Eq. 46) we can distinguish three regions

1. r < rc: the∂p/∂r term dominates and the solution is ‘atmosphere-like’.

2. r ≈ rc: apply the external force in this region to boost the mass loss rate

3. r > rc: the∂p/∂r term becomes unimportant and the solution is ‘wind-like’;
apply external force here to boost the wind velocity.

A hydrostatic, stationary atmosphere has an exponential radial density law

ρ(r) = ρ0 exp

{

−
r − r0

H

r0

r

}

(50)

H =
c2
s

GM
r2
0 (51)

whereH is the so-called scale height and forr < rc the solution to Eq. 46 is indeed
very close to this solution.

6.4.2 Scale height problem

ForM = 1M⊙, r0 = R∗ = 300R⊙, T = 2500 K, we get thatH/R∗ = 0.05, so this
means that the density drops rapidly as we move away from the stellar surface. The
effect is that even when the forcef pushes the critical pointRc inward, the mass loss
is found to be too low. For example, the parametersM = 1M⊙, r0 = R∗ = 100R⊙,
T = 2500 K, Γ = 0.5 giveṀ ∼ 10−16 M⊙ yr−1.
However, for a pulsating atomosphere, the effective scale height will be substantially
larger. The reason is that the pulsations create sound waveswhich travel outward,
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Figure 26: Position of selected mass shells as a function of time for a dynamical model
atmosphere (Höfner et al. 2003) with the following parameters:T eff = 2800 K, L =
7000 L⊙, M = 1 M⊙, ǫC/ǫO, Π = 390 days, and piston velocity amplitude 2 km s−1

(Time in periods, radius in units of the photospheric radiusR∗ = 355 R⊙ of the
hydrostatic initial model.

effectively ‘lifting up’ the atmosphere. In fact the sound waves will often steepen into
shock waves, causing substantial compression, thus increasing the density even more.
A simple energetic argument can be used to estimate the magnitude of this effect.
If a shell of massMs is accelerated by a shock of velocityv0, it will acquire a kinetic
energy1

2Msv
2
0 . This will allow it to travel to a radiusrmax given by

1

2
Msv

2
0 = −GMMs

(

1

rmax
−

1

r0

)

⇒ (52)

rmax

r0
=

(

1 −

(

v0

vesc

)2
)−1

(53)

For M = 1M⊙, r0 = R∗ = 300R⊙, we getvesc = 35 km s−1. If we takev0 =
15 km s−1 (from observations), we get thatrmax/r0 ≈ 1.3, so the shock waves will
lift the atmosphere by a substantial factor. Detailed numerical hydrodynamic models
give roughly the same number (see Fig. 26).
In fact, the increased time-averaged scale height of such a pulsating atomosphere (see
Fig. 27) can become so high that this process alone can set up amass outflow. However,
also this wind has too low a mass loss rate to explain the windsfrom AGB stars.
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Figure 27: The density versusr as influences by shocks in a Mira variable. The density
falls roughly asr−5 just above the hydrostatic region and falls roughly asr−3 in the
outermost region. The curves are labeled with the velocity amplitude (in km s−1) of
the pulsations. Notice that the scale of the density for the region beyond the static base
is set by the amplitude of the pulsation,∆v. From Bowen (1988).

6.4.3 Radiation pressure

The force thought to be responsible for driving the high massloss rate winds from AGB
stars is radiation pressure on dust. For the the process theΓ factor can be written as

Γd =
κrpL∗

4πcGM
(54)

whereκrp is the mean opacity for radiation pressure. Thisκrp is much higher for dust
particles than for gas particles, making them a particularly efficient agent for acceler-
ating the gas.
Let us look at what mass loss we can get from radiation pressure. Each photon carries
a momentumhν/c. If it transfers this toone dust particle one can obtain an estimate
for the mass loss rate. The total momentum rate in the photonsis L∗/c, and the total
momentum rate in the wind iṡMv∞, implying that

Ṁ = L∗/(cv∞) , (55)

an estimate that is known as thesingle scattering limit. For L∗ = 104 L⊙, v∞ =
10 km s−1, we get from this limitṀ = 2 × 10−5 M⊙ yr−1, a very appreciable mass
loss rate for an AGB star. We saw above that the mass loss recipe of Vassiliadis &
Wood (1993) was using this limit.
However, the single scattering limit is a very conservativeestimate. Note that if one
considers the energy budget instead of the momentum one, theenergy rate in the wind
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is Lwind = 1
2Ṁv2

∞, which is much less than the available energy rate in the photons
L∗, since in the single scattering limitLwind/L∗ = 1

2v∞/c ≪ 1. This suggests that a
higher mass loss should be possible. This can be achieved throughmultiple scatterings.
If we take the wind momentum equation Eq. 45 and integrate it over dm = 4πr2dr
from the stellar photosphere to infinity, we get

∫ ∞

R∗

4πr2ρv
dv

dr
dr +

∫ rc

R∗

[

1

ρ

dp

dr
+

GM

r2

]

dm

+

∫ ∞

rc

1

ρ

dp

dr
dm +

∫ ∞

rc

GM

r2
(1 − Γd)ρ4πr2dr = 0 (56)

The first integral is actually the momentum rate in the windṀv∞, since the velocity at
R∗ will be much less thanv∞. The second integral considers the pressure and gravity
force below the critical point. Since the flow is close to hydrostatic equilibrium in that
region, this term can be taken zero. The third integral does not contribute much as the
gas pressure gradient is no longer important beyond the critical point (in the supersonic
part of the wind). We thus get from Eq. 56

Ṁv∞ = 4πGM∗(Γd − 1)

∫ ∞

rc

ρdr (57)

but since the optical depth in the wind is defined as

τw =

∫ ∞

rc

κrpρdr (58)

we find that

Ṁv∞ =
L∗

c

(

Γd − 1

Γd

)

τw ≈
L∗

c
τw for Γd ≫ 1 (59)

where we have used Eq. 54.
So for a high optical depth,̇M can be substantially higher than the single scattering
value. However, the value forτw cannot be arbitrarily high. We already saw that we
get an absolute maximum due to the available energy. This gives

τw <
2c

v∞
(60)

Taking into account the fact that stellar luminosity is reduced due to its use as wind
accelerator, one in fact find a more strict

τw <
c

v∞
= 27

√

Ṁ/10−5

L/105
(61)

6.4.4 Velocity distribution

To find the velocity at infinity we can use the momentum equation beyondrc where the
pressure terms can be neglected

v
dv

dr
=

1

2

dv2

dr
=

GM

r2
(Γd − 1) (62)
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Figure 28: A cartoon-like representation of the wind forming region around an AGB
star. From Woitke.

Integrating this fromrc until ∞ gives

v2(r) = v2
( rc) + v2

∞

(

1 −
rc

r

)

(63)

v2
∞ ≡

2GM∗

rc
(Γd − 1) = vesc

R∗

rc
(Γd − 1) (64)

The last expression shows thatv∞ is typically of order the escape velocity from the
stellar surface (sinceΓ > 1 andrc > R∗). If we substituteM = 1M⊙, L∗ = 104 L⊙,
rc = 2 × 1014 cm, we getv∞ = 16 km s−1 and atr = 5rc already 90% of this value
has been reached.

6.5 The role of dust

For a complete picture of the mass loss process we need two more ingredients

• dust formation

• gas-dust coupling

6.5.1 Dust formation

Dust formation is a complicated issue, of which we have only limited understanding.
Observationally it is clear that AGB stars form two different types of dust grains

Carbon stars amorphous carbon grains

M-type stars ‘dirty’ silicates
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Figure 29: As Fig. 28, but with detailed labelling of the various regions and the relevant
physical processes, and showing the differences between O-and C-rich stars. From
Hron.
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Although the silicates are more common, we have a better understanding of carbon
grain formation (partly due to research carried out for non-astrophysical reasons). Car-
bon as an element can easily form long chain-like molecules,and from those chains
rings (so-called Polyaromatic Hydrocarbons, PAHs) and sheets may form. These may
then aggregate into amorphous carbon grains.
To handle this complex chemistry in simulations, a statistical description was devel-
oped, known asnucleation theory. It starts by considering a distribution functionf(N)
of so-called monomers (C atoms in the case of carbon dust), where for example f(4)
would be the fraction of carbon aggregates containg 4 C atoms. By introducing terms
for growth (‘sticking’) and diminshment (evaporation, ‘sputtering’) this distribution
function can be evolved in time. Matters are further simplified by using integrated
moments of this distribution, for example the term

K2 =

∞
∑

Nl

f(N)N2/3 (65)

is proportional to the total surface area of the grain population.
Dynamical models including grain formation (using nucleation theory) show are able
to produce typical AGB winds, suggesting that we largely understand the mass loss
physics in C-stars, at least for the simplified case of a steady, spherical wind.

6.5.2 Dust-gas coupling

The radiation pressure works only on the dust particles, which only form a small frac-
tion of the material. So in order to set up a wind, the motion ofthe dust has to be
transferred to the gas particles. This happens via collisions. The collective effect of the
gas on the dust is known as the ‘drag’, and can be expressed as aforce, which can be
approximated as

fdrag = σdngndmg|vcoll|vdrag (66)

with vdrag ≡ |vg − vd| (67)

and vcoll = vthermal

√

64

9π
+

(

vdrag

vthermal

)2

(68)

whereσd andmg are the dust cross section and the gas particle mass ,ng andnd are
the gas and dust number densities,vcoll is the collision velocity, andvthermal the typi-
cal thermal velocity of the gas (as obtained from the Maxwell-Boltzmann distribution).
The drag force tries to minimize the drag velocityvdrag, but is also proportional to
vdrag. This means that there will be an equilibrium value forvdrag. Usual approxi-
mations assume eithervdrag = 0 (‘perfect coupling’) orvdrag = veq

drag (‘momentum
coupling’).

6.5.3 Dust formation in O-rich AGB stars

The dust around M-type stars is Si-based. Si behaves chemically different from C,
it does not form large chains and sheets. Therefore these dust particles cannot grow
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Figure 30: Positions of selected mass shells as a function oftime for a model of a
carbon dust driven wind (Höfner & Dorfi 1997). During each new pulsation cycle
a new dust layer is formed, triggered by enhanced density behind the shock waves.
Below about 2R∗ the dustfree atmosphere is periodically passed by strong shocks
(marked by sharp bends in the lines). The formation of dust layers and their subsequent
acceleration due to radiation pressure (indicated by the steepening of the lines) takes
place between 2 and 3R∗. Time in pulsation periods, radius in units of the stellar
radiusR∗ of the corresponding hydrostatic initial model.
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gradually, but rather have to condense out from the gas phaseinto the solid phase. This
happens when the partial pressure is larger than the vapor pressure:Pp > Pv, where
Pp = nmoleculekBT andPV = PM exp(−TM/T ). PM andTM are properties of the
molecule under consideration.
The silicon oxides SiO and SiO2 do not condense out at high temperatures, but other
molecules like TiO, TiO2, Al2O3 (corundum) do. It is therefore thought that these form
the seed nuclei for Si-grain growth. The full grown silicategrains are made ‘dirty’ by
both Mg and Fe silicates. The dirt is necessary for these grains to absorb radiation from
the star, as pure silicates would be too glassy and transparent. Still, detailed modelling
of winds driven by silicate grains show that it is difficult tocondense enough dirty
silicates around the critical point, which is where they areneeded in order to produce a
high mass loss wind. We have therefore currently no working model for explaining the
mass loss from M-type AGB stars.
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