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1 Pre-supernova evolution of massive stars

1.1 The equation of state

The pressure, P , of a non-degenerate, perfect gas with temperature T is
given by

P = knT (1.1)

where n is the number of particles per volume and k is Boltzmann’s constant,
k = 1.38 × 10−16 ergs K−1. In terms of the density this can be written as

P =
k

muµ
ρT (1.2)

where µ is the mean mass per particle and mu the atomic mass unit, 1.667×
10−24 g.

For a gas of fermions the number density of particles is

n =
8π

h3

∫

∞

0
f(p)p2dp (1.3)

where p is the momentum, f(p) = 1/[exp(E−µ)/kT +1] is the Fermi-Dirac
distribution, and µ is the chemical potential. The factor 4πp2dp/h3 is the
phase space factor, and another factor of two comes from the spin of the
electrons. For a fully degenerate gas f(p) = 1 for p < pF and f(p) = 0 for
p > pF, allowing us to solve for pF

pF =

(

3h3ne

8π

)1/3

(1.4)

This can be written in terms of the Fermi energy using EF =
√

p2
Fc2 + m2

ec
4.

For a non-relativistic gas EF = p2
F/2me, while for a relativistic gas EF = pFc.

The pressure, P , is given by

P =
1

3

∫

∞

0
v(p)p

dn(p)

dp
dp (1.5)

where dn/dp = 8πf(p)p2/h3. For a fully degenerate gas we get

P =
8π

3h3

∫ pF

0
v(p)p3dp . (1.6)

Now p = mev/
√

1 − v2/c2, or

P =
8π

3h3

∫ pF

0

p4

√

m2 + p2/c2
dp . (1.7)

3



This can be integrated to give

P =
πm4c5

3h3
f(x) (1.8)

where
f(x) = x(2x2 − 3)(x2 + 1)1/2 + 3 sinh−1 x (1.9)

and x = pF/mc.
For simplicity we consider the non-relativistic and ultra-relativistic limits

separately. The transition occurs when pF ≈ mec. Using ρ = µempne this
occurs at

ρr = 9.7 × 105µe g cm−3 (1.10)

For a non-relativistic gas p ≪ mc and Eq. (1.7) shows that

P =
8π

15mh3
p5
F . (1.11)

With pF from Eq. (1.4) we finally get

P =
1

20

(

3

π

)2/3 h2

m
n5/3 , (1.12)

which is the equation of state for a non-relativistic, completely degenerate
gas. In terms of the density we get in cgs units

P = 1.00 × 1013µ−5/3
e ρ5/3 . (1.13)

In the opposite limit of an ultra-relativistic gas we obtain in the same
way from Eq. (1.7)

P =
2πc

3h3
p4
F . (1.14)

and

P =
1

8

(

3

π

)1/3

hc n4/3 , (1.15)

which is the equation of state for an ultra-relativistic, completely degenerate
gas. Note that the adiabatic index in this case is 4/3, while in the non-
relativistic case it is 5/3. In cgs units

P = 1.24 × 1015µ−4/3
e ρ4/3 . (1.16)
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For a non-relativistic gas the boundary between degeneracy and perfect
gas equations of state is obtained by setting the non-degenerate pressure
(Eq. (1.2)) equal to the degenerate, given by Eq. (1.12)

T

ρ2/3
= 1.2 × 105 µ

µ
5/3
e

(1.17)

Similarly, if the gas is relativistic one finds that the boundary between
degeneracy and perfect gas equations of state is given by

T

ρ1/3
= 1.5 × 107 µ

µ
4/3
e

. (1.18)

The density when degeneracy sets in depends on the mass of the particle and
temperature as ndeg ∝ m3/2T 3/2 in the non-relativistic case and ndeg ∝ m3

in the relativistic. Therefore, even if the electrons are degenerate, the ions
are usually non-degenerate. The total pressure is then given by

P = Pe + Pion (1.19)

where Pe is given by either Eq. (1.12) or Eq. (1.15) and Pion by Eq. (1.1).
In the strongly degenerate case the ion pressure is much smaller than that
of the degenerate electrons, and can usually be neglected.

Finally, the boundary between an ideal gas pressure and that of radia-
tion dominated pressure is given by For a non-relativistic gas the boundary
between degeneracy and perfect gas equations of state is give by

RTρ

µ
=

aT 4

3
(1.20)

or
T

ρ1/3
= 3.2 × 107µ−1/3 (1.21)

In Fig. 1 we show the different regions defined by Eqns. (1.10), and
(1.17) – (1.21) in the ρ – T plane.

1.2 Evolution of the core

The evolution of the star is mainly the evolution of the core. This is in
turn determined by the temperature and density. In particular, the final
stages depend on whether or not the core becomes reaches a temperature
high enough for carbon to ignite. In this section we will discuss a simplified
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Figure 1: Regions of different equations of state in the ρ – T plane.

model, which in spite of its simplicity, gives a good representation of the
main features.

The pressure of a partially degenerate gas can be approximated by the
interpolation formula

P ≈ Pe =
k

mpµe
ρT + Kγ

(

ρ

µe

)γ

(1.22)

where the first term is that of an ideal gas pressure and the second that of
the degenerate electrons. Here µe is the mean molecular weight of the elec-
trons. We have here neglected the ions because of the much more numerous
electrons in the advanced stages of the evolution. The adiabatic index γ
varies from 5/3 in the non-relativistic case to 4/3 in the relativistic degener-
ate case. For these limiting cases K4/3 = 1.24×1015 and K5/3 = 1.00×1013

in cgs units (see Eqns. 1.13 and 1.16).
The equation of hydrostatic equilibrium gives

dP

dr
= −Gm(r)ρ

r2
(1.23)

or approximately

Pc ≈
GMcρc

r
(1.24)

Now ρc ≈ 3Mc/(4πR3
c ), so

Pc ≈ fGM2/3
c ρ4/3

c (1.25)

6



where f is of order unity. For a polytrope of order 3 (γ = 4/3) it can be
shown that f = 0.364 (see Arnett App. C).

Therefore we get

k

mpµe
Tc ≈ fGM2/3

c ρ1/3
c − Kγργ−1

c µ−γ
e (1.26)

For low density and γ ∼ 5/3 we can neglet the degeneracy pressure and get

kTc ≈ fmpµeGM2/3
c ρ1/3

c (1.27)

In the opposite limit of high density, the electron gas becomes relativistic
and γ → 4/3. For low T we neglect the ideal gas pressure term and obtain

Mc ≈
(

K4/3

fG

)3/2

µ−2
e (1.28)

independent of Tc. This is the Chandrasekhar mass

MCh = 5.85µ−2
e M⊙ . (1.29)

In terms of this we can write Eq. (1.26) as

k

mp
Tc ≈

(

ρc

µe

)1/3

[K4/3

(

Mc

MCh

)2/3

− Kγ

(

ρc

mue

)γ−4/3

] (1.30)

For Mc < MCh we have the non-relativistic case (γ = 5/3), and get

k

mp
Tc ≈ K4/3

(

ρc

µe

)1/3( Mc

MCh

)2/3

− K5/3

(

ρc

µe

)2/3

(1.31)

The temperature therefore first increases as ρc increases (Eq. 1.27) and
reaches a maximum for

ρc,max

µe
=

(

K4/3

2K5/3

)3( Mc

MCh

)2

(1.32)

at which

Tc,max =
mpK2

4/3

4kK5/3

(

Mc

MCh

)4/3

≈ 4.7 × 108

(

Mc

MCh

)4/3

K. (1.33)

For ρc > ρc,max and Mc < MCh the temperature decreases. This is therefore
the maximum temperature a non-relativistic partially degenerate core with
mass less than the Chandrasekhar mass can obtain.
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For Mc > MCh the gas becomes degenerate and relativistic, and we have
γ = 4/3 + ǫ, where ǫ is small. Eq. (1.30) then shows that the temperature

rises monotonically as Tc ∝ ρ
1/3
c . We can therefore separate two qualitatively

different behaviors, depending on the value of Mc. Core masses below MCh

never reach a temperature larger than Tc,max, while those above can increase
their temperature as the core contracts and ignite new fuels.

In Fig. 2 this is shown in more detail from evolutionary calculations
for stars of different masses. The 1 M⊙ and 2 M⊙ stars become degenerate
before He-ignition, while the 7 M⊙ model ignites helium non-degenerately
but then reaches a maximum temperature and evolves into the degenerate
regime. In all three cases the cores do not reach a temperature high enough
for carbon burning to start. The 15 M⊙ model on the other hand continue
to evolve in the partially degenerate regime and the temperature increases
monotonically, and passes through all the nuclear burning stages.

Figure 2: Evolution of the central density and temperature for stars of
different masses between 1 M⊙ and 15 M⊙. (Iben 1974)

In Fig. 3 a more recent calculation of the evolution of a 15 M⊙ and 25 M⊙

star is shown through all evolutionary stages up to silicon burning. Also in

this case the Tc ∝ ρ
1/3
c scaling is a good approximation to the evolution,

although occasional excursions are seen in connection to the ignition of new
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burning fuels. Because the entropy of a radiation dominated gas in units
of k is s = 4ampT 3/(3kρ) this shows that the evolution of the core is at
approximately constant radiation entropy. Typically, s ∼ 1. The concept of
constant entropy will later be used frequently for describing the collapse of
the core.

Figure 3: Evolution of the central density and temperature for a 15 M⊙ and
25 M⊙ star. (WHW02)

Exercises:
1. Do a ’back of the envelope’ derivation of the Chandrasekhar mass and

the mass – radius relation for a white dwarf.
2. Skip! Derive the Chandrasekhar mass strictly using the theory of

polytropes. You have probably already done this in the undergraduate
course, but it is importance enough for a repetition!

1.3 Convection (You may skip this!)

Convection is, besides mass loss, the most uncertain area in stellar evolu-
tion. Not only is the actual energy transport rate (i.e., the mixing length)
uncertain, but also the very criterion to use for deciding whether the energy
transport takes place by convection or radiative diffusion occurs. We there-
fore repeat some of the discussion on basic stellar convection theory, where
we follow KW.
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We start, as usual, by considering a gas blob at a radius r with density
ρ(r), temperature T (r) and pressure p(r), equal to the surrounding thermo-
dynamic quantities. We then displace this to a radius r + ∆r. At this point
the surrounding values of these parameters are ρ(r) + ∆ρ, T (r) + ∆T and
p(r) + ∆p. The difference in density between the blob and the surrounding
density is therefore

Dρ =

[(

dρ

dr

)

b

−
(

dρ

dr

)

s

]

∆r (1.34)

For stability we require that Dρ > 0, or

[(

dρ

dr

)

b

−
(

dρ

dr

)

s

]

> 0 (1.35)

The problem with applying Eq. (1.35) is that the density-derivatives do not
appear in the basic equations of stellar structure, and are therefore difficult
to relate to the basic physical parameters at that point. Using the equation
of state ρ = ρ(p, T, µ) we therefore translate the derivate into

dρ

ρ
= α

dp

p
− δ

dT

T
+ φ

dµ

µ
(1.36)

where

α ≡ ∂ ln ρ

∂ ln p
|T,µ; δ ≡ − ∂ ln ρ

∂ ln T
|p,µ;φ ≡ ∂ ln ρ

∂ ln µ
|p,T (1.37)

Now we assume that the pressure in the blob quickly adjusts itself to the
surroundings, i.e., Dp = 0. We also assume that the composition in the blob
does not change as it rises. The surrounding matter may, however, have a
finite composition gradient. Using Eq. (1.36) in Eq. (1.35) we therefore get

−
(

δ

T

dT

dr

)

b

+

(

δ

T

dT

dr

)

s

−
(

φ

µ

dµ

dr

)

s

> 0 (1.38)

We now multiply this with the pressure scale height,

h = − dr

d ln p
=

p

gρ
, (1.39)

where we have used the equation of hydrostatic equilibrium. Obviously,
h > 0, and we can translate Eq. (1.38) into

(

d ln T

d ln p

)

s

<

(

d ln T

d ln p

)

b

+
φ

δ

(

d ln µ

d ln p

)

s

(1.40)
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This is the Ledoux criterion for convective stability. If we ignore the last term
in Eq. (1.40) we get the original Schwarzschild criterion. It is obvious that
the difference is only important in regions where the chemical composition
varies radially.

It is usual to write Eq. (1.40) in a more compact form using the gradients

∇ ≡
(

d ln T

d ln p

)

s

;∇b ≡
(

d ln T

d ln p

)

b

;∇µ ≡
(

d ln µ

d ln p

)

s

(1.41)

so that Eq. (1.40) becomes

∇ < ∇b +
φ

δ
∇µ (1.42)

Therefore, the surrounding temperature gradient should be less than that
of the blob, with a correction for the chemical gradient.

To make this more concrete, we test a region for stability assuming that
the energy transport is by radiation. Then, using the equation of radiative
diffusion, we get for the surrounding gas

∇ = ∇rad =
3

16πacG

κLp

mT 4
(1.43)

where κ is the Rosseland mean opacity, L(r) the local luminosity and m(r)
the mass from the center. If we, further, assume that the blob behaves
adiabatically, as is likely, we have ∇b = ∇ad and therefore

∇rad < ∇ad +
φ

δ
∇µ (1.44)

The mixing of the chemical composition by convection can be treated as
a diffusion process according to

∂Yi

∂t
=

∂

∂M

[

(4πr2ρ)2D
∂Yi

∂M

]

. (1.45)

where Yi is the abundance of ion i. The diffusion coefficient D is in the
mixing length formalism given by

D =
1

3
Vcl (1.46)

where l is the mixing length, usually taken as αh, with h being the pressure
scale height, and α ≈ 1. The convective velocity is

Vc =
1

2

(

GM

ρr2
∆∇ρ

)1/2

l (1.47)
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In this expression ∆∇ρ is the excess gradient above the adiabatic gradient.
(Consider the meaning of this! see e.g., KW)

The treatment of convection has several problems and uncertainties, par-
ticularly at the interfaces between different zones. In these regions the com-
position gradient is usually important and it makes a big difference if one
is using the Schwarzschild or Ledoux criterion for the convection. Usually
regions of this kind, which are stable by the Schwarzschild criterion but
unstable by the Ledoux criterion, are referred to as semi-convective. The
determination of the convective diffusion coefficient is in this case highly
uncertain, and only a few numerical hydro simulations with limited appli-
cability have been done to test these prescriptions.

A related problem is that of convective overshooting. This may occur if
the convective elements at the boundary between a convective and radiative
zone has enough inertia to penetrate the boundary between these zones, and
therefore mix the material from the two zones. As with the semi-convection
this process is poorly understood and is usually treated in a parametrised
way. Unfortunately, the results are fairly sensitive to this treatment.

1.4 Hydrogen burning

In the Sun nuclear hydrogen burning takes place at ∼ 1.5×107 K. The most
important chain of reactions is the PP I chain

1H + 1H → 2H + e+ + νe

2H + 1H → 3He + γ
3He + 3He → 4He + 21H

Summarizing

41H → 4He + 2e+ + 2νe + 2γ

which takes place in 69 % of the cases. In half as many cases, 33 %, the last
step is replaced by the so called PP II reaction

3He + 4He → 7Be + γ
7Be + e− → 7Li + νe

7Li + 1H → 24He

12



Finally, one very rare, but important reaction, PP III, takes place roughly
once every thousand reactions,

7Be + 1H → 8B + γ
8B → 8Be + e+ + νe

8Be → 24He

The total reaction rate is moderately sensitive to the temperature, ǫ ∝ T 6.
For stars with high mass the temperature will be high enough for the

CNO cycle to dominate. The most important chain in this cycle is the CN
cycle

12C + p → 13N + γ + 1.95 MeV
13N → 13C + νe + e+ + 2.22 MeV

13C + p → 14N + γ + 7.54 MeV
14N + p → 15O + γ + 7.35 MeV

15O → 15N + νe + e+ + 2.75 MeV
15N + p → 12C + 4He + 4.96 MeV

In this cycle 12C only acts as a catalyst, and the end resut is the same as
for the pp-chain, conerting hydrogen to helium.

The temperature where the CNO cycle takes over from the pp-cycle is
∼ 1.7 × 107 K. This corresponds to a mass of ∼ 1 M⊙. In addition to the
cycle above there are two more minor branches which may be important in
the late stages. We will discuss the CNO cycle in more detail in 1.13.

1.5 Helium burning

When the hydrogen in the core of a star has been consumed, two options
are possible. Either hydrogen burning continues in a shell surrounding the
helium core or the helium in the core itself is ignited. This occurs by the
triple alpha process at a temperature of ∼ 108 K. In detail the different
steps are

4He + 4He → 8Be
8Be + 4He → 12C + γ

The last step takes place by the famous Hoyle resonance reaction, which was
predicted to take place by Hoyle before its experimental verification. The
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temperature sensitivity of this reaction is much higher than for hydrogen
burning, ǫ ∝ T 41.

From the carbon produced further alpha captures may take place,

12C + 4He → 16O + γ
16O + 4He → 20Ne + γ

After helium burning a core of mainly carbon and oxygen therefore re-
sults. This is the endpoint of the evolution of low mass stars, like our sun.
After the outer hydrogen rich layers have been expelled the result will then
be a degenerate white dwarf consisting of roughly equal amounts of carbon
and oxygen. Higher mass stars may, however, continue their nuclear burning
to heavier elements.

1.6 Advanced nuclear burning stages

In this section we include a brief discussion of the advanced burning stages.
For a more complete account of the nuclear physics, as well as the hydrogen
and helium stages, see especially Clayton (1967) or Arnett (1996).

1.6.1 Carbon burning

Carbon burning occurs at (0.6− 1.2)× 109 K. The principal reactions occur
through the compound nucleus 24Mg⋆, which decays as

12C + 12C → 24Mg⋆ → 24Mg + n − 2.6 MeV (1.48)

→ 20Ne + α + 4.6 MeV (∼ 50%) (1.49)

→ 23Na + p + 2.2 MeV (∼ 50%) (1.50)

In the interesting temperature range the reaction rate depends on the tem-
perature as q ∝ T 29.

1.6.2 Neon burning

Neon burning occurs in a narrow range at ∼ 1.5 × 109 K. The first step is
photo-disintegration

20Ne + γ → 16O + α (1.51)

In the next step the α particles are partly captured by 16O to form 20Ne,
16O+α → 20Ne, and partly by 20Ne to produce 24Mg, i.e., 20Ne+α → 24Mg.
The net result of each of these reactions can be summarized as

2 20Ne → 16O + 24Mg + 4.6 MeV (1.52)
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Note, however, that this is only symbolic, and is not a binary heavy ion
reaction, like carbon burning. Because of the sensitivity of the α particle
abundance to the temperature the reaction rate depends extremely sensi-
tively on the temperature, as q ∝ T 50.

One may ask why neon burning occurs before oxygen burning. The rea-
son is that 16O is a doubly magic nucleus, and has consequently a larger
binding separation energy for α particles than neon, 7.2 and 4.7 MeV, re-
spectively.

1.6.3 Oxygen burning

Oxygen can burn either as photo-disintegration, 16O(γ, α)12C, or as a fu-
sion reaction, producing Si – S. During hydrostatic burning at ∼ 2 × 109 K
the fusion reaction dominates, while in explosive oxygen burning in connec-
tion to the supernova explosion, photo-disintegration and fusion are equally
important. The most important fusion reactions are

16O + 16O → 32S⋆ → 31S + n − 1.5 MeV (5%) (1.53)

→ 31P + p + 7.7 MeV (56%) (1.54)

→ 30P + d − 2.4 MeV (5%) (1.55)

→ 28Si + α + 9.6 MeV (34%) (1.56)

Although 31P is the main excit channel, these are quickly destroyed by the
reaction 31P(α, γ)28Si. The main products of oxygen burning are therefore
28Si and 32S. At ∼ 2× 109 K the reaction rate depends on the temperature
as q ∝ T 33.

1.6.4 Silicon burning

Because of the high Coulomb barrier for 28Si + 28Si, silicon does not fuse
as a heavy ion reaction to 56Ni, but instead melts at ∼ 3.5 × 109 K by
photo-disintegration, due to the extremely energetic radiation density. The
resulting nuclei in turn photo-disintegrates to lighter nuclei, etc. In sum-
mary,

28Si(γ, α)24Mg(γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α . (1.57)

The result is, however, not only lighter nuclei. The α particles produced by
the melting will also be captured by the 28Si to form 32S, which may in turn
capture new α particles, etc.

28Si(α, γ)32S(α, γ)36Ar(α, γ)40Ca(α, γ)44Ti(α, γ)48Cr(α, γ)52Fe(α, γ)56Ni
(1.58)
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The result will be a quasi-equilibrium with successively heavier nuclei.
The end-result of this depends on the neutron excess η. For small values

of η <∼ 6 × 10−3, which is needed to produce the right abundances of the
isotopes around the iron peak, the most abundant nucleus is also the most
tightly bound nucleus 56Ni (see next section). This radioactive isotope sub-
sequently decays into 56Fe. The fact that this radioactive isotope is main
result of the silicon burning is important not only for the nucleosynthesis,
but also for the observational properties of all kinds of supernovae.

The reaction rate at ∼ 3.5 × 109 K goes as q ∝ T 49. The energy release
is only half of that of oxygen burning.

1.7 Nuclear statistical equilibrium

Because of the importance of nuclear statistical equilibrium (NSE) in the
Si burning phase, as well as in several other contexts, we discuss it in some
detail here.

The Saha equation, relating the number densities of two neighboring
ionization stages in ionization balance through

ni + γ ↔ ni+1 + e−, (1.59)

is
ni+1ne

ni
=

Gi+1ge

Gi

(2πmekT )3/2

h3
e−χi/kT (1.60)

where Gi is the partition function of the ion i, ge the statistical weight of
the electron and χi the ionization potential. For a more general form one
should replace me by memi+1/(me + mi+1).

Exercises: Skip this!
Derive the Saha equation.

In exact analogy with this, one can relate the equilibrium densities of
two different isotopes, resulting from the photodissociation or inverseley the
capture of one neutron, in photodissociation balance

nZ,A + γ ↔ nZ,A−1 + n (1.61)

by
nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(2πmZ,A−1mnkT )3/2

h3m
3/2
Z,A

e−Qn/kT (1.62)
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where we have used the fact that the statistical weight of the neutron is
gn = 2. Qn is the binding energy of the neutron in the nucleus (Z,A),
Qn = (mZ,A−1 +mn−mZ,A)c2. In more compact notation we can write this
as

nZ,A−1nn

nZ,A
=

2GZ,A−1

GZ,A

(

A − 1

A

)3/2

θ e−Qn/kT (1.63)

where θ ≡ (2πmnkT )3/2/h3.
Similarly, we can remove one proton from the nucleus we produced in

reaction (1.61) by photodissociation according to

nZ,A−1 + γ ↔ nZ−1,A−2 + p (1.64)

producing the next lighter element Z-1. As above, we get for this balance

nZ−1,A−2np

nZ,A−1
=

2GZ−1,A−2

GZ,A−1

(

A − 2

A − 1

)3/2

θ e−Qp/kT (1.65)

where Qp = (mZ−1,A−2 + mp − mZ,A−1)c
2.

This procedure can now be repeated until we have only protons and
neutrons left. Putting these steps together we obtain

nZ,A = GZ,A

A3/2nZ
p nA−Z

n

2A
θ1−A eQZ,A/kT (1.66)

where now QZ,A = (Zmp +(A−Z)Mn−mZ,A)c2 is the total binding energy
of the nucleus.

Exercise: Do this step!

This needs to be complemented with an equation relating the total num-
ber of neutrons and protons. To supply this we note that, in the absence of
beta-decays, the total number of neutrons and protons is conserved, as well
as the number of electrons.

The total number of electrons per volume is

ne =
∑

i

Zin(Zi, Ai) (1.67)

and the total mass density

ρ = mu

∑

i

Ain(Zi, Ai), (1.68)
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where mu = 1/NA is the atomic mass unit. If we now define Xi as the
abundance of the isotope i by mass, we have

Xi =
niAimu

ρ
. (1.69)

Eq. (1.68) can then be written as

∑

i

Xi = 1 (1.70)

and Eq. (1.67) as

Ye =
∑

i

Zi
Xi

Ai
(1.71)

where we have defined the molar electron fraction of the electrons, by Ye ≡
ne/(ρ/mu) = NAne/ρ. Instead of Ye one often uses the neutron excess

η ≡ nn − np

nn + np
≈ 1 − 2Ye (1.72)

A particular composition is then characterized by a given value of Ye or
η. Once this is specified all other abundances can then be calculated from
the NSE relation Eq. (1.66).

Which nucleus is most abundant in NSE depends on the value of η. In
general, for T <∼ 1010 K the most tightly bound nucleus for a given value of
η is favored. Consequently, for small neutron excesses one finds that 56Ni,
which is an even-even nucleus with η = 0, is the most abundant nucleus,
while at η ∼ 0.07 56Fe, with η = (30 − 26)/56 = 0.071, is most abundant.
In Fig. 4 we show the isotopic abundances for a few different temperatures
as function of η. We see that the abundances do not change appreciably as
function of temperature, except for a general decrease in the iron peak abun-
dances, reflecting the shift to 4He, as photo-disintegration of 56Fe becomes
important.

To illustrate the last point further, we show in Fig. 5 the regions in
temperature and density where 4He, 54Fe, and 56Ni, respectively, dominate.
As temperature increases, photo-disintegration becomes more and more im-
portant, causing 4He to dominate.

1.8 Neutrino cooling

In the advanced burning stages cooling by neutrinos play an increasingly
important role. At temperatures of the order of mec

2/k ∼ 5×109 K electron
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Figure 4: Abundances of iron peak elements at 3.5 × 109 K as function of
the neutron excess. From left to right the isotopes are 56Ni, 54Fe, 56Fe, 58Fe.
(Hartman, Woosley and el Eid 1985)

pair production by energetic photons becomes possible. In most cases these
pairs annihilate into photons, but because the electrons and neutrinos couple
through the weak interaction, occasionally a neutrino - anti-neutrino pair
may be produced,

e− + e+ → ν + ν̄ (1.73)

The typical neutrino cross section is

σ ≈ 10−44

(

E

mec2

)2

cm−2. (1.74)

The electron-positron annihilation cross section is of the order of the Thomp-
son cross section, σT = 0.665 × 10−24cm2 (or rather Klein-Nishina at these
energies). Therefore the probability for neutrino pair production is ∼ 10−20

of the electron pair annihilation rate.
The neutrino energy loss rate is given by

ǫν = n−n+

∫

σvEdE (1.75)

where v is the relative velocity of the electron and positron and E the energy
in the center of mass system. The electron and positron densities can be
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Figure 5: Abundances of 4He, 54Fe, and 56Ni as function of the temperature.

obtained from their thermal equilibrium densities as

n−,+ ≈ ±n0
e

2
+

√

(
n0

e

2
)2 + n2

1, (1.76)

where n0
e is the electron density in the absence of pair production, i.e.,

n0
e = n− − n+ and

n1 ≈ 1.5 × 1029T
3/2
9 exp(−5.93/T9) cm−3 . (1.77)

Exercise:
Show this!

As a rough approximation to the energy loss rate one finds at T < 109

K
ǫν ≈ 4.9 × 1018T 3

9 exp−11.86/T9 erg cm−3 (1.78)

and at T > 3 × 109 K

ǫν ≈ 4.5 × 1015T 9
9 erg cm−3 (1.79)

This clearly illustrates the sensitivity of the neutrino losses to the tempera-
ture.
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Except for pair production, also other neutrino cooling processes may
be important. In particular, the plasma neutrino cooling process is impor-
tant in many circumstances. Although quantitatively complicated, the basic
ideas may be understood from simpler arguments. While a single photon
in a vacuum can not produces a neutrino – anti-neutrino pair because of
momentum conservation, the situation is different in a dense medium. In
that case the propagation of a photon is governed by the dispersion relation

ω2 = k2c2 + ω2
pl, where ωpl = (4πnee

2/me)
1/2 = 5.6 × 104n

1/2
e Hz is the

plasma frequency.
This dispersion relation shows that the photon behaves in the plasma as

if it has an excess energy in relation to its momentum, kc, compared to when
propagating in a vacuum (cf., E2 = p2c2 + m2c4). This extra energy can
be used to create a neutrino–anti-neutrino pair. Plasma neutrino cooling is
especially important at very high densities.

A further processes which may be important is the photo-neutrino pro-
cess

γ + e− → e− + ν + ν̄, (1.80)

which is similar to Compton scattering, but where the photon produces a
neutrino – anti-neutrino pair. This is important at low temperatures and
low densities.

In Fig. 6 we show the dominant neutrino cooling processes in the ρ− T
plane for a gas dominated by carbon. The situation is, however, not very
different from that of other heavy element compositions.

For most massive stars it is the pair annihilation cooling which accounts
for most of the cooling, although plasma neutrino cooling is important in
especially stars of lower mass.

1.9 Duration of the burning stages

Because of the increasing importance of neutrino losses as the temperature
increases because of core contraction, and also the decreasing energy gener-
ation per mass, the durations of the burning stages decrease rapidly from
thousands of years for carbon burning to days or less for silicon burning. In
Tables 1 and 2 we give the duration, as well as the ignition temperature and
other parameters, for a 15 M⊙ and a 25 M⊙ ZAMS star, including mass loss
(from WHW02). These models include mass loss (see below), explaining the
low masses for the later stages in the table.

Note in this table the dramatic decrease in the duration of the advanced
burning stages, because of increasing neutrino losses in the carbon burning

21



Figure 6: Dominant neutrino cooling processes in the ρ − T plane for a
carbon dominated gas (Itoh 1996).

stage and beyond. Also note, while there is only a small decrease in the
total mass of the 15 M⊙ star, the 25 M⊙ star ends up with only half of the
original ZAMS mass. We will discuss this further later.

After the carbon burning stage the neutrinos dominate the cooling of
the core by orders of magnitude, as Fig. 7 clearly shows. The instantaneous
escape of these from the center means that the temperature will be set by a
balance of neutrino cooling and nuclear heating. Because the nuclear heating
increases with a very high power, q ∝ T 30 or faster, while neutrino cooling
is less sensitive, ǫν ∝ T 9 or so, the heating can balance the neutrino cooling
as long as there remains some unburned fuel in the core. The much steeper
temperature dependence of the nuclear heating compared to the neutrino
cooling also means that the nuclear burning will occur at a nearly unique
temperature for the different burning stages, independent of the mass of the
star. This is clearly seen from Fig. 8, which shows the evolution of a core
contracting as ρ = 106T 3

9 g cm−3, typical of a massive core.
We can from this figure estimate the typical time scale for the burning

22



Table 1: Burning stages for a 15 M⊙ star (WHW02)
Fuel Ashes T ρ M L R τ

108 K g cm−3 M⊙ 103 L⊙ R⊙ yrs

H He, N 0.35 5.8 14.9 28.0 6.75 1.1 × 107

He C,O 1.8 1.4 × 103 14.3 41.3 461. 2.0 × 106

C Ne, Mg, O 8.3 2.4 × 105 12.6 83.3 803. 2.0 × 103

Ne O, Mg, Si 16.3 7.2 × 106 12.6 86.5 821. 0.73
O Si, S 19.4 6.7 × 106 12.6 86.6 821. 2.6
Si Ni 33.4 4.3 × 107 12.6 86.5 821. 18 days

Table 2: Same as above for a 25 M⊙ star
Fuel Ashes T ρ M L R τ

108 K g cm−3 M⊙ 103 L⊙ R⊙ yrs

H He 0.38 3.8 24.5 110. 9.2 6.7 × 106

He C,O 2.0 7.6 × 102 19.6 182. 1030. 8.4 × 105

C Ne, Mg 8.4 1.3 × 105 12.5 245. 1390. 5.2 × 102

Ne O, Mg 15.7 4.0 × 106 12.5 246. 1400. 0.89
O Si, S 20.9 3.6 × 106 12.5 246. 1400. 0.40
Si Ni 36.5 3.0 × 107 12.5 246. 1400. 0.73 days
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Figure 7: Neutrino luminosity of stars with mass 13 − 25 M⊙ compared to
the nuclear energy generation and the photon luminosity (Limongi et al.
2002).

stages. The energy produced from each gram is qi. From the figure we can
estimate the energy loss rate, ǫi, at the temperature where balance between
heating and cooling occurs. If the fractional abundance is Yi the time scale
is then

τi ≈
Yiqi

ǫi
(1.81)

In Table 3 we give the approximate values of qi and Yi, as well as for ǫi

for the different burning stages from Fig. 8. The final column then gives
the estimated life times from Eq. (1.81). Comparing with Tables 1 and 2
we find a good agreement with the more realistic models. It is clear that
because of the steep dependence of the neutrino cooling with temperature,
the life time decreases extremely fast for the last burning stages.

After carbon burning the diffusion time for the photons is much longer
than the duration of these stages, and the core evolves independently from
the envelope. Unless some kind of shell flash or similar occurs, the envelope
is essentially decoupled from the core.
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Figure 8: Nuclear heating rate and neutrino cooling rate for a core contract-
ing as ρ = 106T 3

9 g cm−3 (WHW02).

Table 3: Estimates of the duration of the advanced burning stages
Burning qi/10

17 Yi Ti ρ/106 ǫi τi

stage erg g−1 109 K g cm−3 erg g−1 s−1 s

C 4.0 0.2 0.7 0.3 7.1 × 105 3.6 × 103 yrs
Ne 1.1 0.7 1.4 2.7 3.0 × 109 0.81 yrs
O 5.0 0.2 1.9 6.9 3.5 × 1010 30 days
Si 1.9 0.5 3.4 39.3 2.4 × 1012 0.5 days

1.10 Mass loss

Most massive stars experience mass loss to a varying degree. The properties
of these winds, however, vary dramatically between the different evolution-
ary stages. In particular, the wind velocity scales roughly with the escape
velocity of the star, which varies by a factor of about a hundred between
the blue supergiant, red supergiant, and Wolf-Rayet phases.

In the blue supergiant (BSG) MS phase the winds are radiatively driven
through momentum deposition from absorption of the photospheric radia-
tion by the many resonance lines in especially the UV and far-UV. This is a
fairly well understood process both theoretically and observationally. Typi-
cal mass loss rates are of the order of 10−6 M⊙ yr−1 and the wind velocities
are 1, 000 − 3, 000 km s−1.

In the red supergiant (RSG) phase the winds are much less understood.
Dust driving is believed to account for most of the momentum input. What
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initiates the wind (e.g., photospheric shocks connected to pulsations) is, how-
ever, not known. Further, it is likely that the star experiences a superwind
phase, lasting ∼ 104 yrs in the very last phases of the red supergiant stage.
What drives this superwind is somewhat unclear, but pulsational instabil-
ities may be particularly important (see e.g., Heger et al. 1997). Typical
mass loss rates are in the general RSG phase of the order of 10−6 M⊙ yr−1

and the wind velocities are 10 − 50 km s−1. In the superwind phase mass
loss rates as high as 10−4 − 10−3 M⊙ yr−1 may occur. The duration of this
phase must obviously be only of the order of a few times 104 yrs.

A useful formula which summarizes the mass loss rates on the main
sequence and in the red supergiant stage is given by Nieuwenhuijzen & de
Jager (1990),

Ṁ = 9.6 × 10−15

(

L

L⊙

)1.42( M

M⊙

)0.16( R

R⊙

)0.81

M⊙ yr−1 (1.82)

Finally, in the Wolf-Rayet (WR) phase the wind velocities increase to
2, 000 − 5, 000 km s−1, while the mass loss rate is ∼ 10−5 M⊙ yr−1. The
driving of the wind is here to a large extent by radiation on resonance lines,
as in the OB star case. The initiation of the wind is, however, not clear,
and pulsations may be important for this. Observationally, clumping of the
wind is important, with a typical clumping factor of about two. Once this
has been corrected for, the mass loss rates are fairly well determined.

The fact that the main sequence phase, with a mass loss rate of ∼
10−6 M⊙ yr−1 lasts for ∼ 106 yrs, the RSG phase for ∼ 105 yrs and the
WR phase for a comparable period, and that the mass loss rates in these
two phases are 10−5 − 10−4 M⊙ yr−1, means that stellar winds will have a
major influence on the evolution.

1.11 Evolution in the HR diagram

Mass loss is crucial both for the observational properties the appearance of
the star and for the internal structure. In addition, as we will see later,
the resulting supernova properties also depend strongly on the mass of the
hydrogen and helium envelope. Because mass loss is increasingly important
with mass, the effects increase strongly with mass. In Fig. 9 we show the
evolution in the HR diagram of a 60 M⊙ star with and without mass loss.
While both stars evolve to the RSG phase, the star without mass loss end its
life in this phase. The star with mass loss, however, evolves back to the blue
and becomes a hot star, now without any hydrogen envelope. It has become
a helium star, or better known as a Wolf-Rayet star. This evolutionary
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Figure 9: Evolution of a 60 M⊙ star with (dashed line) and without (solid
line) mass loss (Maeder 1981)

scenario is a general feature for massive stars above some limiting mass,
MWR, which is uncertain, but probably in the range 20−40 M⊙, depending
on mass loss rates, rotation, metallicity etc. (see below). We therefore have
the evolutionary sequence

O → BSG → RSG → WR (1.83)

The most massive stars may lose mass so fast that they never evolve to the
RSG stage, but instead evolve as luminous blue variable (LBVs) and then
directly to the WR stage.

O → LBV → WR (1.84)

Because mass loss increases with luminosity and mass, Ṁ ∝ L ∝ M2−3,
the effects are most important for the most massive stars. The result is
that the final mass before the star collapses is nearly independent of the
initial mass! When rotation is taken into account one finds a final mass of
10 − 15 M⊙ for all masses >∼ 20 M⊙, as shown in Fig. 10.

1.12 Rotation

Observationally, it is known that massive stars on the main sequence are
rotating rapidly. Typical surface velocities are ∼ 200 km s−1. This is not
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Figure 10: The effects of rotation and mass loss on the final mass of massive
stars. The solid line gives the final mass for a ZAMS rotational velocity
of 300 km s−1, while the dashed line gives the zero velocity result, only
including mass loss (Meynet & Maeder 2003)

very far from break-up velocity, given approximately by

Vc ≈
(

GM

R

)1/2

(1.85)

Because of convection and the Eddington-Sweet circulation, rigid rota-
tion is likely to be established on the main sequence. If this would persist
into the advanced burning phases, it could seriously affect the final stages,
including the collapse phase.

Because of convection and in radiative layers the Eddington-Sweet cir-
culation, angular momentum can, however, be transported outwards. If the
star in addition loses mass in the form of a wind, as is nearly always the
case, this wind could transport angular momentum away from the star.

Rotation affects the evolution in several ways. First, rotation induces
circulation and mixing of the stellar interior in a way resembling that of
increased convection. Secondly, the mass loss rates are affected by the ro-
tation. Because of the centrifugal force the star becomes oblate. The larger
radius in the equatorial plane leads to a lower effective temperature and
flux compared to the polar direction (by von Zeipel’s theorem). Because the
mass loss rate increases with the luminosity, this will therefore be higher in
the polar direction than in the equatorial.
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The conservation of angular momentum implies that the angular velocity
decreases dramatically as the star evolves to a RSG. In Fig. 11 this can
clearly be seen in the H-envelope at M >∼ 4 M⊙, where the angular velocity
drops by several orders of magnitude after H-depletion, as the star evolves
into a RSG. The core, however, increases its angular velocity because of
contraction, and may end up rotating close to the critical velocity. This is
especially interesting in connection to the rotational velocities of pulsars,
where the periods are down to milliseconds. As we have remarked, angular

Figure 11: Angular velocity as function of mass for a 15 M⊙ star in different
evolutionary stages. The initial surface rotation was 200 km s−1. Note the
drop in angular velocity of the hydrogen envelope after the helium burning
stage, as a result of the evolution to the red supergiant stage.

momentum may, however, be lost in especially the red supergiant stage and
in the Wolf-Rayet phase due to mass loss. The efficiency of this depends
sensitively on the magnetic field.

In Fig. 12 we show the evolutionary tracks in the HR diagram with and
without rotation. In both cases mass loss is included with the same, most
recent rates. It is here apparent that especially for the most massive stars
the late evolution is substantially altered by the rotation. For non-rotating
stars the lower mass limit to evolve to a WR-star is ∼ 37 M⊙. With rotation,
even a 22 M⊙ star evolves all the way to the Wolf-Rayet stage, rather than
ending its life as a red supergiant. This is also the case for stars more
massive than this. The most massive stars, with M >∼ 60 M⊙, may with
rotation skip even the LBV phase, and evolve directly from the MS to the
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Figure 12: Evolutionary tracks for stars more massive than 9 M⊙ with (solid
lines) and without rotation. (Meynet & Maeder 2003)

WR phase.
Because of the increased mass loss rate in the rotational case, the final

masses of the stars at the beginning of carbon burning will in general be
smaller than in the non-rotational case, as is seen in Fig. 10. The life
time in the Wolf-Rayet phase will also increase by a factor of about two.
For a non-rotating 60 M⊙ star the total life time is 4.0 Myrs, of which it
spends 0.37 Myrs as a Wolf-Rayet star. The corresponding numbers for a
star with ZAMS rotational velocity of 300 km s−1 are 4.67 Myrs and 0.75
Myrs, respectively.

A further observationally important effect is that because of rotational
mixing, nuclear burning products may become visible at the surface already
in the hydrogen and helium burning stages. This is most apparent from the
presence of CNO burning products already on the main sequence and helium
burning stages. Fig. 13 shows the evolution of the surface abundances as
function of the total mass of the star as it loses mass, or equivalently as
function of time. We note the more efficient mixing of the rotating model
which shows CNO processing products (14N) already in the BSG stage. Just
before collapse it has evolved to a Wolf-Rayet WC star, with a large 12C
abundance from He-burning in the rotating case, while the non-rotating case
only shows enhanced 14N, although also a Wolf-Rayet star (in this case a
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WN star).

Figure 13: Surface abundances for a 40 M⊙ ZAMS star including mass loss
and rotation. On the x-axis is the total mass of the star and on the y-axis
the surface abundance at these epochs. The different positions in the HR
diagram are indicated by its spectral class. (Meynet & Maeder 2003)

1.13 Observational indications of CNO burning

The most characteristic signatures of the nucleosynthesis during the hy-
drogen burning phase are the presence of enhanced helium abundances and
signatures of CNO processing, as well as the ratio of blue to red supergiants.

The most important chain in the CNO cycle is CN cycle

12C(p, γ)13N(e+, ν)13C(p, γ)14N(p, γ)15O(e+, ν)15N(p, α)12C (1.86)

(see Fig. 14). In this cycle the 14N nucleus is most resistant to destruction,
because of a high Coulomb barrier and the fact that an electromagnetic
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Figure 14: The CNO bi-cycle. (Rolfs & Rodney 1988)

reaction is involved, rather than a strong. Therefore, this nucleus will be
the ’bottle neck’ in the cycle, and if the cycle reaches equilibrium most of
the 12C is converted into 14N. In about 0.1 % of the cases 15N instead of an
α decay undergoes a proton capture in which case 15N(p, γ)16O. In addition
to the CN cycle, there is a second cycle which also involves 16O.

16O(p, γ)17F(e+, ν)17O(p, α)14N (1.87)

The importance of this cycle is that it creates some less abundant isotopes,
like 17F and 17O, and in particular that it converts 16O into 14N. The effi-
ciency of this depends on how long the cycle runs. In Fig. 15 the abundances
of the most important isotopes are shown as function of the number of pro-
tons consumed per initial CNO nucleus, or equivalently as function of time.
The latter scale does, however, depend on the mass of the star. It is here
seen that while most 12C is converted into 14N fairly quickly, this takes a
much longer time for the 16O.

The end-result of the CNO bi-cycle is that most of the 12C is converted
to 14N, and if it runs sufficiently long also the 16O.

Already on the main sequence one observes enhanced N/C ratios, indica-
tive of CNO processing. This is not expected unless both rotation and mass
loss are important, as Fig. 13 shows. Also in supergiants and Wolf-Rayet
stars an increased N/C is present.

In connection to supernovae, signatures of CNO processing have also
seen in the spectra of several objects. As an example, we show in Fig.
16 a spectrum taken with HST of SN 1998S. A number of strong emission
lines of C III-IV and N III-V are seen. The fact that these lines are much
narrower (FWHM <∼ 500 km s−1) than from the supernova ejecta itself,
with a velocity of ∼ 7000 km s−1, shows that they come from circumstellar
gas lost by the supernova progenitor before the explosion. From an analysis
of the line ratios one finds a ratio of N/C∼ 6, which is a factor of ∼ 24
higher than the cosmic abundance ratio, and therefore shows that CNO
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Figure 15: The CNO bi-cycle. (Caughlan 1965)

products were abundant in the star before the explosion. We will discuss
the implications of this for the different supernova types later.

1.14 Uncertainties from nuclear rates and convection

While most nuclear reaction rates are well determined experimentally, there
are a few rates where the uncertainties are so large that they affect the qual-
itative outcome of the evolution and nucleosynthesis. The prime example
is the 12C(α, γ)16O rate. This reaction, which is mainly important dur-
ing helium burning, directly determines the relative abundances of carbon
and oxygen in both low mass and high mass stars. This reaction proceeds
through some resonances at very low energy, and is therefore very difficult to
measure experimentally. Extrapolations from higher energies are therefore
necessary. Currently, the S factor at 300 keV is only determined to be within
the range 100–200 keV barn (see WHW02 III A.2 for a detailed discussion).
Because this rate determines the extent of the oxygen zone, and indirectly
all zones inwards from the carbon zone, it not only affects the carbon and
oxygen abundances, as can be seen in Fig. 17, but the whole structure of the
inner core. In particular, the mass of the iron core is larger by 0.05−0.1 M⊙

for a 12C(α, γ)16O rate larger by a factor of ∼ 3. Although not very large,
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Figure 16: Spectrum of the Type IIn supernova SN 1998S taken with HST.
Note the narrow, very strong N III], N IV] and N V lines, and the weaker
C III] and C IV lines.

this difference may be crucial for getting a successful explosion or not.
There are additional uncertainties connected to the treatment of con-

vection, especially that of semi-convection, when the distinction between
the Schwarzschild criterion and the Ledoux criterion is important. As we
saw in Chap. 1.3, this occurs where there are gradients in the chemical
composition, i.e., at the interfaces between different burning shells.

There are at least three evolutionary stages when semi-convection mat-
ters. Fig. 18 shows the semi-convective regions during the hydrogen burning
stage as extensions from the convective central core. During the evolution
the convective region recedes, and a gradient in the helium to hydrogen is
created, which results in a semi-convective region. This mixing is important
for the ignition of the hydrogen shell burning. This in turn affects whether
the star becomes a blue or red supergiant. The ratio of these populations
may therefore serve as a test of the treatment of semi-convection. Unfortu-
nately, the conclusion from this is not obvious.

Semi-convection may also be important during helium burning and sil-
icon burning . In the former case it affects the size of the carbon-oxygen
core, and therefore the whole nucleosynthesis. During the silicon burning
there may be a chemical gradient from the electron concentration. The way
this is treated affects the size of the final iron core, and therefore the whole
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Figure 17: The effects of different rates for 12C(α, γ)16O reaction (chang-
ing this rate by a factor of three), as well as the effect of including semi-
convection (from Woosley et al. 1995)

explosion result, which is very sensitive to the iron core mass.
In Fig. 17 we see that the mass of the oxygen core is much larger with

semi-convection included at the expense of the mass of the helium shell.
Finally, we remark that the use of mixing length theory in especially the

final burning stages is doubtful. In these stages the convective and nuclear
time scales become comparable, which makes the assumptions behind the
mixing length prescription highly questionable (see Bazan & Arnett 1998).

1.15 Structure before explosion

The structure of the star just before collapse is extremely important for
the outcome of the subsequent phases, including the supernova explosion.
In Fig. 20 we show the abundance structure of a 15 M⊙ and a 25 M⊙

star shortly before core collapse. These are the same models for which the
convective evolutions are shown in Figs. 18 and 19.

The density structure before core collapse is important for the properties
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Figure 18: Convective regions for a 15 M⊙ and 25 M⊙ during hydrogen and
helium burning stages. (WHW02)

of the supernova explosion. Fig. 21 shows the density as function of mass
from the center for stars of different masses, while Fig. 22 shows the radius
as function of mass. No mass loss has been included in these models, but
the general structure including this is quite similar.

One can roughly distinguish three regions. Most of the volume consist of
a very extended hydrogen envelope, with radius >∼ 3 × 1013 cm containing
most of the mass. The mass of this is, not very surprising, sensitive to mass
loss. The radius is, however, characteristic of a red supergiant as long, as
there is at least ∼ 1 M⊙ of hydrogen left.

Next comes the helium mantle with radius ∼ 1011 cm and density ∼
102 g cm−3. Inside this there is a gradual increase in the density in the
oxygen core. Finally, in the inner ∼ 1.5 M⊙ we have the iron core with a
radius of only ∼ 3 × 108 cm and a density 107 − 109 g cm−3.

When we compare the structure of the different models, the most ap-

36



Figure 19: Convective regions for a 15 M⊙ and 25 M⊙ at carbon burning to
core collapse. (WHW02)

parent differences are the mass of the helium core, and the density gradient
outside the iron core. In general the latter becomes less steep as the mass of
the star increases. This will be important when we discuss the propagation
of the shock wave after the bounce.

In Fig. 23 we show the position from the center of the different burning
shells for different ZAMS masses. From this we see that there is a well
defined relation between the He core mass and the ZAMS mass,

M(He) ≈ 0.39[M(ZAMS) − 13.] + 3.3 M⊙. (1.88)

Consequently, the luminosity of the star before the explosion is completely
determined by the He-core mass.

The mass of the Fe-core is crucial for whether the explosion will be
successful or not. As we see in Fig. 23, this mass is only weakly dependent
on the ZAMS mass in this interval, 13−25 M⊙. The small difference between
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Figure 20: Abundance structure of a 15 M⊙ and 25 M⊙ star shortly before
core collapse. (WHW02)

1.29 M⊙ and 1.53 M⊙ for the 13 M⊙ and 25 M⊙ models, respectively, may,
however, be crucial for the outcome.

A special case is the low mass range of the massive stars, <∼ 12 M⊙.
Up to carbon burning they evolve in the same way as the more massive
stars above. When neon burning sets in the O– Ne – Mg core is, however,
degenerate in contrast to the more massive stars. Neon burning therefore
becomes explosive and proceeds all the way up to nuclear statistical equi-
librium. Rather than leading to a thermonuclear explosion as for Type Ia
supernovae (discussed later), this results in a collapse of the core to a neu-
tron star. After this the process is similar to that of the more massive stars,
although the iron core mass is smaller. This is important for the outcome,
and it is in fact this kind of progenitors which are the only ones where a
successful explosion has been obtained.
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Figure 21: Density structure of four stars with ZAMS 13 − 25 M⊙ star.
(Limongi et al. 2002)

Figure 22: Radius vs mass for the same stars as in Fig. 21. (Limongi et al.
2002)

39



Figure 23: Mass from center of the different nuclear burning shells as func-
tion of the ZAMS mass. From top to bottom H, He, C, Ne, O, Si, Fe.
(Limongi et al. 2002)

2 Core collapse and explosion

2.1 Dynamic stability and triggering of collapse

A self-gravitating body is stable to perturbations as long as its adiabatic
index is larger than 4/3 (see Hans lectures (Padmanabhan 3.7.1), KW Chap.
38 or ST Chap. 6.7). As soon as γ < 4/3 the star (or core) will collapse.

There are several reasons why the core collapses. Photo-disintegration
of Fe into α particles, or even nucleons, require ∼ 8.8 MeV per nucleon.
This takes away thermal energy from the core, and thus pressure support.
A further reason for instability comes from electron capture on free protons
and on bound protons in nuclei (K-capture),

e− + p → νe + n (2.1)

The removal of electrons again decreases the pressure in the core.
Once the core becomes unstable it will collapse on roughly a dynamical

time scale, tdyn ∼ R/v, Assuming that the core collapses with the free-fall

40



velocity, Vff , we get

tdyn =
R

Vff
=

(

R3

2GM

)1/2

(2.2)

In terms of the density this is

tdyn =

(

3

8πGρ

)1/2

(2.3)

At the edge of the iron core the density is ∼ 108 g cm−3 when core collapse
sets in, and at the center it is ∼ 3 × 109 g cm−3. Therefore,

tdyn = 0.13 ρ
−1/2
8 s (2.4)

and the collapse time scale is therefore of the order of a hundred milliseconds
or less. Hydrodynamical models show that in reality the velocity is only
0.5− 0.8 of the free-fall velocity, but as an order of magnitude estimate Eq.
(2.4) is sufficient.

2.2 Neutrino trapping during core collapse

During core collapse neutrinos produced in the core are absorbed and scat-
tered by the nucleons. The most important elastic scattering processes are
scattering by free neutrons and protons, and coherent scattering against
bound neutrons and protons in nuclei,

ν + n → ν + n (2.5)

and
ν + p → ν + p (2.6)

and
ν + (Z,A) → ν + (Z,A). (2.7)

All three processes are mediated by neutral currents, and were before the
Weinberg-Salam-Glashow electro-weak theory not considered. In fact, they
make a crucial difference for the neutrino trapping, as we will see. In the
last process the long wavelength of the neutrinos compared to the nucleus
makes the scattering of the neutrinos coherent. Because of the coherence,
the cross section of the last process is not only proportional to A, but to A2.
An analogy is Rutherford scattering where the cross section is proportional
to the charge squared of the particles.
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In addition to the scattering against the nucleons, inelastic scattering
against electrons also take place,

ν + e− → ν + e− . (2.8)

The cross section of this is, however, only ∼ 1/600 of that of the elastic
nucleon scattering. Elastic scattering against the nucleons therefore domi-
nate the inelastic scattering against the electrons by a large factor. When
we estimate the mean free path to the scattering, we can therefore neglect
the electrons. The inelastic scattering may nevertheless be important for
thermalizing the neutrinos to the same temperature as the electrons.

For neutrino energies much less than mnc
2 ∼ 1 GeV the cross section for

the nucleon scattering is

σν =
1

4
σ0

(

Eν

mec2

)2

(2.9)

where

σ0 =
4G2

Fm2
e

h̄4 = 1.76 × 10−44cm2. (2.10)

The cross section for scattering against bound nucleons is

σν =
1

16
σ0

(

Eν

mec2

)2

A2

[

1 − Z

A
+

Z

A
(4 sin2 θW − 1)

]2

(2.11)

for Eν ≪ 300A−1/3 MeV. Here, θW is the Weinberg angle, where sin θW ≈
0.23. With the approximation sin θW ≈ 1/4, the bracket becomes (A −
Z)/A = N/A, where N ≈ A/2 is the neutron number. Therefore, we have

σν ≈ 1

64
σ0

(

Eν

mec2

)2

A2 (2.12)

for this cross section. Note again the A2 factor from the coherence.
The mean free path for scattering is λν = 1/ < nσν >, with an average

over the cross sections for these processes. An approximate expression for
the mean free path is given by

λν ≈ 1.0 × 108[
N2

6A
Xb + Xn]−1ρ−1

12 E−2
MeVcm (2.13)

where ρ12 is the density scaled by 1012 g cm−3 and EMeV the neutrino energy
in MeV. N is the number of neutrons in the average atomic nucleus A. The
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first term accounts for the coherent scattering of the bound nucleons with
abundance Xb, while the second accounts for the scattering by the free nuclei
with abundance Xn. At a density of 1012 g cm−3 the nuclei have N ∼ 50
(because of K-captures) and N/A ∼ 0.6, so

λν ≈ 2 × 105

(

Eν

10 MeV

)−2

ρ−1
12 cm (2.14)

The typical neutrino energy is ∼ 20 MeV, so the mean free path is only
∼ 0.5 ρ−1

12 km.
Scattering is a diffusion process, and from the diffusion equation in spher-

ical geometry one finds that the time for a neutrino to diffuse a radial dis-
tance ∆R is

tdiff =
∆R2

3λνc
(2.15)

Another way of seeing this more intuitively is as a random walk, where
each step is λν . After N step the distance it has diffused from its ori-
gin is ∆R = N1/2λν . Each step takes a time λν/c, so the total time
is tdiff = Nλν/c. Therefore, ∆R = (ctdiff/λν)

1/2λν = (ctdiffλν)1/2, or
tdiff ∼ ∆R2/(λνc).

For a uniform sphere of radius R, the distribution of the density of the
diffusing particles is given by sin πR/(πR), and the diffusion time scale is
given by

tdiff =
3R2

π2λνc
(2.16)

(see e.g., Arnett, App. D). If we assume a uniform density sphere of mass

1.4 M⊙ we have R ∼ 8.7× 106ρ
−1/3
12 cm, and with Eq. (2.14) and Eq. (2.16)

we get

tdiff = 3.9 × 10−3 ρ
1/3
12

(

Eν

10 MeV

)2

s. (2.17)

As an estimate of the neutrino energy we take Eν ≈ EF = 50(Yeρ12)
1/3

MeV, where we have used Eq. (1.4) and EF ≈ pFc). With Ye ≈ 0.4 we get

Eν ≈ EF = 36.8 ρ
1/3
12 MeV. We therefore get

tdiff = 5.2 × 10−2 ρ12 s (2.18)

The diffusion time scale should be compared to the dynamical time scale,
tdyn, from Eq. (2.4),

tdiff

tdyn
= 40 ρ

3/2
12 (2.19)
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Therefore, we find that above a density of ∼ 1011 g cm−3 the neutrinos

are completely trapped in the core. This has the consequence that the lepton
number will be conserved in the core. If neutrino trapping would not set
in, the lepton number would have decreased to a very low level because of
beta decay and inverse beta decay (K-capture). Rather than becoming a
hot, collapsing neutron star, the core has a fairly normal lepton fraction of
Yl ∼ 0.4, where the lepton fraction is the fraction of neutrinos plus electrons.
Because of the neutrino trapping an equilibrium between reactions like e−+
p ↔ n+νe is set up, and therefore Yl rather than Ye is the relevant quantity.

2.3 Equation of state

Because of neutrino trapping and the low entropy, the collapse proceeds al-
most adiabatically. The entropy of the nuclei is much lower than that of
the free nucleons, and the nucleons remain in the nuclei during the collapse,
rather than being dissolved. This in turn has the consequence that the pres-
sure is dominated by the degenerate, relativistic electrons and the trapped

neutrinos, so p ∝ Y
4/3
e ρ4/3. The adiabatic index therefore stays at γ ∼ 4/3,

and the collapse proceeds until nuclear density, ρnuc ∼ 2 × 1014 g cm−3, is
reached.

Once the density is above nuclear, the equation of state suddenly be-
comes very stiff due to the nuclear repulsive short range forces, and the core
bounces. Typically, the adiabatic index changes from γ ∼ 4/3 to γ ∼ 2 − 3
(see Fig. 24). This occurs at a density of ∼ 2×1014 g cm−3. The exact form
of the equation of state is, unfortunately, not well determined above nuclear
density. This is for the explosion one of the most severe uncertainties.

2.4 Collapse

As we have just seen, because of neutrino trapping and the low entropy,
the collapse proceeds almost adiabatically. Numerical calculations of the
collapse show that the velocity close to the center is nearly proportional to
velocity, v ∝ r (Fig. 25). The v ∝ r region extends roughly out to where
the collapse becomes supersonic.

Schematically, the situation is that shown in Fig. 26. The v ∝ r collapse
is what is known as a homologous collapse, since it preserves the shape, and
only changes the scaling. The reason for this is, as Goldreich & Weber (1980)
have shown, that the collapse is nearly adiabatic and close to γ = 4/3. They
in fact showed that a similarity solution, describing the hydrodynamics,
could be found for this case. The homologous region can only extend as far
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Figure 24: Left: Adiabatic index as function of density for different isen-
trops. Right: Temperature in MeV for different isentrops (Cooperstein &
Baron 1990)

Figure 25: Velocity profile in the core in the homologous phase. The subsonic
inner region extends to ∼ 0.5 M⊙, where the infall velocity is close to v ∝ r.
The shock will form close to the sonic point. (Arnett 1978)
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Figure 26: Schematic velocity profile in the core in the homologous phase.
(Müller 1991)

as a sound wave can propagate from the center. In particular, the sound
waves are trapped at the point where the inflow becomes supersonic, which
is just inside of maximum infall velocity. Outside of the sonic point the
collapse proceeds supersonically, at close to free fall velocity.

In Fig. 27 we show the velocity profile of the infalling core at different
epochs during the collapse and the formation of the shock. The first curve,
(a), corresponds to the last epoch when the core is still homologous. The
central density is ∼ 4.8×1013 g cm−3. Note that this figure only corresponds
to the inner 50 km in Fig. 25. At the next epoch the central density is
∼ 2.6 × 1014 g cm−3, and homology is no longer valid. The compression at
the center generates sound waves which propagate outwards. As they reach
the sonic point they accumulate there, and steepen to a shock wave. Curve
(c) corresponds to maximum density, ∼ 9.7 × 1014 g cm−3. The inner 10
km is now at rest, and from the discontinuity in the velocity curve, it can
be seen that the shock has just formed. In (d) the outgoing shock is very
obvious. The central density is ∼ 6.9×1014 g cm−3, and the core is adjusting
to its final density ∼ 4 × 1014 g cm−3. As we will see in next section, an
important point for the survival of the shock is that it is not formed at the
center of the star, but close to the outer edge of the homologous core, at a
mass of ∼ 0.5 M⊙ from the center, or ∼ 20 km.
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Figure 27: Velocity profile in the core at four epochs during collapse and
explosion. Curve a) corresponds to the last epoch of homologous infall, with
v ∝ r (’last good homology’). b) The density at center is close to nuclear.
The matter outside is falling in with increasing velocity. c) The infalling
mass at the center has been brought to rest, while the accretion is occurring
outside. d) The shock has been launched. (Cooperstein & Baron 1990)

2.5 Energy losses in the shock

The total energy of the shock, as it is launched outside the homologous
core, is close to the binding energy of this, ∼ 5 × 1051 ergs. While the
initial energy of the shock is therefore large enough to overcome gravity, the
problem is that there are severe energy losses behind the shock, which takes
away energy from it. These are mainly due to photo-disintegration of iron
by the shock and due to neutrino losses in the hot gas behind the shock.
Depending on the temperature, the photo-disintegration may proceed all
the way to nucleons, or for lower shock temperature to α particles. Total
disintegration of an Fe nucleus to nucleons requires 8.8 MeV per nucleon.
Therefore, for each 0.1 M⊙ of iron outside the homologous core ∼ 1.5× 1051

ergs is lost by this process.
In Fig. 28 we show one example of an successful explosion and one

unsuccessful. In the upper one it can be seen that a shock wave forms at
∼ 25 ms. This propagates through the iron core, and succeeds in reaching
escape velocity at the time it has passed the boundary of the iron core, and
no more losses take place. The lower figure shows an unsuccessful explosion.
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Figure 28: Trajectories of different mass shells as function of time. In the
upper panel a successful explosion is shown, where the mass shell labeled b,
coinciding with the shock, has reached escape velocity, and the core has set-
tled into a hydrostatic configuration. The lower figure shows an unsuccessful
simulation. (Hillebrandt 1984, 1987)

48



Although a shock does form, this loses so much energy that it stalls at ∼ 300
km. However, outside of this accretion continues, and unless there is new
energy input it will re-collapse, resulting in a black hole.

While neither of these simulations include all necessary physics, they
illustrate the problem of overcoming the losses connected to traversing the
high density iron core. Because the iron core mass increases slowly with
increasing ZAMS mass, (Sect. 1.15 and Fig. 23) it is easier to explode a
star with a mass close to the lower limit of the massive range.

Success or failure depends on several factors. The mass of the iron
core is crucial, to avoid disintegration losses. The smaller, the better. The
maximum mass for an explosion is ∼ 1.2 M⊙. As we have seen earlier, this
is sensitive to factors like the 12C(α, γ)16O reaction rate and the treatment
of semi-convection. Another important factor is the stiffness of the equation
of state. A soft equation of state above nuclear density favors explosion.
Unfortunately, this is the most uncertain regime of the equation of state.

Summarizing the current situation, the prevailing view is that this prompt
explosion mechanism will probably not work without some additional energy
input, or other ingredient, except possibly for stars of mass <∼ 12 M⊙.
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Figure 29: Trajectories of different mass shells for Jim Wilson’s successful
explosion model. The upper dashed line gives the position of the shock,
while the lower is that of the neutrino photosphere. The dotted line marks
the region where the abundance of He is 50%. Note the revival of the shock
at 0.55 s due to neutrino heating (Bethe & Wilson 1985).

2.6 Neutrino heating

In a now classical computer run, Jim Wilson allowed one of his apparently
unsuccessful simulations to run for a much longer time than before. When
he looked at the result he saw, to his surprise, that the stalled shock had
now become a successful one due to the late energy input from the neutrinos
from the explosion and the newly formed hot proto-neutron star.

In Fig. 29 we show the resulting mass locations as function of time for
this simulation. As we see, the collapse occurs on a time scale of a few
tens of milliseconds. The shock forms at a distance of ∼ 100 km from the
center. This expands, but because of energy losses it loses speed, and after
∼ 0.1 s it is almost stalled. Accretion continues, and normally one would
consider this a failed explosion. However, because of the longer than normal
simulation, we see that at ∼ 0.5 s the shock suddenly gets new energy and
rapidly expands out of the core. At that point the density at the shock is
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low enough for losses to be negligible, and a the result is a healthy explosion.
Although successful, these simulations had several deficiencies. One was

an unrealistic equation of state above nuclear density, considered as too soft.
Another is that Wilson’s group assumed a vigorous convection caused by
’neutron fingers’ in the newly formed neutron star. This instability is similar
to the ’salt finger instability’ occurring when warm, salty water rests on top
of cold, fresh water. Because the heat diffusion is much more rapid than the
salt diffusion the temperature will become the same as the surroundings.
It will, however, have a larger salt content than the surrounding water and
therefore be more dense, and it will sink further, causing a flow of salty water
downwards. The analogue of the salinity is in the collapse case the lepton
number, which in the proto-neutron star can decrease outwards, while the
entropy increases outward.

Finally, the radiative transfer treatment of the neutrinos was in Wilson’s
calculations rather simplified. Nevertheless, what was most important was
that they pointed out the importance of neutrino heating and the conse-
quences of this on a long time scale. We will now discuss the details of this
mechanism in more detail.

The proto-neutron star formed by the collapse cools by an enormous flux
of neutrinos on a time scale given by the neutrino diffusion time scale tdiff ,
given by Eq. (2.18), but now with ρ ∼ 2 × 1014 g cm−3. Finally, as the
density decreases at the boundary of the iron core, the density will be low
enough for the neutrinos to escape freely. One can therefore, in analogy with
the photosphere, define a neutrino-sphere, with radius Rν , where the optical
depth to infinity is τν = 2/3.. As the neutrinos propagate out through the
shocked gas, they will scatter and be absorbed by the nucleons.

The most important heating processes are

ν̄ + p → e+ + n (2.20)

and
ν + n → e− + p (2.21)

The neutrino heating rate at radius r is given by

Hν(r) =
4π

(ch)3

∫

cσ(Eν)EνW (r)f(Eν)E
2
νdEν (2.22)

Here f(Eν) is the distribution function of the neutrinos. We assume this is
given by the Fermi distribution

f(Eν) =
1

eEν/kTν + 1
(2.23)
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W (r) is the dilution factor, given by W (r) = 1
2 [1 −

√

1 − (Rν/r)2]. Note
that the neutrinos have only one helicity state, and there is therefore not
the usual factor 2 multiplying the integral, as for electrons and photons.

Now, using Eq. (2.9) for the neutrino cross section and using

∫

∞

0

x5

ex + 1
dx =

31π6

252
≈ 118.3 (2.24)

we get

Hν(r) =
31π7

252

m4
ec

6

h3
σ0W (r)

(

kTν

mec2

)6

(2.25)

The cooling rate for the inverse processes to Eq. (2.20) and Eq. (2.21)
is

Cν(r) =
8π

(ch)3

∫

cσe−+p→ν+n(Ee)Eef(Ee)p
2
edpe (2.26)

where f(Ee) is now the electron distribution, given by the Fermi distribution
at the matter temperature T at r

f(Ee) ≈
1

eEe/kT + 1
(2.27)

We have in Eq. (2.26) included the factor two for the two spin states. We
further assume the electrons are relativistic, so that Ee ≈ pec, and that they
are non-degenerate. This is in general a good approximation in the neutrino
heating region.

The cross section σe−+p→ν+n can be obtained by detailed balance from
the reverse of the above reaction. Detailed balance says that the cross
sections for a reaction i → f and the reverse reaction f → i are related as

σi→f gip
2
i = σf→i gfp2

f (2.28)

(e.g., Landau & Lifshitz 3, §144). Note that gip
2
i and gfp2

f are just the phase
space factors. Because gν = 1, ge = 2, pν = Eν/c, and pe ≈ Ee/c, since the
electrons are relativistic, we get

E2
ν σν+n→e−+p = 2E2

e σe−+p→ν+n . (2.29)

Further, σν+n→e−+p = 1/4σ0(Eν/mec
2)2 (Eq. (2.9)), and Ee ≈ Eν we get

σe−+p→ν+n = 1/8σ0(Ee/mec
2)2, and

Cν(r) =
πσ0c

2(ch)3

∫

E5
e f(Ee)dEe (2.30)
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Using Eq. (2.24) again we obtain

Cν(r) =
31π7

252

m4
ec

6

h3
σ0

(

kT

mec2

)6

. (2.31)

Therefore, the net heating rate becomes

Hν(r) =
31π7

252

m4
ec

6

h3
σ0[W (r)T 6

ν − 1

2
T 6] (2.32)

At the neutrino sphere, W ≈ 1/2 and T ≈ Tν so that the net heating is
zero. For r ≫ Rν the dilution factor is W ≈ R2

ν/4r
2.

Exercise: Skip this!
Motivate the different terms in Eq. (2.22), and explain the steps leading

up to Eq. (2.32).

Eq. (2.32) shows that for T > Tν(Rν/2r)
1/3 there will be a net cooling,

and vice verse.
The temperature behind the shock is set by the disintegration of Fe. For

each nucleon this costs a binding energy Ebind. The total energy per nucleon
to be dissipated by the shock is the gravitational binding energy at r. This
is divided between the disintegration energy and the thermal energy of the
(non-degenerate and non-relativistic) nucleons

GMmp

r
= Ebind +

3

2
kT (2.33)

If iron is completely dissociated into nucleons this costs 8.8 MeV per nucleon.
Dissociation into α particles costs ∼ 2 MeV per nucleon. Taking this as the
typical case, we find

T ≈ 15

r7
− 1.3 MeV (2.34)

where r7 = r/107 cm. The shock tends to stall at 300 − 500 km, so the
temperature will be 1 − 3 MeV, decreasing outwards. Close to the proto-
neutron star it will be fairly constant. The matter temperature is shown
schematically in Fig. 30

Because T decreases faster than Tν(Rν/2r)1/3, there will be a radius
where heating and cooling balance, given by

Rgain ≈
(

Tν

T

)3

Rν (2.35)
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Figure 30: Schematic figure of matter temperature (solid line) and the tem-
perature for which neutrino cooling and heating balance. The crossing of
these defines the gain radius. (Janka 2001)

This is often referred to as the gain radius. Inside of this there is a net cooling
by the neutrinos, while outside there is a net heating. This is summarized
in Fig. 31.

This late neutrino heating certainly helps in getting an explosion, as al-
ready Jim Wilsons simulations showed. Even including this it has, however,
been extremely difficult to get succesful explosions, except for stars close to
the lower limit for supernova explosions. In Fig. 32 we show one of the few
cases where this has been possible in a simulation of an 11 M⊙ star. This
had an O–Ne–Mg core with a very steep density gradient outside the core,
which is one of the reasons why the shock survived the propagation through
the core. For more massive stars it has been considerably more difficult
to get an explosion and in Fig. 33 we show the result of the collapse of a
15 M⊙ star. Although a shoch is launched after the bounce and initially
expands it stalls after 0.15 s and the end result is a black hole.

The neutrino heat input has also important consequences for the dynam-
ics of the gas behind the shock. Just outside the gain radius the matter is
heated to a high temperature, decreasing outwards. This therefore induces
a strong entropy gradient outwards, towards the shock. Such a gradient in
turn leads to convection by the usual Schwarzschild criteria. The large scale
convective motions transport entropy to the region close to the shock and
can therefore re-energize the shock (see Fig. 29 and Fig. 36). At the same
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Figure 31: Schematic picture of the different regions close to the neutron
star (Janka 2001)

time low entropy gas sinks inward, inside the gain radius. There it will be
heated by the neutrinos. This compensates the iron disintegration losses,
and if efficient enough, can cause the shock to survive through the whole
iron core.

The efficiency of the late heat input mechanism depends naturally on the
neutrino luminosity from the proto-neutron star. In terms of the neutrino
temperature of the different neutrino species this is given by

Lνi
= 4π

7

8
σBT 4

νi
R2

νi
(2.36)

where both Tνi
and Rνi

may differ between the six neutrinos. The factor
7/8 comes from the fact that the neutrinos are fermions, while the usual
Stefan-Boltzmann constant, σB , is defined for photons.

Exercise:
Motivate the factor 7/8 in Eq. (2.36)!

The neutrino emission is a consequence of the de-leptonization of the
proto-neutron star. At the time of collapse the temperature in the core
is fairly constant and ∼ 20 MeV. After the collapse most of the binding
energy is stored not as thermal energy, but as chemical potential energy of
the degenerate electrons and neutrinos. With ρc ∼ 6 × 1014 g cm−3 and
Ye ∼ 0.28 this gives µe ∼ 287 MeV. The neutrinos, with Yν ∼ 0.08, have a
somewhat lower µe ∼ 238 MeV. Because the temperature is only ∼ 5 MeV,
the thermal energy is negligible for the neutrino production.
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Figure 32: One dimensional simulation of the collapse and explosion of an
11 M⊙ progenitor. This may represent the explosion of the Crab supernova
(Kitakura et al. 2006)

The νe and ν̄e are produced by e−+p → ν+n and e++n → ν̄e+p, while
e+ + e− → ν̄i + νi are responsible for the production of µ and τ neutrinos,
by roughly equal numbers.

In Fig. 34 we show a two-dimensional simulation of the deleptonization
of the proto-neutron star. Convection set up by the gradient in electron
fraction, Ye, causing rising bubbles of high Ye (’light’) bubbles to the surface
of the neutron star, where the neutrinos are emitted, decreasing the Ye. This
matter now has a lower Ye and will therefore sink back into the core. In this
way there is a deleptonization wave moving in through the core, as can be
seen from a comparison of the two epochs.

This is shown more quantitatively in Fig. 35, where one sees the rapidly
decreasing lepton fraction from the surface inwards. The total process takes
a couple of seconds until the proto-neutron star has got rid of its leptons,
and been converted into a proper neutron star of nearly zero lepton frac-
tion. These convective motions will increase the deleptonization rate by a
substantial factor, and at the same time also increase the neutrino luminos-
ity.
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Figure 33: Simulation of the collapse and explosion of a 15 M⊙ explosion.
In this case the shock stalls and the end result is a complete collapse with
the creation of a black hole. (Rampp & Janka 2000).

Taking all these ingredients together, the increased neutrino luminosity
from the proto-neutron star, the neutrino heating of the gas of the matter
outside the neutron star and the convective motions behind the shock one
has in some simulations been able to obtain an explosion. However, several of
these successful attempts have weaknesses in the form of the treatment of the
neutron star cooling, the radiative transfer of the neutrinos or the equation
of state. It is therefore to early to make any conclusions of the success of
this mechanism. The radiative transfer is in particular a demanding task,
with scattering, absorption and emission in both energy and space.

In addition, there are other ingredient. like magnetic fields and rotation,
which have only been included in simplified models. They may, however, be
crucial for the outcome. In particular, the gamma-ray bursts may indicate
the necessity to include these effects.
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Figure 34: Two-dimensional simulation of the neutrino convection in the
proto-neutron star. The plot shows the electron fraction, Ye, at 0.525s and
1.047 s. Note the down drafts of deleptonized matter which sinks into the
core, while high lepton number bubbles rise. (Keil, Janka & Müller 1996)

Figure 35: Lepton fraction and entropy at 0.05 s, 0.25 s and 0.70 s. Note
the heating of the inner core (increasing entropy), and the deleptonization
wave moving in from the surface. (Keil, Janka & Müller 1996)
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Figure 36: Two-dimensional simulation of the explosion at 0.38 s after core
bounce. The contours show the entropy distribution. The shock is at 3800
km. Note the bubbles of neutrino heated gas, and the down drafts of sinking
cooler gas. (Janka & Müller 1996)
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2.7 SASI

A qualitatively new development has come with the realization that the
shock outside the proto-neutron star can be seen as a standing accretion
shock. One knows that in spherical geometry such shocks are subject to
instabilities. Initial analytical and numerical studies of spherical accretion
shocks also confirmed that this wasd the case. Further simulations including
realistic neutrino physics and eqation of state in two dimensions showed that
a large scale dipolar (l = 1, 2) instability develops in a generic way. This
SASI instability (Standing Accretion Shock Instability) leads in general to
an accretion plume in one region and an outflow in others. In Fig. 37 we
show the result of such a simulation. Although these simulations show that
these low mode instabilities favor a succesful explosion, it is only in models
at the lower mass end, in particular for stars with O–Ne–Mg cores, one
finds explosions. A problem is, however, that these simulations have only
been performed in 2D. This constrains instabilities etc. in an artificial way
compared to 3D, and only for such simulations can one trust the outcome.

An interesting side result is that these large scale modes may be able to
explain the observed high neutron star velocities of the pulsars, with veloci-
ties up to ∼ 1000 km s−1. The asymmetry of the explosion naturally leads to
a momentum in the same direction, and the simulations show that velocities
in the range observed can indeedbe obtained in the explosion models. These
are, however, based on parameterized neutrino luminosities from the neu-
tron star, and it is likely that the quantitative results will change as more
ab initio models become available. Nevertheless, this is a very promising
avenue for the solution of this long lasting problem.

A further recent interesting result is that the same SASI instability also
tends to develop spiral modes (m = 1). This will lead to an angular momen-
tum of the neutron star and simulations show that this effect may explain
the observed rapid spin of the pulsars, even for non-rotating progenitors.

A modified version of the SASI mechanism starts with the SASI oscil-
lations with a period of ∼ 15 − 30 ms during the first 200 ms. The SASI
mechanism by itself does not lead to an explosion. However, the accretion
plumes onto the protoneutron star induces gravity mode (radial) oscillations
with a peiod of ∼ 3 ms in this. These grow and after ∼ 0.5−1 s these become
so violent that an explosive outflow results. The explosion now resembles
an anisotropic wind more than a spherical outflow. As with the SASI insta-
bility this will naturally explain the large pulsar velocities. Whether this is
the final solution to the problem remains to be seen. History tells us that it
is probably not!
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Figure 37: Two-dimensional simulation of the explosion at several epochs
after core bounce, and for two different progenitor models. The contours
show the entropy distribution. Note the bubbles of neutrino heated gas,
and the down drafts of sinking cooler gas. (Scheck et al. 2006)
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Figure 38: Neutron star kick velocity for different simulations ans . (Scheck
et al. 2006)

2.8 Shock propagation

If the shock has managed to escape the iron core, the density decreases
rapidly, and with that the disintegration and neutrino losses. There will
still be some explosive nucleosynthesis in the silicon and inner parts of the
oxygen shell, but this only adds a small amount of energy to the shock.
After this the shock will propagate through the whole star and disrupt this.

The journey to the surface is, however, not just a smooth ride. The
density in the progenitor decreases in steps as the various burning zones are
passed. For an adiabatic shock wave p = (γ − 1)E/V ∝ E/r3, where E
is the constant, total energy and r the shock radius. The pressure behind
the shock is given by the ram pressure swept up by the shock, ρv2 ≈ p.
Therefore, the shock speed will be given by v ∝ (p/ρ)1/2 ∝ E/(ρr3). We
therefore conclude that if ρr3 increases, the shock will slow down, and vice
versa.

In Fig. 41 we show the shock speed as function of time, and also the
quantity ρr3. As we see, the shock speed behaves just as we expect from the
analysis above. We note that the shock decelerates strongly in both the He
core and in the H envelope. This deceleration has the consequence that there
will be positive pressure gradient behind the shock, which slows down the
gas behind it. Gas far enough behind the shock will not have time to react
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Figure 39: Propagation of the shock through the progenitor from the center
to the shock break-out. The left panel gives the density structure from 0.8
s to 5000 s, while the right panel gives the shock velocity together with ρr3.
Note the deceleration of the shock in regions with increasing ρr3 (Kifonidis
et al. 2003)

to this increased pressure, and will thus shock the gas, i.e, create a reverse
shock wave. These shocks, which have formed at the Si/O, (C+O)/He and
He/H shells, can be seen in the left panel of Fig 39 at 0.82 s, 20 s, and 1500
s, respectively.

The reverse shock results in pressure and density gradients with oppo-
site signs at the composition interfaces between the Si/O, (C+O)/He and
He/H shells. As can be shown from a stability analysis, the growth rate of
perturbations in the density is

ω2 =
p

ρ

∂ ln p

∂r

∂ ln ρ

∂r
(2.37)

Therefore, if the gradients have different signs, the layer is unstable to per-
turbations. This is just the classical Rayleigh-Taylor instability, but with
the gravity replaced by a pressure gradient.

Exercise: Skip this!
Derive the condition for the Rayleigh-Taylor instability for two fluids of

different densities in a gravitational field on top of each other. How does
this condition relate to Eq. (2.37)? (See e.g. Spitzer or Padmanabhan, Vol.
I)

In Fig. 40 we show the pressure, density, velocity and composition for
the one-dimensional model in Fig. 39. at 20 s and 300 s. At 20 s the reverse
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Figure 40: Pressure, density, velocity and composition for the one-
dimensional model in Fig. 39 at 20 s and 300 s after explosion. The shaded
regions show the locations of R-T unstable regions. (Kifonidis et al. 2003)

shock is at 1.6 × 1010 cm and at 3 × 1010 cm at 300 s. From the pressure
and density curves at 300 s one can clearly identify the unstable regions at
at 0.8 × 1011 cm, 1.0 × 1011 cm and at 2.0 × 1011 cm. These coincide with
the density jumps at the Si/O, (C+O)/He and He/H interfaces, respectively.
Based on this one dimensional analysis, one can therefore expect instabilities
at these positions.

This is confirmed by the two-dimensional simulations shown in Fig. 41.
and Fig. 42, which shows that the whole core is broken up by instabilities,
extending almost out to the He/H interface.

Exercise:
Discuss the evolution of the two-dimensional simulations in Figs. 41-43.

(See Kifonidis, K., et. al. 2003, A&A, 408, 621)
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Figure 41: Evolution of the explosion at 4 s, 10s, and 20 s in two dimensions.
The upper panels show the density and the lower the composition with O
(blue), Si (green), Ni (red). Note the rapid development of the Rayleigh
Taylor instabilities. the neutron star (Kifonidis et al. 2003)
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Figure 42: Same as Fig. 41 but at 100s, 300 s and 1500 s. Note the difference
in scale (Kifonidis et al. 2003)
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Figure 43: Same as Fig. 41 but now at 5000 s, 10000 s and 20000 s. Note
the difference in scale (Kifonidis et al. 2003)
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Figure 44: Explosive nucleosynthesis in the central region (Kifonidis et al.
2003).

2.9 Explosive nucleosynthesis

As the shock wave propagates through the silicon and oxygen rich gas close
to the iron core, the temperature behind the shock will be high enough for
explosive nucleosynthesis to take place in these regions. This burns most of
the Si and S into nuclear statistical equilibrium, (see Fig. 44).

During the first seconds after the core bounce some from the observa-
tional point of view most important isotopes are formed. Close to the border
between the neutron star and the ejecta the explosive nucleosynthesis occurs
in conditions close to NSE. As we saw in §1.7, it is therefore not surprising
that the most abundant nucleus is 56Ni. The exact mass of 56Ni, which will
be ejected, depends sensitively on where the split is between the the matter
falling into the neutron star and that expanding out. This is usually known
as the ’mass cut’. Typically, the 56Ni mass is ∼ 0.1 M⊙, but this can vary
by a large factor, both upwards and downwards.

In addition to 56Ni, substantial amounts of 57Ni and 44Ti are created.
While 57Ni (not included in Fig. 44) can be produced in NSE, 44Ti needs a
more fine tuned version of this, known as an ’α-rich freeze-out’.

The α-rich freeze-out occurs when the explosive burning reaches NSE,
but the medium is then cooled so fast that the free α-particles, created
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mainly by the photo-disintegration of the iron peak elements, does not have
time to fuse back by the 3α reaction. For long enough time the α’s are
consumed in the chain

α(2α, γ)12C(α, γ)16O(α, γ)......52Fe(α, γ)56Ni (2.38)

However, the 3α reaction is comparatively slow, and if the temperature falls
rapidly this acts like a bottle-neck, resulting in a large fraction of free α
particles. Thus, its name, α-rich freeze-out. Calculations (e.g., Woosley &
Hoffman 1991) show that this results in an excess of especially 44Ti.

The exact abundances of the three radioactive isotopes depend on the
density, temperature and neutron excess. Therefore, a determination of
these abundances provides a useful probe of the conditions at the time of
the explosive nucleosynthesis, during the first seconds of the explosion.

Outside the silicon core, in the inner oxygen shell, the shock velocity
and density are still high enough for the inner parts of the oxygen core to
be transformed into Si/S. At this point the density becomes too low for
any significant nucleosynthesis to take place. Outside of the inner oxygen
shell, the composition just before core collapse is almost unaffected by the
explosion. Summarizing the explosive nucleosynthesis, the most important
elements affected by this is oxygen and elements heavier than this.

2.10 The r-process

In addition to these elements, which account for most of the newly created
elements in terms of mass, there is also a further process, which is extremely
important for the elements beyond the iron peak. This relays on the fact
that close to the mass cut, where the density and temperature is high, the
abundance of free neutrons is also high. This high neutron flux can be
absorbed by the different abundant iron group nuclei in this region, which
leads to the build up of heavier, neutron-rich isotopes. The first step is
therefore,

(Z,A) + n → (Z,A + 1) + γ (2.39)

This may be followed either by another neutron capture

(Z,A + 1) + n → (Z,A + 2) + γ (2.40)

or by a β-decay

(Z,A + 1) → (Z + 1, A + 1) + e− + ν (2.41)

69



The time scale for β-decay varies between seconds and days. This is by
ordinary evolutionary standards short, and leads for normal stars in con-
nection to e.g., the He-burning phase to the so called s-process. However, in
connection to supernova explosions the neutron flux may be extremely large
during the explosion phase which is only of the order of seconds at most.
In this case the neutron capture (Eq. 2.40) may occur before the β-decay,
and this may continue up to very neutron rich nuclei, (Z,A + k). This is
the beginning of the r-process

This can, however, not continue infinitely. The neutron capture cross
section decreases with an increasing number of neutrons, and at the same
time the photodissociation cross section (Z,A + k) + γ → (Z,A + k− 1) + n
increases. There will therefore be an isotope (Z,A + k) for which the n-
capture rate and photodissociation rate balances. At this point the β-decay
may become important (Z,A + k) → (Z + 1, A + k) + e− + ν. The process
may now continue for this new element until a new equilibrium isotope is
formed.

The neutron capture cross section decreases just above the neutron num-
bers corresponding to closed neutron shells, N = 8, 20, 28, 50, 82, 126, 184
(see Fig. 45). This leads to a pile up of nuclei with this number of neutrons
and the typical r-process path is shown in Fig. 46

As the nuclei produceesed by the r-process β-decay back to the stable
nuclei this pile up for the magical neutron numbers is directly reflected in
the abundances of the r-process elements, shown in Fig. 47. The peaks are
now shifted to N=46, 76 and 116. In the s-process the β-decays brings back
the nuclei to the stability valley and the peaks in abundances occur at the
same neutron number as the peaks in the neutron cross section.

Although the r-process was proposed already 1957 by Burbidge, Bur-
bidge, Fowler and Hoyle, the site of this has always been a mystery. Be-
cause of the need for a very strong neutron exposure under a short time
interval supernova explosions have for a long time been a main candidate.
The precise location and conditions for this has, however, been a puzzle.
It is clear that the general conditions just outside of the newborn neutron
star are ideal for this. The neutron density is very high, because of inverse
β-decays. Also the presence of a large density of seed nuclei in the form
of iron peak elements is very favorable. At the moment the region close to
the shock wave seems like the most promising, but it is not clear that the
observed distribution of abundances can be reproduced in detail.
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Figure 45: Cross section for neutron capture as function of the neutron
number. (Rolfs & Rodney 1988)

3 Observables of core collapse supernovae

3.1 Neutrinos from SN 1987A

The most unique observation of SN 1987A is the first observation of neutri-
nos from outside of the solar system. Although already Chiu and Colgate &
White in the 1960’s had predicted that most of the gravitational energy in
the collapse would emerge as neutrinos, the flux from supernovae at ’normal’
distances is too low for the current (and probably next) generation of neu-
trino detectors. However, the small distance to SN 1987A, 50 kpc, meant
the the flux was >∼ 104 larger than from a supernova in even the closest
galaxies outside the Local Group.

As soon as the news of the discovery of SN 1987A came, the different
teams looked at the registration journals of the most sensitive detectors,
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Figure 46: Typical path for the r-process. Note the position for the magical
neutron numbers where a pile up occurs. (Rolfs & Rodney 1988)

Kamiokande II in Japan and IMB (Irwine – Brookhaven – Michigan) in
Ohio. To their satisfaction they saw a clear signal at exactly the same time,
February 23 at 07:35:41 UT. Fig. 48 shows the energies of the individual
electrons produced by the neutrinos, which approximately corresponds to a
neutrino energy given by Eν ≈ Ee + 2 MeV.

The total energy in the form of neutrinos is straightforward to calculate,
and was predicted long before SN 1987A. Because the kinetic energy of the
shock is less than a percent of the total energy, what is emitted is just the
binding energy of the neutron star formed. For a uniform density this is

Eb =
3

5

GM2

R
= 3.1 × 1053

(

M

1.4 M⊙

)(

R

10km

)−1

ergs (3.1)

Note that we here should use the radius of the cool neutron star 10−20 km.
A more accurate calculation, taking the non-uniform density distribution
into account, gives a similar result.

Exercise:
Derive Eq. (3.1)!
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Figure 47: Abundances of the heavy elements above iron. Note the promi-
nent r-process peaks, as well as the s-process peaks. (Rolfs & Rodney 1988)

The duration of the burst is set by the diffusion time scale of the neu-
trinos as the proto-neutron star is deleptonized and is cooling down. In the
proto-neutron star the neutrino energies are so high that the coherence in-
volved in the neutrino scattering against the nuclei, discussed in connection
to Eq. (2.13), is lost. Therefore the bracket in Eq. (2.13) should be replaced
by ∼ 1. The mean free path is therefore ∼ 106ρ−1

14 (Eν/1 MeV)−2 cm. Using
a constant density for the proto-neutron star with mass ∼ 1.4 M⊙, we have
ρ ≈ 2.5× 1013(R/30 km)−3. Using these expressions in the equation for the
diffusion time, Eq. (2.16), we get

tdiff ≈ 0.2

(

R

30 km

)−1( Eν

100 MeV

)2

s. (3.2)

Typically, the neutrino energies are of the order of 100-200 MeV in the inner
core.
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Figure 48: Energy versus arrival time for the detected neutrinos in the
Kamiokande II and IMB detectors. (Burrows 1988).

In reality, the density in the center is higher than the mean density used
above, and the neutrino energies also vary by a large factor, so this number
should only be taken as indicative. The fact that it is much larger than
the dynamical time scale, however, shows the importance of the neutrino
diffusion. More accurate calculations show that the neutrinos diffuse out on
a time scale of ∼ 2 s.

While the main feature of the neutrino emission can be understood from
these simple arguments, a more detailed study requires numerical simula-
tions. It then turns out that one can divide the evolution into two main
phases (see Fig. 49). The first of these is extremely brief, only of the order
a millisecond, and is connected to the breakout of the shock through the
neutrinosphere. The shock forms below this, but within <∼ 1 ms it passes
the neutrinosphere into the optically thin region. The nucleons in the ex-
tremely hot gas behind the shock undergo electron captures, e−+p → νe+n,
which is an important energy loss process for the shock. The result of this is
a very large density of νe’s behind the shock. As the gas becomes optically
thin to the neutrinos, this energy density is released. This produces a very
short, a few ms, burst of νe’s (Fig. 50). The luminosity is ∼ 5×1053 erg s−1

and the total energy in the burst (1− 3)× 1051 ergs. Compared to the total
energy budget, this is a small fraction, and it is unlikely that any of the SN
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Figure 49: Approximate neutrino luminosities of the different neutron
species. Note the logarithmic time scale. (Burrows 1984).

Figure 50: Luminosity and mean neutrino energy as function of time during
the shock breakout phase. (Rampp & Janka 2000).
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Figure 51: The lepton fraction (Ye + Yν) through the proto-neutron star for
different times after the core bounce. Note the deleptonization wave from
the surface inwards. (Burrows & Lattimer 1986).

1987A neutrinos came from this burst. For a Galactic supernova this would,
however, be extremely interesting as a diagnostic of the shock.

The next phase is connected to the deleptonization of the proto-neutron
star, and has a much longer time scale, 10 – 20 s. As we discussed in §2.6,
the deleptonization proceeds as a wave from the neutrinosphere to the center
(see Fig. 2.6). In Fig 51 we show the same thing on a longer time scale,
from 0–20 s. At the last epoch YL ∼ 0., showing that the neutron star is
formed.

The neutrino and electron losses at the surface has the consequence that
the pressure support of the neutrinos and electrons in the region just outside
the core is removed. This region therefore contracts towards the center onto
the core of the neutron star. As a consequence, the neutrinosphere moves in
from ∼ 100 km to 10–20 km. This contraction heats the matter in the outer
parts to ∼ 30 − 50 MeV. In addition, accretion from the outside further
enhances the heating and the neutrino luminosity.

Despite the high interior temperature the neutrinos which escape have
a temperature of only Tν ∼ 4 − 5 MeV, corresponding to a mean energy
< Eν >∼ 3 Tν ∼ 10 − 15 MeV (Fig. 50). The reason that the ν̄e’s have a
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Figure 52: Luminosity as function of time for ν̄e and different equations
of state. Note the upper curve (model 72), which shows the short burst
accompanying the formation of a black hole. (Burrows 1988).

higher temperature than the νe’s is that the opacity for the ν̄e’s is lower than
for the νe’s. This is in turn a consequence of the lower number of protons
(ν̄e + p → e+ + n) compared to neutrons (νe + n → e− + p) as the surface
is deleptonized. One therefore ’sees’ to deeper layers with ν̄e’s, where the
temperature is higher.

Because of the high temperature and trapping an approximately equal
number of all six neutrino species, νe, ν̄e, νµ, ν̄µ, ντ , and ν̄τ are produced by
pair annihilation, the plasmon process and nucleon bremsstrahlung. The
energy in each of the neutrinos is therefore ∼ 6 × 1052 ergs.

The Kamiokande II and IMB detectors are both water Cherenkov de-
tectors, shielded by several 1000’nds of meter of rock. The total amount
of water in these are 2140 tons for Kamiokande II and 6800 tons for IMB.
Only electron neutrinos are detected with these water detectors. This occurs
through absorption on the protons in the water

ν̄e + p → e+ + n (3.3)

and elastic scattering including all neutrino species, i = e, µ, τ ,

νi + e− → νi + e−i (3.4)
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Figure 53: The cumulative number of anti-neutrino detections for the
Kamiokande II detector compared to models with different equations of
state and accretion rates. (Burrows 1988).

Figure 54: Same as Fig. 53 for the IMB detector. (Burrows 1988).
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The second reaction has a cross section which is only ∼ 5% of that of
the first reaction, which therefore dominates. The neutrino detectors are not
sensitive to neutrinos below ∼ 7 MeV for Kamiokande II and below ∼ 19
MeV for IMB.

To compare the detected signal with the predicted one has to convolve
the detector sensitivity with the calculated spectrum. The results of this
are shown in Figs. 53 and 54. Because of the small numbers (19 neutrinos
in total) one compares the predicted curves with the cumulative number of
neutrinos detected. The different curves correspond to different equations
of state. As we see there is a general good agreement, but because of the
statistics it is difficult to draw any far-reaching conclusions about e.g., the
equation of state or the explosion mechanism, e.g., the late neutrino eating
mechanism.

The average observed temperature of the neutrinos is 3 − 5 MeV, and
agrees well with that estimated before the explosion. A recent calculation
of the mean energy, < Eν >∼ 3 Tν , is shown in Fig. 50. The shorter
duration of the IMB signal, which has a higher threshold, actually gives
some indication that the source is cooling. The signal is best fitted with two
exponentials with τ <∼ 1 s and τ ∼ 4 s, respectively.

Although there has been a flood of papers claiming evidence for rota-
tional modulation, neutrino oscillations etc., there is in these few events no
evidence for this.

In addition to the clear detections by Kamiokande II and IMB, there
is also a marginal detection from a detector in Baksan. The claims for a
detection with a much less sensitive detector under Mont Blanc about five
hours before the others should be taken with extreme suspicion.

3.2 Supernova classification

The classification of supernovae into different types and subtypes is basically
an empirical scheme, based on spectral features and light curves. However,
it turns out that this classification also corresponds to important physical
differences between them.

Most SNe are discovered shortly after explosion when they are near max-
imum luminosity. It is therefore important to be able to distinguish the
different types from the early spectrum. In Fig. 55 we show a collection of
spectra representing the most important types.

The observationally most obvious difference between various SNe is whether
or not they have any hydrogen features in their spectra. Type I SNe are de-
fined as those without and Type II as those with Hα. A closer examination,

79



Figure 55: Spectra of different supernova types one week after explosion
(Filippenko 1997).
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Figure 56: Spectra of different supernova types 5 months after explosion
(Filippenko 1997).
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however, shows that there are important differences within both of these
classes. The most important are between the extremely heterogenous Type
I’s. These are shown as the top and lower two spectra in Fig. 55. While
neither of them have any trace of Hα, the observational distinction is that
the Type Ia’s have a strong Si II λ6150 line, while the Type Ib’s and Ic’s
lack a strong feature at this wavelength. The distinguishing feature between
the Ib’s and Ic’s is the presence of He I lines in the former, while the Ic’s
lack any trace of helium.

While the differences between the Ia’s and Ib/c’s seem marginal, it turns
out that they originate from completely different explosion mechanisms. The
Ia’s are thermonuclear explosions of white dwarfs, completely disrupting the
star, while the I b/c SNe and the Type II’s are core collapse explosions of
massive stars, leaving a neutron star or black hole.

This distinction can somewhat better be understood from an examina-
tion of the spectra at late epochs. Fig. 56 shows a collection of spectra taken
5 months after explosion. Unfortunately, however, no Type Ib is included,
but they are qualitatively similar to the Type Ib’s. Now the difference be-
tween the Ia’s and Ib/c SNe become very large. While the Ia spectra are
dominated by [Fe II], [Fe III] and [Co III] features, the most prominent fea-
tures in the Ic spectrum are due to [O I], [Mg I] and [Ca II], with only weak
iron lines. Also the Type II’s have late spectra where the same lines are
strong, although they tend to appear later than for the Ib/c’s.

One can now start to appreciate the physical difference between these
classes. The presence of substantial amounts of oxygen, magnesium and cal-
cium is characteristic of the processed regions of a massive star, The Type
Ia spectra with only weak features of lines from these elements and strong
lines of iron are more typical of matter which has undergone complete burn-
ing to nuclear statistical equilibrium. The treason that the Type Ib/c’s lack
hydrogen is most likely because they have lost their hydrogen envelopes,
either as a result of mass loss or binary mass exchange. The progenitors are
therefore believed to be Wolf-Rayet stars. A more quantitative confirma-
tion of this, requires a much more detailed analysis of their spectra. This,
however, completely confirms these conclusions.

While the previous classification has only been discussed from the spec-
tra, there are also important differences with regard to the light curves of
the different SN types. In Fig. 57 we show light curves representative of
the different types. Here the Type Ia and Type Ib/c curves mainly differ in
terms of absolute luminosity. For the first two months they are character-
ized by a bell shaped peak, occurring 2-3 weeks after explosion. They then
have a nearly linear decline in a time - magnitude plot for the rest of the
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Figure 57: Light curves of different supernova types (Filippenko 1997).
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evolution. However, while the Type Ia’s are highly standardized, there is a
large dispersion within the Type Ib/c curves, both in absolute luminosity
and in the shape. In particular, the rate of decline after ∼ 50 days differ
considerably.

While the Type II’s have a fairly large range of light curves, one can
distinguish two main types. The IIP’s which are the most frequent, are
characterized by a fairly fast rise to a peak. After a decline by a magnitude
or so, they then stay at nearly constant magnitude for ∼ 100 days. This is
the reason for the P = plateau. After this there is a drop by a magnitude
or more, and then they decline with a fairly uniform rate of ∼ 1 magnitude
per 100 days.

A less frequent class are the Type IIL’s, where the L stands for linear.
The plateau is here lacking and the linear decline sets in shortly after the
peak. Usually, the Type IIL’s are considerably brighter in absolute luminos-
ity than the Type IIP’s. Spectroscopically, the Type IIL’s have already at
early epochs a strong Hα line in emission, while Hα has usually a classical
P-Cygni profile in the Type IIP’s.

In addition to theses main classes, there are several other subtypes, with
more or less distinct properties. This is usually connected to interacting
with a dense circumstellar medium. In Fig. 58 we summarize the whole SN
classification scheme, and we will now discuss the physical interpretation of
these characteristics, and the differences between the various types.

3.3 Radioactivity

As we saw in §2.9, the explosive nucleosynthesis in the silicon core resulted
in several radioactive isotopes, the most important being 56Ni, 57Ni and
44Ti. All of these have comparatively short half-lives, and the decays of
these elements can therefore be directly observed, and are in fact crucial for
the observability of the supernova. The decays are characterized by either
the half-life, t1/2, or the exponential decay time scale, τ . It is easy to see
that τ = t1/2/ ln 2.

56Ni decays on a time scale of τ = 8.8 days by electron capture as

56Ni → 56Co + γ . (3.5)

In this process it emits gamma-rays with energies 0.158 – 0.812 MeV (see
Fig. 59). The 56Co isotope resulting from this decay is, however, not stable
either, but decays by electron capture or by positron decay according to

56Co → 56Fe + γ (3.6)

→ 56Fe + e+ (3.7)
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Figure 58: Classification scheme based on spectra and light curves of differ-
ent kinds of supernovae (Turatto, 2003).

The first decay occurs in 81% of the cases and the second in the remaining
19%. In terms of energy going into gamma-rays and positrons these numbers
are 96.4% and 3.6%, respectively. The strongest gamma-ray lines are at
0.847 MeV and 1.238 MeV. The average positron energy is 0.658 MeV.
Similarly, 57Ni decays by electron capture as

57Ni → 57Co + γ (3.8)

with a very short decay time τ = 52 hours. The more interesting decay is

57Co → 57Fe + γ (3.9)

with τ = 390 days.
Finally, 44Ti decays first to 44Sc on a time scale of ∼ 89 years.

44Ti → 44Sc + γ (3.10)

and then rapidly (τ = 5.4 hours) to

44Sc → 44Ca + γ (3.11)

→ 44Ca + e+ (3.12)

(see Fig. 60).
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Figure 59: Transitions in the 56Ni and 57Ni decays (Diehl & Timmes 1998).

Figure 60: Transitions involved in the 44Ti and 44Sc decays (Diehl & Timmes
1998).
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Figure 61: The different steps in the thermalization of the gamma-rays.
Positrons undergo a similar thermalization history, except for the first step.

The result of these radioactive decays are either gamma-rays or positrons.
The gamma-rays are scattered by the electrons in the ejecta through Comp-
ton scattering. In each scattering they lose roughly half of their energy to
the electrons. Because the energy of the gamma-rays are initially in the
MeV range, much higher than the binding energies of the bound electrons
in the atoms, both free and bound electrons contribute to the scattering.
This down-scattering of the gamma-rays continues until the cross section
for photoelectric absorption is larger than the Compton cross section, which
occurs at an energy of ∼ 10− 100 keV, depending on the composition. The
most important element for the photoelectric absorption is iron.

The energy lost in each Compton scattering is transferred to the electron,
which therefore have energies ∼ 100 keV - 1 MeV. These primary electrons
lose their energy by ionizations and excitations of the atoms in the ejecta,
and by Coulomb scattering against the free electrons. The secondary elec-
trons resulting from the ionizations by the primary electron will in turn lose
their energy by the same three processes. The result is therefore a cascade
of secondary electrons. While the primary electron loses its energy mainly
in ionizations and excitations (unless the medium is strongly ionized), the
secondary electrons have an energy of <∼ 30 eV, and can therefore at most
give rise to one or two more ionizations. Finally when the energy of the
secondary electrons is below that of the excitation energy of the lowest level
in the most abundant ions, it loses all their energy by inelastic Coulomb
scattering (Fig. 62).

Summarizing this, one fraction of the energy goes into heating of the
thermal electrons, one into ionizations of neutral and singly ionized atoms,
and one into excitations of discrete levels in these. The exact fraction de-
pends on the ionization. At high ionization >∼ 0.1? most is going into heat-
ing, while at very low ionization approximately one third is going into each
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Figure 62: The energy going into the different channels as function of the
electron energy for pure oxygen.

Figure 63: The fractions going into heating, ionization and excitation as
function of the electron fraction for a pure gas of oxygen.
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channel. A proper determination requires either a Monte Carlo calculation
of the cascade, or solving the Boltzmann equation for the electron distri-
bution (see e.g., Kozma & CF 1992). As an example we show in Fig. 63
the different fractions for the gamma-ray thermalization as function of the
electron fraction for a pure oxygen plasma.

The total gamma-ray luminosity from the various decays is given by

Lγ = 1.27 × 1042

(

M(56Ni)

0.1 M⊙

)

e−t/111.3d

+ (3.13)

6.9 × 1038

(

M(57Co)

5. × 10−3 M⊙

)

e−t/390.d + (3.14)

4.1 × 1036

(

M(44Ti)

10−4 M⊙

)

e−t/89.yrs

erg s−1, (3.15)

and the positron input by

L+ = 4.44 × 1040

(

M(56Ni)

0.1 M⊙

)

e−t/111.3d

+ (3.16)

1.3 × 1036

(

M(44Ti)

10−4 M⊙

)

e−t/89.yrs

erg s−1 (3.17)

3.4 Light curves

3.4.1 Shock breakout

As the shock reaches the surface of the star the hot radiation will be able to
escape. This is the first time we usually observe the explosion as a supernova.

At the time of shock breakout approximately half of the total energy is
thermal. Because the shock is still radiation dominated Etot/2 ≈ 4π/3R3aT 4,
and the temperature behind the shock is therefore

T ≈
(

3Etot

8πaR3

)1/4

≈ 2 × 105

(

Etot

1051ergs

)1/4( R

1013cm

)−3/4

K (3.18)

A compact star, like a Wolf-Rayet star, will therefore have an effective
temperature >∼ 5 × 106 K, while a red supergiant with R ∼ 1014 cm will
have an effective temperature <∼ 5 × 104 K.

For SN 1987A, with a progenitor radius of ∼ 2× 1012 cm and an energy
∼ 2×1051 ergs, the effective temperature was therefore ∼ 4×105 K. In reality,
the scattering of the radiation, as well as other effects, increases the radiation
temperature by a factor of about two over the effective temperature.
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Figure 64: Temperatures and luminosity for the shock breakout for SN
1987A. The solid line shows the radiation temperature from a blackbody fit
and the dashed the effective temperature. (Blinnikov et. al. 2000).

Especially for compact stars the duration will be very short. For SN
1987A the time scale was only 3-4 min. The peak luminosity was ∼ 1045 erg s−1,
and the total energy emitted in the burst ∼ (1 − 2) × 1047 ergs (Fig. 64).

Because of the short time scale, direct observations of the breakout burst
is difficult. For SN 1987A one, however, had the fortunate situation of having
some circumstellar material in the form of the well known ring, lost by the
progenitor, outside of the supernova. This was ionized by the radiation
from the shock breakout, and then recombined on a time scale of years.
From observations of the strengths of the emission lines one can determine
both the state of ionization in the ring and its temperature. One then finds
that to explain the ionization of the ring the burst should have a radiation
temperature close to that estimated above. In this way one can indirectly
confirm the reality of this extremely short event.

3.4.2 The diffusion phase of the light curve

After shock breakout the radiation will leak out on a diffusion time scale.
We have already estimated this in Eq. (2.16), which we write as

tdiff =
3R2ρκ

π2c
(3.19)
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This should be compared to the expansion time scale t = R/V . Taking the
opacity to be that of Thompson scattering, κ = 0.4 cm2g−1, and assuming
a uniform density for the envelope we get

tdiff

texp
= 1.9

(

M

M⊙

)(

V

104 km s−1

)(

R

1015cm

)−2

(3.20)

For a typical mass of 10 M⊙ we therefore find that not until the supernova
has expanded to Rpeak ∼ 4× 1015 cm, after tpeak = R/V ∼ 40 days, can the
radiation leak out faster than the ejecta expand. This is analogous to the
neutrino trapping discussed in §2.2, although in this case it is expansion,
rather than collapse.

Before tpeak the expansion is nearly adiabatic. Because the ejecta is
radiation dominated it behaves as a γ = 4/3 gas, and the total thermal
energy behaves like

Eint = (γ − 1)−1pV = 3Kρ4/3V ∝ ρ1/3 ∝ R−1 (3.21)

Therefore, if the progenitor has a radius R0, the internal energy has de-
creased by a factor Rpeak/R0 once the photons can leak out. A small initial
radius therefore means that almost all the internal energy produced by the
shock has been lost into adiabatic expansion, i.e., to kinetic energy. If the
thermal, shock energy was the only source of energy, supernovae coming
from this kind of stars would be very faint. A red supergiant, on the other
hand, could be bright for weeks just from the thermal shock energy.

Besides the thermal energy from the shock, there is one more important
source for the light curve. As we saw in §3.3, the radioactive isotopes created
in the explosion give rise to gamma-rays and positrons as they decay. These
are loosing their energy in the ejecta, thermalizing their energy into UV and
soft X-ray photons, and therefore acts like an additional energy source. In
the same way as the thermal energy from the shock, the photons undergo
scatterings in the ejecta and only leak out when the diffusion time scale
becomes comparable to the expansion time scale. The difference compared
to the shock energy is, however, that this source is not affected by adiabatic
expansion. The number of radioactive nuclei, of course, remain the same
independent of the expansion. Therefore, even if nearly all the internal heat
has been lost in the expansion, radioactivity provides a source for the light
curve even at late times.

Under LTE conditions hydrogen becomes neutral at ∼ 5000 K. Because
the cooling occurs from the surface (photosphere), there will be a recombi-
nation wave propagating inwards in the ejecta. The recombination front is
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at approximately constant radius (but decreasing velocity since V = r/t).
Because the recombination temperature is constant this means that the lu-
minosity is also constant.

The duration of the plateau is approximately given by

tplat = 99

(

κR0 500M
3
10

E51T
4
ion,5050

)1/6

days (3.22)

(Popov 1993). From this expression it is evident that to have an appreciable
plateau phase the hydrogen envelope mass must be large. In addition, the
initial radius R0 has to be of the order of a red supergiant.

It is therefore likely that the Type IIL’s, which lack a plateau, have a
low envelope mass.

3.4.3 The late light curve and radioactive isotopes

After the peak diffusion plays a steadily decreasing role, and the light curve
becomes simpler. This is in particular the case if we consider the bolo-
metric light curve, i.e., the frequency integrated light curve. In this case
the emitted luminosity is just the instantaneous gamma-ray and positron
energy absorbed by the ejecta.

If we neglect the scattering in space and energy of the gamma-rays and
just consider it as an absorption process, which is a reasonable approxima-
tion, although not very accurate, we can calculate the bolometric light curve
just from the absorbed energy. As an angle and energy averaged opacity one
can for 56Ni and 56Co use κγ = 0.06Z/A cm2g−1, where Z/A is the average
charge to mass ratio of the ejecta. The positrons have a considerably smaller
mean free path, and except for epochs later than ∼ 500 days they can be
considered to be stopped and annihilate on the same spot as the radioactive
decay. If there is a non-radial magnetic field this becomes an even better
approximation. Further, since we neglect diffusion we are only considering
epochs later than ∼ 100 days. At these epochs all 56Ni has decayed into
56Co, and we can therefore neglect the first step in this chain.

For t ≫ τ(56Ni) = 8.8 days we need then only consider the 56Co decay.
Further, we assume that a fraction (1 − e−τγ ) of the gamma-ray energy is
trapped in the ejecta. Here τγ is an average optical depth to the gamma-rays.
Adding the gamma-ray and positron contributions we get

Lbol = 1.27× 1042

(

M(56Ni)

0.1 M⊙

)

e−t/111.3d

[(1− e−τγ ) + 0.035] erg s−1. (3.23)
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The first term in the square bracket represents the gamma-ray input and the
second the positron input. As an estimate of the gamma-ray optical depth
we take

τγ = κγρR = κγ
3

4π

M

V 2t2
(3.24)

= 0.38
Z

A

(

M

M⊙

)(

V

104 km s−1

)−2( t

100 days

)−2

(3.25)

We therefore see that the gamma-ray trapping is sensitive to both the mass
and the expansion velocity. As an example we take SN 1987A, where most
of the gamma-rays were trapped in the core. For the mass we therefore
take M ∼ 4 M⊙ and for the expansion velocity of the core ∼ 2000 km s−1.
We than get τγ ∼ 40(t/100 days)−2. The gamma-rays are therefore in this
case trapped up to ∼ 600 days. As another extreme case we can take a
Type Ic supernova, with M ∼ 6 M⊙, Z/A ∼ 0.5 and an expansion velocity
∼ 10, 000 km s−1. In this case we get τγ ∼ 1.2(t/100 days)−2, and the ejecta
is therefore transparent already at ∼ 100 days, or earlier for higher ejecta
velocities.

Eq. (3.23) shows that for τγ
>∼ 1 the bolometric light curve follows the

radioactive decay time scale closely, Lbol ∝ e−t/111.3d
. For 0.035 ≪ τγ ≪ 1

the decay is, however, steeper with Lbol ∝ e−t/111.3d
/t2. This dependence

explains the steeper late light curves of the Type Ia, Ib, and Ic supernovae
(§3.2).

From Eq. (3.23) we also see that the positrons become important when
τγ ∼ 0.035. For slowly expanding ejecta, as for SN 1987A, the positron
contribution does not become important before the next abundant radioac-
tive isotope, 57Ni, dominates the 56Ni contribution. For rapidly expanding
supernovae, like Type Ib/c supernovae or Type Ia supernovae, the positron
contribution, however, becomes dominant for t >∼ 300−500 days. The bolo-
metric luminosity then again follows the radioactive decay.

3.4.4 The bolometric light curve of SN 1987A

As an example of the usefulness of the bolometric light curve we take SN
1987A. In Fig. 65 we show this during the first 1000 days. After the diffusion
phase, which ends by day ∼ 130, and up to day ∼ 400, the light curve
closely follows the predicted linear relation expected for full trapping, Mbol =
−t2.5 log e/111.3d + const = −t/102.5d + const. After day 400 there is an
increasing deviation from the full trapping case, well fit by Eq. (3.23) with
τγ = 30(t/100d)−2, showing that some of the gamma-rays now escape the
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Figure 65: Bolometric light curve from ESO data for SN 1987A during the
first 1000 days. The solid line gives the bolometric light curve from Eq.
(3.23) with M(56Ni) = 0.07 M⊙ and τγ = 30(t/100d)−2. The dashed line
shows the total radioactive energy, including that escaping the ejecta. (Data
from Bouchet et al. 1990).

ejecta. Optical depth unity is reached after ∼ 550 days. Most important,
from the normalization of the curve one can determine the total nickel mass
to M(56Ni) = 0.07 M⊙. The error in this mass is not more than 10%.

By day 600 the bolometric light curve starts to deviate from that pre-
dicted by the pure 56Ni decay. This is a clear indication that the next most
abundant radioactive isotope 57Ni comes into play. At this point the simple
model above becomes questionable. The reason is that some of the radiative
processes balancing the radioactive input, in particular the recombination,
becomes slower than the radioactive time scale. This makes a time de-
pendent model, including all the atomic physics of the recombination and
cooling processes. This can be done and one then finds a good agreement
with M(57Ni) = 3.3 × 10−3 M⊙ (Fig. 66).

Thanks to its very long decay time scale, 89 years, 44Ti takes over as
the dominant source of energy to the ejecta at ∼ 1700 days. Although only
∼ 25% of the energy in the decay is in the form of positrons, these dominate
the energy input. The reason is that the positrons are most likely trapped
by collisions and even a weak magnetic field, while most of the gamma-rays
escape, since τγ

<∼ 0.1. The trapping in combination with the long decay
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Figure 66: Bolometric light curve for SN 1987A compared to theoretical
light curves from different isotopes. (Diehl & Timmes 1998).

time scale means that the light curve will be essentially flat after this epoch.

Exercise:
Calculate the epochs when the energy input due to 56Ni, 57Ni and 44Ti

dominate, respectively, for M(56Ni) = 0.07 M⊙, M(57Ni) = 3.3 × 10−3 M⊙,
and M(44Ti) = 1.0 × 10−4 M⊙. First assume an ejecta mass of 4 M⊙

and a velocity of 2000 km s−1 (SN 1987A), and then 1.4 M⊙, a velocity of
10, 000 km s−1, and M(56Ni) = 0.7 M⊙, M(57Ni) = 3.3 × 10−3 M⊙, and
M(44Ti) = 1.0 × 10−4 M⊙ (Type Ia). When do the positrons dominate?

While the bolometric light curve in principle is very appealing to use
for the determination of these isotopes, there are some major observational
and theoretical problems connected to this. We have already mentioned
the problems connected with the delayed recombination and cooling. This
can, however, be handled by more detailed modeling. Worse is the fact that
after ∼ 500 days most of the luminosity comes out in the mid- and far-IR.
This is due to both the cooling of the ejecta, and in the case of SN 1987A,
dust formation in the ejecta (see later). Especially the spectral region above
∼ 20µ is very difficult or impossible to observe from the ground. For SN
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Figure 67: Gamma-ray spectrum of Cas A obtained with COMPTEL on
the Compton Gamma Ray Observatory. (Iyudin et al. 1994).

1987A one was, thanks to its low distance, fortunate to be able to observe it
with the Kuiper Airborne Observatory (KAO). One could therefore up to ∼
1400 days correct the ground based observations for the far-IR contribution.
Unfortunately this is difficult for more distant supernovae, although the
newly launched Spitzer observatory will help in this respect.

One way of circumventing these problems is to use broad band optical
and near-IR observations, and from modeling of these calculate the bolo-
metric correction and thus the isotopic masses. This has been used for SN
1987A, where it is found that a mass of (1−2)×10−4 M⊙ of 44Ti was formed
in the explosion (Kozma & CF 2002). As we discussed in §3.3, this provides
us with a very useful diagnostic of the explosion conditions.

SN 1987A is not the only supernova for which the decays of 44Ti has
been observed. For Cas A (age ∼ 330 years) COMPTEL on the Compton
Gamma Ray Observatory detected the strongest gamma-ray line from the
44Sc at 1.157 MeV (Fig. 67). The strength of the line corresponds to
M(44Ti) ∼ 1.7 × 10−4 M⊙, close to that inferred for SN 1987A.

3.5 Spectra

The spectra of supernova involve virtually all complications a radiative
transfer problem can have. This includes spherical geometry, a high veloc-
ity field with the consequent blending of lines, extreme NLTE effects, and
non-thermal gamma-ray input. However, paradoxically, the high velocities
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Figure 68: Surfaces of constant frequency along the line of sight, for a ve-
locity v(r) ∝ r. The shaded area indicates schematically the region within
which a photon emitted at a given frequency interacts.

also offer some simplifications, and unique possibilities.
One of the most important of these is that the homologous expansion of

the ejecta allows us to probe the conditions in the envelope from observations
of spectral line profiles.

An important concept for high velocity flows is the surfaces of constant
velocity along the line of sight (SCV). This is defined by

ν − ν0

ν0
=

Vz

c
=

z

r

V (r)

c
= constant (3.26)

where z is the coordinate along the line of sight, and Vz the corresponding
velocity (Fig. 68). For a homologously expanding ejecta V (r) = V0(r/R0) =
r/t, where V0 is the velocity at a reference radius R0, and one obtains

z

R0
=

ct

R0

(ν − ν0)

ν0
≡ x (3.27)

Therefore, the SCV’s are surfaces of constant z, perpendicular to the line of
sight (Fig. 68). As one shifts in frequency from red to blue in the line, one
probes the ejecta from the back in towards the center and out to the front.

An important simplification is possible because when the expansion ve-
locity is much larger than the thermal width of the line, only a narrow
interval in depth contributes to a given frequency (Fig. 68). This is the ba-
sis of the Sobolev approximation. A simple derivation of the optical depth
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in this approximation starts with

τν = σνn1 δl (3.28)

where σν is the cross section at frequency ν, n1 the population in the lower
state and δl the thickness of the layer with which the photon interacts. For
a box line profile we have

σν =
πe2

mc

f12

∆νD
=

A21g2λ
2

8πg1∆νD
, (3.29)

where f12 is the absorption oscillator strength of the line, and A21 the tran-
sition probability. A photon emitted at a radius r interacts with the sur-
rounding gas within a region corresponding to a velocity difference by one
Doppler width of the line, ∆vD. Regions further away are redshifted too
much to come within the line width. As in an expanding universe with
velocity proportional to radius, this corresponds to a spherical region with
velocity radius ∆vD. The escape probability is therefore the same in all
directions, and can be evaluated in the radial direction. The radius of the
interaction region is then

δl =
∂r

∂V
∆vD =

[

∂

∂r

(

V0

R0
r

)]−1

∆vD =
R0

V0
∆vD =

∆νD

ν
ct, (3.30)

Including the usual stimulated emission factor we get

τ =
A21λ

3g2

8πg1

(

n1 −
g1

g2
n2

)

t. (3.31)

Since τ is isotropic, the escape probability averaged over the region is given
by

β =
1

2τ

∫ τ

0

∫ 1

−1
e−τ ′

dµ dτ ′ =
1 − e−τ

τ
. (3.32)

Knowing the optical depth and escape probability, one can calculate the
line profile for a given source function, which in terms of the level populations
is given by

S =
2hν3

c2(n2g1/n1g2 − 1)
(3.33)

For simplicity, we assume that there is no background continuum. This
is a good approximation for supernovae at late times, but is not valid in the
early stages.
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Using cylindrical coordinates, with p perpendicular to the line of sight
(Fig. 68), the flux is given by

Fx = 2π

pmax
∫

pmin

[S(p, z = xR)(1 − e−τ ) + e−τ Icont]p dp (3.34)

where the last term is the attenuated continuum contribution from the back-
ground, ususally the photosphere.

Using p dp = r dr for constant z (i.e., constant x), this can be written as

Fx = 2π

R
∫

rmin

[S(r)(1 − e−τ ) + e−τIcont]r dr (3.35)

where rmin = xR, and x is given by Eq. (3.27). If the level populations are
known, the line profile can now be calculated.

The source function has two contributions. One part is from the photons
locally created at the point by radiative de-excitation, and the other from
scattering of photons from the background continuum. In the simple, but
interesting case of two discrete levels, the source function is given by

S =
(1 − ǫ)βWIcont + ǫBν

(1 − ǫ)β + ǫ
(3.36)

where ǫ is the probability for collisional de-excitation, and W (r) = 1
2 [1 −

√

1 − (Rphot/r)2] is the dilution factor (see J. I. Castor, 1970, MN 149, 111
for a derivation).

As an illustrative example of a line profile calculation we consider the
case of an optically thick line, τ ≫ 1, and pure scattering, ǫ = 0 and . The
source function is then given by S ≈ WIcont, i.e., simply the background
continuum emission at the wavelength of the line times the fraction of the
total hemisphere covered by the photosphere.

Fx = 2π

rmax
∫

rmin

[W (r)Icont + e−τ Icont]r dr (3.37)

For convenience we scale the frequency to the maximum frequency shift,
i.e., to the radius of the supernova, Rmax = Vmaxt. With this scaling the
dimensionless frequency shift x ≡ c/Vmax(ν − ν0)/ν0 = z/Rmax is then in
the range −1 ≤ x ≤ 1. The integration is over the SCV, i.e., z = Rmaxx =
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Figure 69: Surfaces of constant frequency along the line of sight, for a ve-
locity v(r) ∝ r.
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constant. Depending on the frequency we now have to consider five different
possibilities, depending on to what extent the scattering surface scatters the
photospheric photons out of the line of sight, i.e., the e−τIcont term in Eq.
(3.37) (Fig. 69).

To determine these cases we use the relation between the radius, impact
parameter, p, and frequency x, given by r2 = p2 + z2 = p2 + x2R2

max. For
−1 ≤ x ≤ −[1− (Rphot/Rmax)

2]1/2 (Case 1 in Fig. 69) the scattering surface
is occulted by the photosphere and we only receive the photons from the
photosphere. For −[1 − (Rphot/Rmax)

2]1/2 ≤ x ≤ 0 (Case 2) we still receive
the full contribution from the photosphere, but now also the part of the
scattering contribution which is not occulted.

For positive x, the scattering surface may occult part of the photosphere.
In Case 3 which occurs for 0 ≤ x ≤ Rphot/Rmax there is both a photospheric
contribution and a scattering contribution. For Case 4 when Rphot/Rmax ≤
x ≤ [1 − (Rphot/Rmax)

2]1/2 the scattering surface occults the photosphere
completely, and the only contribution is that from scattering. Finally for
Case 5 in the range [1 − (Rphot/Rmax)

2]1/2 ≤ x ≤ 1 the central part of the
photosphere is occulted and the photospheric contribution is decreased by
this factor, while the scattering part is unaffected. To further complicate the
situation, if Rmax/Rphot ≤

√
2 then [1 − (Rphot/Rmax)

2]1/2 ≤ Rphot/Rmax

and the limits between the three cases above are changed according to this
(Cases 3a-5a).

To calculate the photospheric contribution one calculates the area per-
pendicular to the line of sight, which is not occulted by the scattering sur-
face. In Case 5 , e.g., this is πIcont[R

2
phot − (R2

max − z2)] = πR2
photIcont[1 −

(Rmax/Rphot)
2(1 − x2)]. The scattering integral is in this case calculated

from rmin = z = Rmaxx to Rmax. In Table 4 we give the expresions for the
two contributions for the different cases.

The integral over the dilution factor can be integrated analytically to
give

Fx = F cont
x +2π

Rmax
∫

rmin

W (r)rdr = πR2
photIcont

[

F cont
x

πR2
photIcont

+ f(α) − f(
rmin

Rphot
)

]

(3.38)
where α ≡ Rmax/Rphot and

f(y) =
1

2
{y2 − y(y2 − 1)1/2 + ln[y + (y2 − 1)1/2]}. (3.39)

This completes the analytical solution.
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Table 4: Contributions to the line profile. Note α ≡ Rmax/Rphot.

Case Frequency range F cont
x /πR2

photIcont rmin/Rphot

1 −1 ≤ x ≤ −(1 − α−2)1/2 1 0

2 −(1 − α−2)1/2 ≤ x ≤ 0 1
[

1 + α2x2
]1/2

3 0 ≤ x ≤ α−1 1 − α2x2 1

4 α−1 ≤ x ≤ (1 − α−2)1/2 0 αx

5 (1 − α−2)1/2 ≤ x ≤ 1 1 − α2(1 − x2) αx

3a 0 ≤ x ≤ (1 − α−2)1/2 1 − α2x2 1

4a (1 − α−2)1/2 ≤ x ≤ α−1 2 − α2 1
5a α−1 ≤ x ≤ 1 1 − α2(1 − x2) αx

In Fig. 70 we show the result for α = Rmax/Rphot = 1.2, 1.5, 2.0, 4.0
and 10.0. There are several interesting things to note from this example.
First we note that the total equivalenth width of the line is close to zere,
as is expected for a pure scattering line, where the photons scattered out
of the line of sight from the approaching side are compensated by photons
scatteried into the line of sight from the sides and the receding part of the
ejecta. Further we note that as the ratio of Rmax/Rphot decreases more and
more of the recedng part of the ejecta are occulted by the photosphere. This
occurs for x = −(1−Rphot/Rmax)

2)1/2. Finally, we note that the minimum of
the intensity occurs for x = (1−Rphot/Rmax)

2)1/2, i.e., the same frequency-
shift as where the occultation is complete. Another interesting result is that
for α <

√
2 the blue part of the line has a section with a flat bottom of the

line, as is sometimes observed.
Another interesting case for supernovae is that of a geometrically thin

shell at a radius rs. In this case we can take S(r) = S0δ(r − rs) and obtain

Fx = 2πS0(1 − e−τs)rs if |x| ≤ rs
R

(3.40)

and zero otherwise, which means that the resulting line profile is flat out to
a velocity corresponding to the shell velocity.

Exercise:
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Figure 70: Line profiles for different values of α = Rmax/Rphot. Pure scat-
tering in a velocity v(r) ∝ r ejecta is assumed.

a) Calculate the SCV’s for a shell with constant velocity V0 with inner radius
Rin and outer Rout, and show that these are given by θ = constant, where
θ is the angle to the line of sight of the observer.

b) Show that the optical depth in this case is given by τ = τ0/(1 − µ2),
where µ = cos θ.

c) Show that the line profile is given by

Fx = 2π(1 − x2)

Rout
∫

Rin

S(r)(1 − e−τ0(r)/(1−µ2))r dr, (3.41)

where x = c(ν − ν0)/V0ν0.

d) Calculate the line profile from the shell, assuming it is optically thin.

e) Same as d), but for an optically thick line. Compare with the v ∝ r case.
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Another important case is that of an optically thin line. In this case

Fx = 2π

R
∫

r=xR

j(r)r dr. (3.42)

From an observational point of view it is of more interest to invert this
relation.

j(r = xR) =
−1

2πxR

dFx

dx
. (3.43)

The line profile therefore directly gives the emissivity, and therefore the
energy input, as a function of radius in the remnant.

A special feature of supernova spectra is the extreme degree of line blend-
ing, which is a result of the large expansion velocity. At early times the
velocity may be up to 3 × 104 km s−1, and the probability for fluorescence
between various transitions is very large. Examples of this has been dis-
cussed by Lucy et al. (1991). The most extreme case is the ultraviolet part
of the spectrum. Here a large number of ions, like C I-II, O I, Si I-II, Ti I-III,
Fe I-III, and Co I-III, have strong transitions from low excitation levels, and
the spacing between the lines is small. Using Eq. (3.31), with the density
in the hydrogen envelope estimated by n ≈ 1.2 × 109(t/300 days) cm−3, we
can estimate the optical depth of a typical resonance line from an ion with
relative abundance Xi in the envelope

τ21 = 2.7 × 103

(

λ

2500 Å

)3( A21

107 s−1

)(

Xi

10−5

)(

t

300 days

)−2

(3.44)

Even low abundance elements in the envelope and core can therefore have
large optical depths in the UV.

Consider now two lines with wavelengths λ1 and λ2, with λ1 < λ2. If a
photon is emitted from a point with wavelength λ1, it will relative to another
point be redshifted to λ′

1 = (1 + vr/c)λ1, where vr is the relative velocity
between two points. As already discussed, vr is constant on a sphere with
radius d = Rvr/V , so that λ′

1 = λ2 for

d

R
=

c

V

(λ2 − λ1)

λ1
. (3.45)

The requirement for scattering is that d < R, and that the optical depth is
larger than one.

After the absorption, the photon will be emitted isotropically from the
resonance point. It will consequently perform a random walk from line to
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line with step length d (varying from line pair to line pair), and at the same
time be redshifted. This will continue until either there is a) a wavelength
gap between the optically thick lines larger than λV/c, b) the photon escapes
in a transition to an intermediate excited level in the optical range, c) it is
destroyed by continuum absorption, or d) escapes from the optically thick
region of the supernova. If we for simplicity assume that there is a constant
velocity spacing, ∆v = c∆λ/λ between the optically thick lines, the total
number of scatterings for a photon until it reaches the boundary is N ∼
(R/d)2 ∼ (V/∆v)2. The Doppler shift after N scatterings is N∆v ∼ V 2/∆v,
which can be much larger than V , if ∆λ is small.

As an illustrative toy model we consider a uniform density ejecta with an
expansion velocity of 3000 km s−1 and abundances typical for the core. In
Fig. 71 we show the distribution of lines with optical depth larger than one at
an age of 500 days. The lines have been selected from the line list by Kurucz
and Peytremann (1975) and Kurucz (1981), and we assume an equal mixture
of neutral and singly ionized ions. This is a very rough approximation, but
because of the large depths, this is not expected to introduce too large errors
in the fluxes. More serious are any incompletenesses in the line list. The
most interesting feature is that most of the UV up to ∼ 3000 Å is covered
by a forest of optically thick lines. Above ∼ 3000 Å there are increasingly
wide gaps between the lines. Also at shorter wavelengths, there are some
important gaps in the line distribution, the most obvious at ∼ 1200 Å,
∼ 1500 Å and at ∼ 2900 Å.

To schematically see the scattering effects of these lines we assume that
the UV flux from the core is emitted in four emission lines, at 912 Å, 1356 Å,
1640 Å, and 2335 Å, with equal fluxes. The line emissivities are in an actual
case determined by the γ-ray input to the core, and the resulting recombina-
tion cascade. We then calculate the scattering process with a Monte-Carlo
code. Although not very realistic for the resulting spectrum, it illustrates
the random walk aspect well, and the result of this experiment is shown in
the lower panel of Fig. 71. As expected, there is an inverse correlation be-
tween the gaps in the line distribution and the emission from the supernova.
The photons emitted in e.g. the O I λλ1302 − 56 lines scatter ∼ 10 times
until they escape in the gap at ∼ 1500 Å. The photons emitted at 2335 Å
(corresponding to either C II or Si II) do not find any gaps before ∼ 3300 Å,
so most photons emitted between ∼ 2000 Å and ∼ 3300 Å emerge in this
gap, if they have not been destroyed by continuum absorption or photon
splitting, before escaping.

Resonance scattering is probably the most important factor for the strong
UV deficiency in both Type IIP’s, e.g., SN 1987A, and Type Ia and Ib/c su-
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Figure 71: Upper panel: Distribution of lines with optical depth larger
than one, for an expansion velocity of 3000 km s−1 and for a typical core
composition, at 500 days. Note the gaps at ∼ 1200, 1500, and above 3000 Å.
Lower panel: Emerging spectrum for the same parameters as in the upper

panel. The emitting lines are assumed to be at 912, 1302, 1640, and 2335 Å.
We note that the radiation escapes preferentially in the opacity gaps in the
line distribution, and the wavelengths of these features have little to do with
their emission wavelengths.
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pernovae. Because of the high optical depths, solar abundances are sufficient
to give this effect (Eq. 3.44 ), especially at early times when the velocities
are higher, making blanketing even more efficient. It is interesting to note
that the IUE spectra of SN 1987A even after a year showed a residual contin-
uum flux below ∼ 2500 Å, with the strongest features at 1300–1400 Å and
1800–2000 Å. These were very broad without any obvious correspondence
to emission lines. It is likely that they corresponded to line emission from
the core, e.g. [O I] λλ1302, 1356, which managed to escape in the wavelength
regions where the number of optically thick lines is a minimum.

The total path length for the photon is Nd ∼ R2/d ∼ RV/∆v, where
d was defined in Eq. (3.45). This can be much larger than R, so that
continuum absorption may be effective, even if the radial optical depth in
the continuum is considerably less than one. The photons in Fig. 71 have
on the average been scattered a total distance corresponding to 10–30 times
the radial distance. This is important for both the Balmer continuum, and
for dust absorption in the ejecta.

Also continuum scattering can be important. If a photon is scattered
coherently in the rest frame of the scattering particle, as for Thompson
scattering, it will like resonance scattering, be redshifted for an observer at
rest. If the scattering optical depth is τs, the probability to be scattered N
times is τN

s , if τs < 1, and there will be a red extension to the line profile to
∆λtot ∼ NλV/c. Electron scattering has been proposed as an explanation
for the observed line asymmetries at early epochs in SN 1987A.
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Figure 72: Radio light curves for SN 1979C from VLA. Squares 1.465 GHz,,
crosses 4.88 GHz, filled circles 14.94 GHz (Data from Weiler et al.)

4 Interaction with a circumstellar medium

4.1 Observational evidence for CSI

The first strong evidence for circumstellar interaction (CSI) came from the
radio. Although not seen eight days after explosion with VLA, the Type
IIL SN 1979C showed nearly a year after explosion a strong flux at 4.88
GHz and 14.94 GHz (see Fig. 72). Later it also showed a radio turn-on
at 1.465 GHz. This frequency dependent turn-on is characteristic for most
radio supernovae observed to date. After the turn-on it has only decreased
by a factor of ∼ 2 over ∼ 20 years.

After SN 1979C a large number of core collapse SNe of all types have
been observed in the radio. When well sampled in time, they are all first
seen at high frequencies and later at longer, strongly indicating some time
dependent absorption mechanism. The details, like the rate at which they
turn-on, as well as their decline rate, however, vary considerably.

Although it was from radio CSI was first noted, the optical spectra often
show strong indications of CSI. Especially at late epochs when the radioac-
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tivity has died off CSI provides an additional energy source.
The best and most well studied example of strong CSI is SN 1993J in

M81 at only 3.6 Mpc. In some respects it plays the same role for this class
of SNe as SN1987A for the understanding of the core collapse and ejecta. In
Fig. 73 we show the spectral evolution of this SN from day 3 after explosion
up to day 433. This is remarkable in several ways. At early epochs it
displayed a clear Hα line, and was therefore initially classified as a Type
II SN. After about a month this line, however, disappeared, and instead a
strong [O I] λλ6300, 6364 line, together with He I lines appeared. There
was therefore a transition from a Type II to a Type Ib SN! Therefore it is
usually classified as a Type IIb SN.

It is obvious this SN did not have much of hydrogen in its envelope.
In fact models of the light curve and spectra showed that the mass of the
hydrogen envelope was <∼ 0.5 M⊙. The most accepted model is that the SN
was in a binary system, and that because of Roche lobe overflow it had lost
most of its hydrogen envelope.

This was, however, not the end of the story. After about a year Hα
returned, but now with a completely different line profile compared to the
early epochs. Instead of a centrally peaked profile, the line was box-like, as
seen in e.g., the day 433 spectrum in Fig. 73. As we saw in §3.5, this is
characteristic of a line coming from a thin shell. It is therefore obvious that
most of the action occurs not in the core, but at the outer edge of the SN.
The velocity of this shell was ∼ 13, 000 km s−1, decreasing slowly with time.

SN 1993J showed already from the first days a strong radio flux (left
panel of Fig. 74). As with other radio supernovae, this first turned on at
high frequencies and later at longer. Compared to SN 1979C, the turn-on
was, however, considerably slower. In Fig. 84 we show the excellent radio
light curves from VLA. We will discuss the modeling of these in §4.8.

That the emission was coming from a shell at high velocity was obvious
from the spectacular VLBI images of SN 1993J which have been obtained
by two different groups. In Fig. 75 we show a time sequence from day 50
up to day 1893. Perhaps the most surprising aspect of these images is how
close to spherical the SN really is. In fact most of the emission is coming
from a shell with thickness ∼ 30% of the radius. The fluctuations seen in
the images is at a level of ∼ 20?%, so a ’spherical cow’ approximation is
an extremely good one. This is especially remarkable because it is believed
that the SN occurred in a binary system, with a lot of angular momentum.

SN 1993J has also been observed in X-rays with ROSAT, ASCA, COMP-
TON/GRO, Chandra and XMM (right panel of Fig. 74). During the first
two months it displayed a hard thermal spectrum with kT ∼ 100 keV. It
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Figure 73: Spectral evolution of SN 1993J. Note the gradual change of the
Hα line, defining it as a Type IIn supernova. (Filippenko 1997)
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Figure 74: Left: VLA (left and ROSAT (right) images of SN 1993J. The
scales are different in the two images. (VLA: Bartel et al. ROSAT: Zim-
mermann et al)
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Figure 75: VLBI sequence of SN 1993J. (Bartel et al. )
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then came close to the sun and could not be re-observed until ∼ 200 days
after explosion. The spectrum had then changed completely and was now a
very soft with kT ∼ 1 keV.

Type IIn’s show the most extreme cases of CSI. Although CSI became
very dominant in the optical spectrum after about a year, the Type IIn’s
are dominated by this immediately after explosion. Fig. 76 shows several
examples of Type IIn’s. The most prominent of the lines is Hα. Compared
to e.g., SN 1993J, these lines are, however, very different. Instead of a box-
like profiles the lines are usually peaked close to zero velocity. Chugai has
modeled this by electron scattering in a dense, optically thick envelope. This
again confirms the high density CSM of these SNe.

All types of core collapse SNe show CSI to a varying degree. Type IIP’s
only show weak indications of it, primarily in the radio and X-rays, where
there is no background from the SN ejecta. Type IIL’s, like SN 1979C
are usually strong radio and X-ray emitters. The Type IIn’s are probably
extreme examples of this.

Type Ib/c SNe nearly all show radio and usually X-ray emission. Com-
pared to the Type IIL’s their radio emission is fairly weak, and decays fast.
There is little indication of CSI in their optical spectra.

4.2 The standard model

The general scenario for the CSI is shown schematically in Fig. 77. The SN
ejecta expand out into the CSM produced by the mass loss of the progen-
itor. Because the velocity of the wind is much less than that of the ejecta
a strong shock will form at the interface. The pressure behind this will be
large enough for driving a reverse shock back into the ejecta. Because the
density of the ejecta is usually much larger than that of the wind, the reverse
shock will be much slower than the outgoing. The temperature behind this
will therefore be lower. Because of the high density and low temperature the
reverse shock is most often radiative (cooling). This has the consequence
that a cool, dense shell will form between the reverse shock and the con-
tact discontinuity. As we will see, this cool, dense shell can have several
observationally important consequences.

We will now discuss the details of this scenario.

4.3 Ejecta structure

The density structure of a supernova is set up during the first days after
the explosion. Over this time scale, the pressure forces resulting from the

113



Figure 76: Collection of Type IIn spectra (Filippenko 1997)
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Figure 77: Schematic picture of the shock structure.
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initial explosion, and some later power input from radioactivity, become too
small to change the supernova density structure. The velocity profile tends
toward that expected for free expansion, v = r/t, and the density of a gas
element drops as t−3. The pressure drops to a sufficiently low value that
it is not a factor in considering shock waves propagating in the ejecta as a
result of later interaction.

The density structure of the ejecta is a more complex problem. For
core collapse supernovae, where all the explosion energy is generated at the
center of the star, the explosion physics lead to an outer, steep power law
density profile along with an inner region with a relatively flat profile. The
outer profile is produced by the acceleration of the supernova shock front
through the outer stellar layers with a rapidly decreasing density. This part
of the shock propagation does not depend on the behavior in the lower
layers and the limiting structure is described by a self-similar solution. The
structure depends on the initial structure of the star and thus depends on
whether the progenitor star has a radiative or a convective envelope. In the
radiative case, which applies to Wolf-Rayet stars and to progenitors like that
of SN 1987A, the limiting profile is ρ ∝ r−10.2. In the convective case, which
applies to red supergiant progenitors, the limiting profile is ρ ∝ r−11.7. These
are the limiting profiles and the density profile over a considerable part of
the supernova might be described by a somewhat flatter profile. Numerical
calculations of the explosion of SN 1987A have indicated ρ ∝ r−(8−9) in the
outer parts of the supernova, as Fig. 78 shows.

The overall result of these considerations is that the outer part of a
core collapse supernova can be approximated by a steep power law density
profile, or ρej ∝ r−n where n is a constant. After the first few days the outer
parts of the ejecta expand with constant velocity, V (m) ∝ r for each mass
element, m, so that r(m) = V (m)t and ρ(m) = ρo(m)(to/t)

3. Therefore

ρej = ρo

(

t

to

)−3(Vot

r

)n

. (4.1)

This expression takes into account the free expansion of the gas.

4.4 Stellar mass loss

In §1.10 we have already discussed the fact that most massive stars have
winds of different character in the different evolutionary stages. If the mass
loss parameters stay approximately constant leading up to the explosion,
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Figure 78: Density as function of radius for an ejecta model of SN 1987A
at an age of 100 days. Note the power law density dependence outside of
∼ 3 × 1015 cm, corresponding to ∼ 3500 km s−1 (Shigeyama & Nomoto
1990).
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the circumstellar density is given by

ρw =
Ṁ

4πuwr2
. (4.2)

In the late stellar evolutionary phases, the evolution of the stellar core occurs
on a rapid time scale, but the stellar envelope has a relatively long dynamical
time, which can stabilize the mass loss properties.

The mechanisms by which mass is lost in the red supergiant phase are
poorly understood, but some insight into the wind properties can be gained
by considering observations of the winds. VY CMa, thought to have a zero-
age main sequence mass of 30−40 M⊙, a mass loss rate ∼ 3×10−4 M⊙ yr−1,
and uw ≈ 39 km s−1, is an especially well-observed case. HST imaging
shows that the density profile is approximately r−2 over the radius range
3× 1016 − 1.4× 1017 cm but that there is considerable structure superposed
on this profile, including knots and filaments. Observations of masers imply
the presence of clumps with densities up to ∼ 5 × 109 cm−3 and suggest
the presence of an expanding disk seen at an oblique angle. VY CMa is an
extreme mass loss object, but there is evidence for irregular mass loss in α
Orionis and other red supergiants.

The fact that especially the most massive stars evolve from blue super-
giant to red supergiant and finally to a Wolf-Rayet star mean that the CSM
of these stars can be extremely complex. In particular, the fast wind from
the Wolf-Rayet star can create a bubble in the surrounding medium, which
is typically the slow wind from a previous evolutionary phase, and the result-
ing shells have been observed around a number of Wolf-Rayet stars. Their
typical radii are a few pc.

4.5 Hydrodynamics

When the radiation dominated shock front in a supernova nears the stellar
surface, a radiative precursor to the shock forms when the radiative diffusion
time is comparable to the propagation time. There is radiative acceleration
of the gas and the shock disappears when optical depth ∼unity is reached.
The fact that the velocity decreases with radius implies that the shock will
re-form as a viscous shock in the circumstellar wind. This occurs when the
supernova has approximately doubled in radius.

The interaction of the ejecta, expanding with velocity >∼ 104 km s−1,
and the nearly stationary circumstellar medium results in a reverse shock
wave propagating inwards (in mass), and an outgoing circumstellar shock.
The density in the circumstellar gas is given by Eq. (4.2). As discussed
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above, hydrodynamical calculations show that to a good approximation the
ejecta density can be described by Eq. (4.1). A useful similarity solution
for the interaction can then be found. Here we sketch a simple derivation.

Assume that the shocked gas can be treated as a thin shell with mass
Ms, velocity Vs, and radius Rs. Balancing the ram pressure from the cir-
cumstellar gas and the impacting ejecta, the momentum equation for the
shocked shell of circumstellar gas and ejecta is

d

dt
(MsVs) = 4πR2

s [ρej(V − Vs)
2 − ρwV 2

s ]. (4.3)

Here, Ms is the sum of the mass of the shocked ejecta and circumstellar gas.
The swept up mass behind the circumstellar shock is Mcs = ṀRs/uw, and
that behind the reverse shock Mrev = 4π t3oV

n
o (t/Rs)

n−3/(n − 3), assuming
that Rs >> Rp, the radius of the progenitor. With the ejecta velocity at
the shock given by V = Rs/t we obtain

d

dt

{[

Ṁ

uw
Rs +

4π ρo t3o V n
o tn−3

(n − 3) Rn−3
s

]

dRs

dt

}

=

4πR2
s

[

ρo t3o V n
o tn−3

Rn
s

(

Rs

t
− dRs

dt

)2

− Ṁ

4π uwR2
s

(

dRs

dt

)2
]

. (4.4)

This equation has the power law solution

Rs(t) =

[

4π(n − 5)ρo t3o V n
o uw

(n − 3)(2n − 7) Ṁ

]1/(n−2)

t(n−3)/(n−2). (4.5)

The form of this similarity solution can be written down directly by dimen-
sional analysis from the only two independent quantities available, ρo t3o V n

o

and Ṁ/uw. The solution applies after a few expansion times, when the ini-
tial radius has been ‘forgotten.’ The requirement of a finite energy in the
flow implies n > 5. More accurate similarity solutions, taking the structure
within the shell into account, are given by Chevalier (1982). In general,
these solutions differ by less than ∼ 30% from the thin shell approximation.

The maximum ejecta velocity close to the reverse shock depends on time
as V = Rs/t ∝ t−1/(n−2). The velocity of the circumstellar shock, dRs/dt,
in terms of V is Vs = V (n − 3)/(n − 2) and the reverse shock velocity,
Vrev = V − Vs = V/(n − 2).

From the shock relation

Tcs =
3µ

16k
V 2

s (4.6)
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Figure 79: Density and temperature structure of the reverse and circum-
stellar shocks for n = 7 and a velocity of 2.5 × 104 km s−1 at 10 days.
Both shocks are assumed to be adiabatic. Because of the slow Coulomb
equipartition the electron temperature (dotted line) is much lower than the
ion temperature (solid line) behind the circumstellar shock.

where µ is the mean mass per particle (see e.g., Spitzer), we can now ob-
tain the temperature in the shocked circumstellar gas. Assuming cosmic
abundances and equipartition between ions and electrons, the temperature
is

Tcs = 1.36 × 109

(

n − 3

n − 2

)2( V

104 km s−1

)2

K (4.7)

and at the reverse shock

Trev =
Tcs

(n − 3)2
. (4.8)

The time scale for equipartition between electrons and ions is

teq ≈ 2.5 × 107

(

Te

109 K

)1.5
( ne

107 cm−3

)−1
s. (4.9)

One finds that the reverse shock is marginally in equipartition, unless the
temperature is >∼ 5 × 108 K. The ion temperature behind the circumstel-
lar shock is >∼ 6 × 109 K for V4

>∼ 1.5, and the density a factor >∼ 4 lower
than behind the reverse shock. Ion-electron collisions are therefore ineffec-
tive, and Te << Tion, unless efficient plasma instabilities heat the electrons
collisionlessly (Fig. 79).
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Figure 80: Two-dimensional calculation of the shock structure for a super-
nova with n = 6 in a stellar wind (courtesy John Blondin).

For typical parameters, the electron temperatures of the two shocks are
very different, ∼ (1−3)×109 K for the circumstellar shock and 107−5×108 K
for the reverse shock, depending on n. The radiation from the reverse shock
is mainly below ∼ 20 keV, while that from the circumstellar shock is above
∼ 50 keV.

The density behind the circumstellar shock is ρcs = 4ρw, while that
behind the reverse shock is

ρrev =
(n − 4)(n − 3)

2
ρcs (4.10)

and is much higher than behind the circumstellar shock for n >∼ 7. There is
a drop in density across the contact discontinuity, moving from the shocked
ejecta to the circumstellar medium (see Fig. 79). The fact that low density
gas is decelerating higher density gas leads to a Rayleigh-Taylor instability.
Chevalier & Blondin have calculated the structure using a two-dimensional
PPM hydrodynamic code. They indeed find that instabilities develop, with
dense, shocked ejecta gas penetrating into the hotter, low density shocked
circumstellar gas (Fig. 80). The instability mainly distorts the contact
surface, and does not seriously affect the general dynamics.
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In addition to asymmetric winds, there is evidence for supernova shock
waves interacting with clumps of gas in the wind, as have been observed
in some red supergiant winds. In some cases the clumps can be observed
by their very narrow lines in supernova spectra, as in Type IIn supernovae.
The velocity of a shock wave driven into a clump, vc, can be estimated by
approximate pressure balance vc ≈ vs(ρrms/ρc)

1/2, where vs is the shock
velocity in the smooth wind with density ρrms and ρc is the clump density.
The lower shock velocity and higher density can lead to radiative cooling
of the clump shock although the main shock is non-radiative. Optical line
emission of intermediate velocity observed in Type IIn (narrow line) super-
novae like SN 1978K, SN 1988Z, and SN 1995N can be explained in this
way.

The presence of many clumps can affect the hydrodynamics of the in-
teraction. Jun, Jones, & Norman (1996) found that propagation in a region
with clumps gives rise to widespread turbulence in the shocked region be-
tween the forward shock and the reverse shock, whereas the turbulence is
confined to a region near the reverse shock for the non-clump case (Fig. 2).
Their simulations are for interaction with a constant density medium, but
the same probably holds true for interaction with a circumstellar wind.

Exercise:
In analogy with the discussion leading up to Eq. (4.4), using the thin

shell approximation, derive the equation determining the evolution of an
adiabatic point explosion with total energy Eo and adiabatic index γ in a
constant density medium with density ρo. Neglect the ejecta mass compared
to the swept up mass by the forward shock. Solve this equation for the radius
as function of time to get

Rs(t) ≈
[

75(γ − 1)Eo

16πρo

]1/5

t2/5. (4.11)

This is the famous Sedov-Taylor solution. An exact calculation gives a
somewhat different numerical coefficient, but the same dependence on Eo/ρo

and time (see e.g., Shu or Landau-Lifshitz).
Use the jump condition

ρ2

ρ1
=

(γ + 1)

(γ − 1)
(4.12)

(see e.g., Spitzer) to show that the thickness of the shell is ∆R/R ≈ (γ −
1)/[3(γ + 1)]. For γ = 5/3 this gives ∆R/R ≈ 1/12, while for γ = 4/3
∆R/R ≈ 1/21.
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Discuss the weak points of this derivation, and in which way this situa-
tion differs from the circumstellar shock discussed in this section.

4.6 Emission from the hot gas

During the first month, radiation from the supernova photosphere is strong
enough for Compton scattering to be the main cooling process for the cir-
cumstellar shock. After this free-free and line emission dominate the cooling.

One can estimate the free-free luminosity from the circumstellar and
reverse shocks from

Li = 4π

∫

Λff(Te)n
2
er

2dr ≈ Λff(Ti)
Miρi

(µemH)2
. (4.13)

where the index i refers to quantities connected either with the reverse shock
or circumstellar shock. The density behind the circumstellar shock is ρcs =
4 ρ0 = Ṁ/(πuwR2

s ). The swept up mass behind the circumstellar shock is
Mcs = ṀRs/uw and that behind the reverse shock Mrev = (n − 4)Mcs/2.
With Λff = 2.4 × 10−27ḡff T 0.5

e , we get

Li ≈ 3.0 × 1039 ḡff Cn

(

Ṁ−5

uw1

)2
(

t

10 days

)−1

erg s−1, (4.14)

where ḡff is the free-free Gaunt factor, including relativistic effects. For
the reverse shock Cn = (n − 3)(n − 4)2/4(n − 2), and for the circumstellar
shock Cn = 1. This assumes electron-ion equipartition, which is highly
questionable for the circumstellar shock (see Fig. 79). Because of occultation
by the ejecta, only half of the above luminosity escapes outward.

At Te
<∼ 2 × 107 K, line emission increases the cooling rate and Λ ≈

3.4 × 10−23 T−0.67
e7 erg s−1cm3. If the temperature of the reverse shock falls

below ∼ 2 × 107 K, a thermal instability may occur and the gas cools to
<∼ 104 K, where photoelectric heating from the shocks balances the cooling.

Using tcool = 3kTe/Λ, one obtains for the cooling time

tcool =
605

(n − 3)(n − 4)(n − 2)3.34

(

Vej

104 km s−1

)5.34
(

Ṁ−5

uw1

)−1
(

t

days

)2

days,

(4.15)
assuming solar abundances. From this expression it is clear that the cooling
time is very sensitive to the density gradient, as well as the shock velocity
and mass loss rate. SNe with high mass loss rates, like SN 1993J, generally
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have radiative reverse shocks for >∼ 100 days, while SNe with lower mass
loss rates, like the Type IIP SN 1999em, have adiabatic shocks from early
times.

The most important effect of the cooling is that the cool gas may absorb
most of the emission from the reverse shock. Therefore, in spite of the higher
intrinsic luminosity of the reverse shock, little of this will be directly observ-
able. The column density of the cool gas is given by Ncool = Mrev/(4πR2

smp),
or

Ncool ≈ 1.0 × 1021(n − 4)

(

Ṁ−5

uw1

)

(

V

104 km s−1

)−1( t

100 days

)−1

cm−2.

(4.16)
Because the threshold energy due to photoelectric absorption is related to
Ncool by E(τ = 1) = 1.2(Ncool/10

22 cm−2)3/8 keV, it is clear that the emis-
sion from the reverse shock is strongly affected by the cool shell, and a
transition from optically thick to optically thin is expected during the first
months, or year. As an illustration, we show in Fig. 81 the calculated X-ray
spectrum at 10 days and at 200 days for SN 1993J. At early epochs the
spectrum is dominated by the very hard spectrum from the circumstellar
shock, which reaches out to >∼ 100 keV. At later epochs the soft spectrum
from the reverse shock penetrates the cool shell, and the line dominated
emission from the cooling gas dominates.

If cooling, the total energy emitted from the reverse shock is

Lrev = 4πR2
s

1

2
ρejV

3
rev =

(n − 3)(n − 4)

4(n − 2)3
ṀV 3

uw

= 1.6 × 1041 (n − 3)(n − 4)

(n − 2)3
Ṁ−5u

−1
w1V 3

4 erg s−1. (4.17)

For high Ṁ/uw the luminosity from the reverse shock may contribute ap-
preciably, or even dominate, the bolometric luminosity.

Because V ∝ t−1/(n−2), Lrev ∝ t−3/(n−2) in the cooling case. Although
the total luminosity is likely to decrease in the cooling case, the increasing
transparency of the cool shell, τcool ∝ t−1, can cause the observed flux in
energy bands close to the low energy cutoff, E(τ = 1), to increase with time,
as was seen, e.g., in SN 1993J (Fig. 3).

Because of the low temperature the spectrum of the reverse shock is
dominated by line emission from metals (Fig. 3). An important point is that
the observed spectrum is formed in gas with widely different temperatures,
varying from the reverse shock temperature to ∼ 104 K. A spectral analysis
based on a one temperature model can be misleading.
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Figure 81: X-ray spectrum of SN 1993J at 10 days and at 200 days. At 10
days the free-free emission from the outer shock dominates, while at 200 days
the cool shell is transparent enough for the line dominated spectrum from the
reverse shock to dominate instead. Right: The solid lines give the luminosity
in the 0.1-2.4, 1-10, and 50-100 keV bands, corrected for absorption, as a
function of time, while the dotted lines give the total emitted luminosity
from the reverse and circumstellar shocks.

Chugai has proposed that the X-ray emission from the Type IIn SN 1986J
is the result of the forward shock front moving into clumps, as opposed to
the reverse shock emission. One way to distinguish these cases is by the
width of line emission; emission from the reverse shock wave is expected to
be broad.

4.7 Radiative heating and re-emission

4.7.1 Soft X-ray burst and circumstellar gas

The earliest form of circumstellar interaction occurs at shock break-out. As
the shock approaches the surface, radiation leaks out on a time scale of less
than an hour. The color temperature of the radiation is ∼ (1 − 5) × 105 K
and the energy ∼ (1 − 10) × 1048 ergs (see §3.4.1).

The radiative effects of the soft X-ray burst were most clearly seen from
the ring of SN 1987A, where a number of narrow emission lines from highly
ionized species, like N III-N V, were first seen in the UV. Later, a forest
of lines came to dominate also the optical spectrum. Imaging with HST
showed that the lines originated in the now famous circumstellar ring of
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SN 1987A at a distance of ∼ 200 light days from the SN. The presence of
highly ionized gas implied that the gas must have been ionized and heated
by the radiation at shock break-out. Because of the finite light travel time
across the ring, the observed total emission from the ring is a convolution of
the emission at different epochs from the various part of the ring. Detailed
modeling shows that while the ionization of the ring occurs on the time scale
of the soft X-ray burst, the gas recombines and cools on a time scale of years,
explaining the persistence of the emission decades after the explosion. The
observed line emission provides sensitive diagnostics of both the properties
of the soft X-ray burst, and the density, temperature and abundances of the
gas in the ring. In particular, the radiation temperature must have reached
∼ 106 K, in good agreement with the most detailed recent modeling of the
shock break-out. Narrow emission lines are not unique to SN 1987A, but
have also been observed for several other SNe, in particular several Type IIn
SNe, such as SN 1995N and SN 1998S.

The X-ray emission from the shocks ionizes and heats both the circum-
stellar medium and the SN ejecta. Observationally, these components are
distinguished easily by the different velocities. The circumstellar compo-
nent is expected to have velocities typical of the progenitor winds, i.e.,

<∼ 1000 km s−1, while the ejecta have considerably higher velocities. The
density is likely to be of the order of the wind density 105 − 107 cm−3, or
higher if clumping is important. The ionizing X-ray flux depends strongly
on how much of the flux from the reverse shock can penetrate the cool shell.
The state of ionization in the circumstellar gas is characterized by the value
of the ionization parameter,

ζ =
Lcs

r2n
= 102 Lcs

1040 erg s−1

( r

1016 cm

)−2 ( n

106 cm−3

)−1
(4.18)

The comparatively high value of ζ ≈ 10−103 explains the presence of narrow
coronal lines of [Fe V-XI] seen in objects like SN 1995N.

4.7.2 SN ejecta

The ingoing X-ray flux from the reverse shock ionizes the outer parts of the
ejecta. The state of highest ionization therefore is close to the shock, with a
gradually lower degree of ionization inwards. Unless clumping in the ejecta
is important, the ejecta density is ∼ 106 − 108 cm−3. In the left panel of
Fig. 82 we show temperature and ionization structure of the ejecta, as well
as the emissivity of the most important lines. The temperature close to the
shock is ∼ 3 × 104 K. Calculations show that most of the emission here is
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emitted as UV lines of highly ionized ions, like Lyα, C III-IV, N III-V, and
O III-VI. Inside the ionized shell there is an extended partially ionized zone,
similar to that present in the broad emission line regions of AGN’s. Most of
the emission here comes from Balmer lines.

As we have already discussed, the outgoing flux from the reverse shock
is to a large extent absorbed by the cool shell between reverse shock and the
contact discontinuity if radiative cooling has been important. The whole
region behind the reverse shock is in approximate pressure balance, and the
density of this gas is therefore be a factor ∼ 4Trev/Tcool ≈ 103 − 104 higher
than that of the ejecta. Because of the high density, the gas is only be
partially ionized and the temperature only (5 − 8) × 103 K. Most of the
emission comes out as Balmer lines, Mg II and Fe II lines (Fig. 82, right
panel). The thickness of the emitting region is also very small, ∼ 3 × 1012

cm. In one dimensional models, the velocity is marginally smaller than the
highest ejecta velocities. Instabilities in the shock are, however, likely to
erase this difference.

An important diagnostic of the emission from the cool shell and the
ejecta is the Hα line. This line arises as a result of recombination and
collisional excitation. It can be shown that ∼ 1% of the reverse shock lumi-
nosity is emitted as Hα, fairly independent of density and other parameters.
Observations of this line permit us to follow the total luminosity from the
reverse shock, complementary to the X-ray observations. In SN 1993J, the
Hα line had the box-like shape that is expected for shocked, cooled ejecta
(Fig. 73). The top of the line showed structure that varied with time; this
could be related to hydrodynamic instabilities of the reverse shocked gas.

4.7.3 Line profiles

The line profiles of circumstellar interactors can have several characteristic
appearences. Lines coming from the circumstellar medium will be narrow,
with a width given by the expansion velocity of the wind. For a red super-
giant progenitor this is 10 − 100 km s−1.

The lines can be seen in either emission or in absorption if the line
is optically thick. This, however, requires the wind not to be compleatly
ionized by the radiation from the shock breakout, or if this occurs, that
the wind is sufficiently dense to recombine. A slow RSG wind will have a
considerably higher density than a fast WR wind. In addition, the radiation
temperature of the shock breakout burst will be lower (see Sect. 3.4.1).
Therefore, line emission from the wind will more likely be seen for a RSG
progenitor than a WR progenitor, for which the wind is likely to be fully
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Figure 82: Structure of the ejecta and cool shell ionized by the reverse shock
at 500 days for parameters appropriate to SN 1993J (Ṁ = 5×10−5 M⊙ yr−1

for u = 10 km s−1). Upper panels show the temperature and ionization of
the ejecta (left panels) and the cool shell (right panels), while the lower
panels show the corresponding luminosities per unit distance. Note the
different length scales in the two panels. The ejecta region has low density,
high temperature and ionization, while the cool shell has a high density, is
extremely thin, has a low temperature, and is only partially ionized.

ionized.
Some of the optical lines, like Hα and the Ca II lines, as well as most of

the UV resonance lines, may be optically thick. In this case the line profile
may show a typical P-Cygni appearence, with a velocity width given by the
velocity of the wind.

The velocity of the wind may be changed by the strong burst of radiation
from the supernova. In the simple case of electron scatterng the momentum
transfered to a spherical shell of radius r, thickness dr and electron density
ne by the radiation is given by

dp

dt
=

1

c
L(t)σT nedr . (4.19)

Now if the burst is short compared to the dynamical time scale r/v then we
can integrate Eq. (4.19) over time, keeping the radius constant to get the
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total change in momentum by the shell. Therefore,

∆p ≈ 1

c
σT nedr

∫

L(t)dt . (4.20)

Further, ∆p = dM∆V = 4πµmuner
2dr∆V . Therefore,

∆V ≈ σT

∫

L(t)dt

4πµmucr2
. (4.21)

or

∆V ≈ 1.1 × 103

(

E

1048 erg s−1

)

( r

1014 cm

)−2
km s−1, (4.22)

where E is the total energy in the burst. Because R = V t = 8.6 ×
1013(V/104 km s−1)(t/days) cm, radiative pre-acceleration of the gas ahead
of the shock can give velocities of 10− 1000 km s−1 in the circumstellar gas
during the first days after explosion. Absorption by resonance lines, similar
to that ocurring in early type stars, may increase the velocity further.

Lines coming from the ejecta and shock region can have several different
characteristics. In the simplest case the line will aise in a geometrically thin
shell with inner velocity Vin and outer velocity Vout. If Vin ∼ Vout we have
already in Sect. 3.5 found that if the Sobolev approximation is valid and the
line is optically thin the line profile will be box-like. This is also the case in
the optically thick case if the velocity is proprtional to the radius. qqqqqIn
the case If the line is optically

Box profiles, M-shaped lines,

4.8 Relativistic particles

Unambiguous evidence for the presence of relativistic electrons comes from
radio observations. A characteristic is the wavelength-dependent turn-on
of the radio emission, first seen at short wavelengths, and later at longer
wavelengths (§4.1). This behavior is interpreted as a result of decreasing
absorption due to the expanding emitting region.

Depending on the magnetic field and the density of the circumstellar
medium, the absorption may be produced either by free-free absorption in
the surrounding thermal gas, or by synchrotron self-absorption by the same
electrons that are responsible for the emission. The relativistic electrons are
believed to be produced close to the interaction region, which provides an
ideal environment for the acceleration of relativistic particles. The details of
the acceleration and injection efficiency are still not well understood. Here
we just parameterize the injection spectrum with the power law index pi
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and an efficiency, η, in terms of the post-shock energy density. Without
radiation or collisional losses the spectral index of the synchrotron emission
will then be α = (p−1)/2, where flux ∝ ν−α. Diffusive acceleration predicts
that pi = 2 in the test particle limit. If the particle acceleration is very
efficient and nonlinear effects are important, the electron spectrum can be
steeper.

For free-free absorption, the optical depth τff =
∫

∞

Rs
κffnenidr from the

radio emitting region close to the shock through the circumstellar medium
decreases as the shock wave expands, explaining the radio turn-on. Assum-
ing a fully ionized wind with constant mass loss rate and velocity, so that
Eq. (4.2) applies, the free-free optical depth at wavelength λ is

τff(λ) ≈ 7.1 × 102λ2

(

Ṁ−5

uw1

)2

T
−3/2
5 V −3

4 t−3
days (4.23)

where Ṁ−5 is the mass loss rate in units of 10−5 M⊙ yr−1, uw1 the wind
velocity in units of 10 km s−1, and T5 the temperature of the circumstellar
gas in 105 K. From the radio light curve, or spectrum, the epoch of τff =
1 can be estimated for a given wavelength, and from the line widths in
the optical spectrum the maximum expansion velocity, V , can be obtained.
Because the effects of the radiation from the supernova have to be estimated
from models of the circumstellar medium, the temperature in the gas is
uncertain. Calculations show that initially the radiation heats the gas to
Te ≈ 105 K. Te then decreases with time, and after a year Te ≈ (1.5 − 3) ×
104 K. In addition, the medium may recombine, which further decreases the
free-free absorption. From t[τ(λ)ff = 1] the ratio Ṁ/uw can be calculated.

Because Ṁ/uw ∝ T
3/4
e x−1

e , errors in Te and xe may lead to large errors in
Ṁ . If the medium is clumpy, Eq. (4.23) may lead to an overestimate of
Ṁ/uw.

Under special circumstances (see below), synchrotron self-absorption
(SSA) by the same relativistic electrons emitting the synchrotron radiation
may be important. The emissivity of the synchrotron plasma is given by
j(λ) = const. λαB1+αNrel (see e.g., Rybicki & Lightman), while the optical
depth to self-absorption is given by

τs = const. λ(5/2)+αB(3/2)+αNrel . (4.24)

Here Nrel is the column density of relativistic electrons and B the magnetic
field. The flux from a disk with radius Rs of relativistic electrons is, including
the effect of SSA, given by

Fν(λ) ∝ R2
sS(λ)[1 − e−τs(λ)], (4.25)
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where S(λ) = j(λ)/κ(λ) = const. λ−5/2B−1/2 is the source function. In
the optically thick limit we therefore have Fν(λ) ≈ const. R2

s λ−5/2B−1/2,
independent of Nrel. A fit of this part of the spectrum therefore gives the
quantity R2

s B−1/2. The break of the spectrum determines the wavelength
of optical depth unity, λ(τs = 1). Eq. (4.24) therefore gives a second
condition on B3/2+α Nrel. If Rs(t) is known in some independent way, one
can determine both the magnetic field and the column density of relativistic
electrons, independent of assumptions about equipartition, etc. In some
cases, most notably for SN 1993J, the shock radius, Rs, can be determined
directly from VLBI observations. If this is not possible, an alternative is
from observations of the maximum ejecta velocity seen in, e.g., the Hα line,
which should reflect the velocity of the gas close to the shock. Because the
SN expands homologously, Rs = Vmaxt. A fit of the spectrum at a given
epoch can therefore yield both B and Nrel independently. From observations
at several epochs the evolution of these quantities can then be determined.

Although the injected electron spectrum from the shock is likely to be
a power law with pi ≈ 2 (α ≈ 0.5), the integrated electron spectrum is af-
fected by various loss processes. Most important, the synchrotron cooling
time scale of an electron with Lorentz factor γ is tsyn ≈ 9×103γ−1B−2 days.
This especially affects the high energy electrons, steepening the index of the
integrated column density electron spectrum by one unit, p = pi + 1 ≈ 3
(α ≈ 1). Note that it really is the distance from the shock it radiates
which decreases as γ−1. Inverse Compton losses have a similar effect as syn-
chrotron losses. At low energy, Coulomb losses may be important, causing
the electron spectrum to flatten.

The best radio observations of any SN were obtained for SN 1993J. This
SN was observed from the very beginning until late epochs with the VLA at
wavelengths between 1.3 – 90 cm, producing a set of beautiful light curves.
In addition, the SN was observed with VLBI (see Fig. 75), resulting in an
impressive sequence of images in which the radio emitting plasma could be
directly observed. These images showed a remarkable degree of symmetry
and clearly resolved the shell of emitting electrons. The evolution of the
radius of the radio emitting shell could be well fitted by Rs ∝ t0.86, implying
a deceleration of the shock front.

From a fit of the observed spectra for the different epochs the magnetic
field and number of relativistic electrons could be determined for each epoch,
as described above. In Fig. 83 we show the evolution of B and Nrel, plot-
ted as a function of the shock radius. The most remarkable thing is the
smooth evolution of these quantities, showing that B ≈ 6.4(Rs/10

16 cm)−1

G, and nrel ∝ ρV 2 ∝ t−2, the thermal energy density behind the shock. The
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Figure 83: Magnetic field (left) and density of relativistic electrons (right)
as a function of the shock radius for SN 1993J. The dashed lines show the
expected evolution if the magnetic energy density and relativistic particle
density scale with the thermal energy density, B2/8π ∝ ρV 2

s ∝ nrel ∝ t−2,
while the dotted lines show the case when B ∝ r−1 and nrel ∝ r−2.

magnetic field is close to equipartition, B2/8π ≈ 0.14 ρV 2
s , much higher

than expected if the circumstellar magnetic field, of the order of a few mG,
was just compressed, and strongly argues for field amplification, similar to
what has been seen in simulations. Contrary to earlier, simplified models
for SN 1993J based on free-free absorption only, the circumstellar density
was consistent with ρ ∝ r−2.

In Fig. 84, we show the excellent fit of the resulting light curves. The
high values of B implied that synchrotron cooling was important throughout
most of the evolution for the electrons responsible for the cm emission, and
also for the 21 cm emission before ∼ 100 days. At early epochs, Coulomb
losses were important for the low energy electrons. The injected electron
spectrum was best fitted with pi = 2.1. acceleration.

The form of the light curves can be understood if, for simplicity, we
assume equipartition, so that B2/8π = ηρV 2

s . With ρ ∝ (Ṁ/u) R−2
s and

Vs ∝ Rs/t, we find that B ∝ (Ṁ/u)1/2t−1. The optically thick part is
therefore given by

Fν(λ) ∝ R2
s λ−5/2B−1/2 ∝ (Ṁ/u)−1/4λ−5/2t(5n−14)/2(n−2), (4.26)

since Rs ∝ t(n−3)/(n−2). For large n, we get Fν(λ) ∝ t5/2. An additional
curvature of the spectrum is produced by free-free absorption in the wind,
although this only affects the spectrum at early epochs.

In the optically thin limit, Fν(λ) ∝ R2
s j(λ) ∝ R2

sλ
αB1+αNrel. If losses

are unimportant, Nrel,tot = 4πR2
sNrel, the total number of relativistic elec-

tron, may either be assumed to be proportional to the total mass, if a fixed

132



Figure 84: Observed and model radio light curves of SN 1993J.

fraction of the shocked electrons are accelerated, or be proportional to the
swept up thermal energy. In the first case, Nrel,tot ∝ ṀRs/uw, while in
the second Nrel,tot ∝ ṀRsV

2
s /uw, so that in general Nrel,tot ∝ ṀRsV

2ǫ
s /uw,

where ǫ = 0 or 1 in these two cases. Therefore, Fν(λ) ∝ Ṁ/u RsV
2ǫ
s λαB1+α.

If the B-field is in equipartition, as above, and using V = (n − 3)/(n −
2)Rs/t ∝ t−1/(n−2) we find

Fν(λ) ∝ (Ṁ/uw)(3+α)/2 λαt−α−(1+2ǫ)/(n−2). (4.27)

If synchrotron cooling is important, a similar type of expression can be
derived. The main thing to note is, however, that the optically thin emission
is expected to be proportional to the mass loss rate, Ṁ/uw, and that the
decline rate depends on whether the number of relativistic particles scale
with the number density or the thermal energy of the shocked gas, as well
as spectral index. Observations of the decline rate can therefore test these
possibilities.

Although a self-consistent model can be developed for SN 1993J and
other radio supernovae, the modeling of SN 1986J and related objects has
been unclear. Chugai & Belous propose a model in which the absorption is
by clumps. The narrow line optical emission implies the presence of clumps,
but they are different from those required for the radio absorption. The
possible presence of clumps and irregularities introduces uncertainties into
models for the radio emission, although rough estimates of the circumstellar
density can still be obtained.
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Figure 85: Peak luminosity and corresponding epoch for the well-observed
radio SNe. The dashed lines give curves of constant expansion velocity,
assuming SSA.

The relative importance of SSA and free-free absorption depends on a
number of parameters. The most important of these are the mass loss rate,
Ṁ/uw, the shock velocity, Vs, and the circumstellar temperature, Te. In
general, a high shock velocity and a high circumstellar temperature favor
SSA, while a high mass loss rate favors free-free absorption.

Assuming SSA, an interesting expression for the velocity of the shock
can be derived which can be tested against the observations. If we assume
equipartition, Nrel ∝ ρV 2

s Rs and B2/8π ∝ ρV 2
s we have Nrel ∝ B2Rs.

Using this in Eq. (4.24) we get τs = const λ5/2+αB7/2+α Rs. The peak
in the light curve is given by τs ≈ 1. If we approximate the flux at this
point by the optically thick expression Eq. (4.26) and solve for B we get
B ∝ Fν(λ)−2 R4

s λ−5. Inserting this expression in the condition τs ≈ 1, we
find R15+4α

s Fν(λ)−7−2α λ−15−4α ≈ const. With Vs = (n− 3)/(n− 2)Rs/t we
finally have

Vs ≈ const Fν(λ)(7+2α)/(15+4α) λ t−1 (4.28)

where all parameters refer to their values at the peak of the light curve.
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Using this expression, we can plot lines of constant shock velocity into a
diagram with peak radio luminosity versus time of peak flux, assuming that
SSA dominates (Fig. 85). The positions of the lines depend only weakly on
the equipartition assumption. Each SN can now be placed in this diagram
to give a predicted shock velocity. If this is lower than the observed value
(as measured by VLBI or from line profiles) SSA gives a too low flux and
should therefore be relatively unimportant and free-free absorption instead
dominate. The most interesting point is that most Type Ib/Ic SNe, SN
1983N, SN 1994I and SN 1998bw, fall into the high velocity category, while
Type IIL SNe, like SN 1979C and SN 1980K, as well as the Type IIn’s SN
1978K, SN 1988Z, SN 1998S fall in the free-free group. SN 1987A is clearly
special with its low mass loss rate, but is most likely dominated by SSA.

4.9 The ring of SN 1987A

Hydrodynamics, SHock breakout, Echo, Binary evolution, Ring
collision, ....

4.10 Conclusions

Circumstellar interaction of supernovae gives an important window on the
nature of stars that explode and their evolution leading up to the explosion.
Mass loss rates for the red supergiant progenitors of Type II supernovae
range from ∼ 2×10−6 M⊙ yr−1 for SN 1999em to >∼ 2×10−4 M⊙ yr−1 for
SN 1979C and SN 1986J. Evidence for CNO processing has been found in a
number of supernovae, including SN 1979C, SN 1987A, SN 1995N, and SN
1998S (see §1.13). In some cases, the reverse shock appears to be moving
into gas that is H poor and O rich, e.g., SN 1995N; this relates to the
total amount of mass loss before the supernova. The complex circumstellar
environment of SN 1987A has become clear because of it proximity

The evidence on circumstellar interaction is especially useful when it
can be combined with information from other aspects of the supernovae,
such as their light curves and stellar environments. For example, from the
pre-supernova stellar environment of SN 1999em, Smartt et al. deduced an
initial mass of 12± 1 M⊙. The supernova was of the plateau type, implying
that hydrogen envelope was largely intact at the time of the supernova.
This is consistent with the relatively low rate of mass loss deduced for the
supernova progenitor.

In addition to information on the evolution of massive stars and their
explosions, circumstellar interaction provides an excellent laboratory for the
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study of shock wave physics. Compared to older supernova remnants, the
shock velocities are higher and the time evolution gives an additional di-
mension for study, although there is little spatial information in most cases.
VLBI observations can, however, in this respect be extremely valuable, as
demonstrated by SN 1993J. An object where both the spatial and time di-
mensions are accessible is SN 1987A, which has turned out to be an excellent
source for the study of shock waves.
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Figure 86: Compilation of three different Type Ia spectra at an age of about
one week (Filippenko 1997).

5 Type Ia supernovae

Observationally there are two types of SN explosions, Type I and Type II.
The Type I SNe are mainly characterized by the complete lack of hydrogen
in their spectra. As we have seen the Type Is can be divided into Type Ia
and Type Ib/c. The latter are physically similar to the Type IIs, originating
from the collapse of massive stars. The Type Ia SNe have, however, a very
different origin, often occurring in elliptical galaxies with a very old stellar
population. Observationally they are very similar to each other, both their
light curves and spectra. Fig. 86 shows a compilation of three different
spectra of Type Ia supernovae and it is clear that they show very similar
spectral features.

In addition, the absolute luminosities are also similar within a few tenths
of a magnitude. This is particularily true if these are corrected for an ob-
served correlation of the absolute luminosity and decline rate after maxi-
mum. This is usually characterized by a quantity known as ∆m15, which is
the decrease in magnitudes from maximum until 15 days after maximum. It
is then found that a nearly linear relation between the absolute magnitude
at the peak and ∆m15. This is usually known as the Philips relation. Some-
times, instead of ∆m15 on uses a ’stretch factor’, which strethes the light
curve in the time direction. Using this the, dispersion in absolute magni-
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Figure 87: Hubble diagram based on Type Ia supernovae. The distance
module µ is the difference in apparent and absolute magnitude, µ = m−M ,
and z is the redshift. Note the small scatter illustrating the usefulness of the
lightcurve as a distance measure. The dispersion is σ = 0.2 magn. (From
Prieto et al 2006).

tude is only ∼ 0.1 magnitudes. They have therefore become the most useful
’standard candle’ for determining distances in cosmology.

The extreme uniformity of the Type Ia SNe show that they must come
from very similar types of stars. These in addition have to be very old, of
the order of billions of years, and can therefore not originate from massive
stars, like the core collapse SNe. Type Ias are,however, also found in spirals
with ongoing star formation and there are indications that there are two
different populations of Type Ia SNe.

The standard picture is therefore the explosion of a white dwarf, with
mass close to the Chandrasekhar mass. If this is in a close binary system
mass transfer from the ’normal’ star to the white dwarf may take place.
Because of the angular momentum this will spiral in and form a disc around
the white dwarf, and later be accreted onto the white dwarf. The accreted
gas will then accumulate and normally will after some time explode in ex-
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plosive nuclear hydrogen burning. This will give rise to an ordinary nova,
occurring frequently every year in our Galaxy. In a fairly restrictive range
of mass accretion rates, 10−7 − 10−6 M⊙ yr−1, the mass of the white dwarf
will, however, increase steadily. As the mass increases the radius of the
WD will decrease, R ∝ M−3 (Sect. ??), and the density will therefore in-
crease. This will heat up the degenerate core and when the density reaches
1.5× 109 g cm−3 and the temperature ∼ 8× 108 K the nuclear burning will
become explosive.

The ignition of the explosion is still not well understood and may oc-
cur in two different modes. Either the nuclear burning will propagate from
the ignition site subsonically, with velocity less than the sound velocity, or
supersonically, with velocity larger than the sound velocity. In the former
case, known as a deflagration, the WD will have time to expand as a result
of the increased temperature and pressure, resulting in a decreasing density
as the deflagration wave propagates to the surface of the star. (Fig. 88)The
nuclear burning will at the center go all the way to nuclear statistical equi-
librium, mainly 56Ni. As the explosion proceeds and the WD expands the
nuclear burning occurs at lower densities and only partial burning will take
place, leading to intermediate mass elements, like Si, S and Ca. In the outer
parts of the exploding WD remains of the original carbon and oxygen may
be present (Fig. 89). Because of the small radius of the white dwarf, the
time scale until the burning front reaches the surface is only of the order of
seconds.

In the supersonic case the pressure of the star does not have time to
adjust and the explosion takes place at the density of the original WD.
This is known as a detonation. The result of this is that the whole WD,
consisting originally of ∼ 50% of carbon and ∼ 50% of oxygen , will be burnt
into nuclear statistical equilibrium. This will therefore result in a SN with
only iron peak elements.

Observationally one finds that the spectra of Type Ia SNe show clear lines
of both oxygen and intermediate mass elements at high velocities, close to
the surface (see Fig. 89). This strongly argues against a pure detonation.
Hydrodynamic simulations of pure deflagrations, however, show that in these
a substantial amount of unburnt carbon and oxygen occurs also in the center
of the supernova. This is in contradiction to observations of Type Ia SNe
at late epochs, when the central regions dominate the light. Therefore, a
popular model is that of a ’delayed detonation’, where the burning stars
as a deflagration, expanding the WD. After a few seconds the deflagration
will turn into a detonation, transforming the unburnt fuel in the center to
higher mass elements. Because the expansion during the deflagration phase
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Figure 88: The development of the deflagration flame seen at (A) 1.26, (B)
1.49, (C) 1.57, (D) 1.65, (E) 1.76, and (F) 1.90 s after ignition. The color
code shows the velocity. (Gamezo et al. 2003)

leads to a lower density the burning will, however, during the detonation
now not go all the way to nuclear statistical equilibrium. A substantial
mass of intermediate mass elements will therefore be found at especially
high velocities, and even unburned material at the surface.

What causes the transition from deflagration to detonation is not under-
stood, and much work remains to be done. Also other aspects of the Type Ia
explosions are not well understood. In particular the nature of the progeni-
tor systems are unknown. Only in one case, that of Tychos SN 1572, has a
binary companion probably been detected. The mass transfer process and
the accretion is also ill-understood. Most important, the influence of dif-
ferent initial metallicities in the progenitor star, and its effect on especially
the C/O ratio is also unknown. This will influence the total nuclear energy
available, and therefore the total luminosity of the SN. This is especially
serious for the use of Type Ia SNe as cosmological standard candles. The
fact that they seem to work so well for this purpose is therefore somewhat
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surprising and needs to be better understood.
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6 Gamma-ray Bursts

6.1 Historical overview

Gamma-ray bursts (GRB’s) were discovered in 1967 as a result of the Cold
War. At that time the results were classified, and it was not until 1973 the
first results were published. This immediately inspired a large number of
more or less exotic theories, and in connection to the Texas conference on
Relativistic Astrophysics in 1974 Ruderman could summarize more theories
than discovered bursts at that time. Among these were more or less exotic
candidates, like mini-black holes, white holes, comets falling down on neu-
tron stars, etc. It is, however, worth noting that supernovae were already
in 1974 proposed as a candidate by Colgate.

With the Compton Gamma-ray Observatory in 1991 it was found that
the distribution on the sky was highly isotropic, indicating a cosmological
origin, although an extended halo population could not be completely ruled
out (Fig. 90). CGRO also found that the bursts could roughly be divided
into short (∆t <∼ 2 s) and long (∆t >∼ 2 s) bursts, although the distribution
of these formed a continuum.

A problem with CGRO was the fact that the localization could only be
done within ∼ 3◦. An optical identification, which requires a position within
arc minutes, was therefore impossible.

A breakthrough came with the Dutch-Italian satellite Beppo-Sax which
had both a gamma-ray trigger and an X-ray telescope which could localize
the X-ray emission in connection to the burst within a few arc minutes.
This allowed in 1997 the first optical identification of an afterglow from
GRB970228. Shortly afterwards, GRB970508 was identified, and, moreover,
the spectrum showed absorption lines from intervening galaxies up to z =
0.835, once and for all demonstrating that the GRB’s are at cosmological
distances.

In 1998 the GRB 980425 was found to coincide with the Type Ic SN
1998bw in ESO 184-G82 at z=0.0085. This SN was highly unusual from
several points of view. The radio emission was the strongest seen among all
SNe (see Fig. 85). Also its optical luminosity was an order of magnitude
higher than the typical Type Ic luminosity, indicating M(56Ni) ∼ 0.7 M⊙,
which is larger than e.g., SN 1987A by a factor of ten. Finally the spectrum
indicated an expansion velocity of >∼ 60, 000 km s−1, which was probably
only a lower limit. Modeling of the radio observations showed that these
could be well fitted with a synchrotron-self absorption spectrum of a source
expanding with a Lorentz factor Γ ∼ 2. This gave rise to the notion hy-
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pernovae. Although many in especially the SN community saw this as the
confirming evidence for the SN – GRB connection, which was proposed al-
ready 1974 by Colgate and others, this GRB was extremely weak compared
to typical GRB’s.

More evidence, however, came from the afterglow light curves which in
several cases showed a clear bump in the light curves, which was interpreted
as a SN signature. Complete confirmation came with the identification of a
SN 1998bw-like spectrum in the afterglow of the GRB 030329.

6.2 Summary of observations

6.2.1 Prompt phase

In Fig. 91 we show a sample of burst profiles detected by BATSE. It is
obvious that both the length of the burst and its light curve shape differ
greatly. Some, like Triggers 1406 and 2571, have sharply rising bursts and
then a smooth decay, while others like Trigger 1606 have highly irregular
profiles.

The duration of the bursts vary from 10−2 s to 103 s. As is seen from
Fig. 91, many long bursts show considerable substructure, with peaks with
a duration of the order of milliseconds or even less. The distribution of the
durations show a clearly bimodal structure, with one peak at ∼ 0.2 s and
one at ∼ 30 s (Fig. 92). Because of this, one usually divides the burst
into short <∼ 2 s and long >∼ 2 s. The short account for ∼ 25%, but there
may be selection effects which may increase the true fraction. This bimodal
distribution has led some people to the suggestion that this represents two
different physical mechanisms for the bursts. We are coming back to this
later.

The spectra of the prompt emission can be described as two power laws
with a break between, dN(E)/dE ∝ E−α where α is the photon number
index. At energies less than the peak energy, Ep, α ≈ 1± 1, while above Ep

the bursts have a wide range of α ≈ 1−4. The fact that the EF (E) spectrum
shows a peak in the gamma-ray range, implies that for most GRB’s most of
the energy of the burst is really coming out as gamma-rays. Recently, many
bursts have, however, been discovered which have their peak energy in the
X-rays.

The range in Ep is very large ranging from MeV’s down to tens of keV’s.
Unfortunately, both at high and low energies selection effects makes this
highly uncertain.

There is a correlation between the peak energy and the duration of the

143



burst, so that short burst in general have harder spectra than long bursts.
This can be seen in the hardness ratio defined as the ratio of the fluency in
the 100-300 keV channel divided by that in the 50 – 100 keV channel of the
BATSE instrument (Fig. 93). Clearly, the short bursts have considerably
harder spectra. The transition between the two groups is, however, smooth.

6.3 The necessity of relativistic expansion

First assume that the source is non-relativistic. The fluency is then given by
F = L∆t/4πD2, where ∆t is the time scale of the burst, L the luminosity
and D the luminosity distance to the GRB. If we assume that the source has
a radius R, the energy density is L/4πR2c. As an estimate we take R ∼ ∆t.
Further, we assume that a fraction fp of the photons have energies above
the pair creation threshold, ∼ 2mec

2, the density of energetic photons is
nγ = fpL/4πR2mec

3. The optical depth to pair production is therefore

τγγ = σT nγR =
σT fpL

4πRmec3
=

σTfpFD2

R∆tmec3
=

σT fpFD2

(∆tc)2mec2
(6.1)

As a typical value for the fluency we take F ∼ 10−6erg cm−2 and D ∼ 2
Mpc, corresponding to a total energy of 5× 1050 ergs. If we take ∆t ∼ 0.01
s we get

τγγ = 3 × 1014fp
F

10−6erg cm−2

(

∆t

0.01s

)−2

(6.2)

Therefore for any reasonable values of fp the source would be extremely opti-
cally thick to pair production and would therefore show a thermal spectrum,
contrary to the observations.

This paradox is solved if the source is expanding relativistically with a
large Lorentz factor, Γ. This has several consequences which help in the
right direction.

First, if the source is moving towards us with a velocity v, the observed
time interval, dtobs between two photons emitted in an interval dtem will
be smaller by a factor 2Γ2. To see this we consider a photon emitted from
the shell at a radius r1 from the origin at a time t1 em in the GRB frame,
and at an angle θ. The time when it will arrive to the observer is therefore
t1 obs = t1 em + (D − r1 cos θ)/c. Now, let a second photon be emitted at a
time t1 em +dtem. The radius will now be r2 = r1 +vdtem, and the therefore
the time when it will be observed is t2 obs = t2 em + (D − r2 cos θ)/c =
[D−(r1 +vdtem) cos θ]/c. The time interval it will be received in is therefore

dtobs = dtem − βdtem cos θ = dtem(1 − β cos θ) (6.3)
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where β = v/c. Because v ≈ c it is more useful to write this in terms of the
Lorentz factor. For this we note that Γ2 = 1/(1− β2) = 1/(1 + β)(1 − β) ≈
1/2(1 − β). If we now assume that cos θ ≈ 1, we can write Eq. (6.3) as

dtobs =
dtem
2Γ2

(6.4)

The true size is therefore not cdtobs but 2Γ2cdtobs.
Note that Eq. (6.4) is not the result of a Lorentz transformation, but is

only a result of the fast expansion and the finite velocity of light.
Secondly, for a relativistically expanding source the radiation we receive

will be blue shifted by a factor Γ. Therefore, the number of photons above
the pair production threshold will decrease by a factor Γ2α.

Putting everything together, one gains a factor of Γ2(1+α) from the rela-
tivistic motion. With α ∼ 2 this becomes ∼ Γ6. The Lorentz factors needed
to have τγγ ≪ 1 are therefore in the range Γ ∼ 100 − 1000.

Further evidence of relativistic expansion comes from radio observations
of interstellar scintillations in GRB light curves. An example of this is shown
in Fig. 94 for GRB 970508. During the first ∼ 50 days the radio flux showed
large excursions, which later decreased, consistent with that expected for an
expanding source. From the size of the plasma fluctuations the angular
extent of the radio emission could be estimated, and one found that the
source must have had a size of >∼ 1017 cm, showing that the expansion was
close to the velocity of light.

The fact that we need a highly relativistic expansion means that the
mass involved in this must be very small, since

E ∼ ΓMc2 (6.5)

which means that

M ≈ 5 × 10−6

(

Γ

103

)−1( E

1052ergs

)

M⊙ (6.6)

This means that the explosion has to have a very small fraction of baryons
to photons.

7 GRB progenitors

Up to now we have made no assumptions about the nature of the exploding
object, but only assumed an instantaneous injection of a large amount of
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energy with a large E/M0c
2. To explain the large energies involved ∼ 1051−

1052 ergs it is, however, obvious that the formation of some kind of compact
object is involved. This can either be a neutron star or a black hole. There
are then two main classes of scenarios, which have quite different progenitors.
The physics involved in the generation of the energy may, however, be fairly
similar. We will now discuss these one by one.

7.1 The supernova - GRB connection

Supernovae have from the theoretical point of view for a long time been
proposed as an origin for GRB’s. When the first afterglows were identified,
it was also noted that these in most cases were in the central regions of star
forming galaxies, typical of massive stars. Direct evidence for a connection
between these was, however, lacking. This changed when in April 1998 the
error box of GRB 980425 was found to coincide with the supernova SN
1998bw in the galaxy ESO 184-G82 with a very low redshift, 2550 km s−1

or z=0.0085. The supernova which was a Type Ic SN, was very remarkable
from several points of view. The radio emission from the supernova was
found to be more luminous than any other radio SN, and was well fitted
by a synchrotron self-absorption spectrum. From modeling of the radio
emission the expansion velocity of the emitting material was found to have
a Lorentz factor of Γ ∼ 2. Also the optical spectrum showed very broad,
smooth features indicating an expansion velocity of at least 60, 000 km s−1.
The luminosity of the SN was nearly a factor of ten larger than a typical
Type Ic SN, and close to that of Type Ia’s. The light curve indicated a
total 56Ni mass of ∼ 0.5 M⊙, much higher than that in e.g., SN 1987A. The
gamma-ray luminosity was, however, about four orders of magnitude less
than a typical GRB, ∼ 5×1047 ergs. This has lead to some doubt about the
GRB-SN connection in this case. The coincidence of the SN and GRB as
well as the remarkable properties of the SN, makes it in my view, however,
completely clear that the GRB and the SN really originated from the same
object.

In addition to this direct evidence there has for a number of GRB’s been
seen evidence for a bump in the light curve of the afterglow. While the early
evolution in most cases follows a power law, there has been several examples
where a red bump has been seen in the light curve at ∼ 20 days (Fig. 95).
The luminosity of these bumps as well as the shape and color are roughly
consistent with that of SN 1998bw, indicating that it really is the emission
from the SN which is seen.

Besides SN 1998bw, the most direct evidence for the SN/GRB connec-
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tion came from GRB 030329. This was by GRB standards an extremely
nearby GRB with z = 0.168. As was immediately recognized by several
groups, this was a unique opportunity of getting high S/N spectra of the
afterglow during the first months. While the first spectra showed basically
a power law spectrum with Fν ∝ ν−1.2, there was after ∼ 8 days a clear
excess emission above a power law fit (Fig. 96). This component became
increasingly stronger, and when the power law spectrum seen during the
first days was subtracted it was found that this coincided almost perfectly
with that of SN 1998bw. The supernova consequently got the designation
SN 2003dh. In addition to this there has been several other GRB’s where
there is strong evidence for an underplaying supernova. With GRB980425,
GRB030329 and these other cases, the SN/GRB connection is now firmly
established,

Note, however, that the optically identified GRB’s all belong to the
long GRB’s. Because there is some evidence from the distribution of the
durations that there may be two different populations of progenitors, it is
fair to say that the SN–GRB connection is only established for the long
bursts. The short could have a different class of progenitors.

7.2 Collapsars

The collapsar model for GRB’s is based on the partial failure to produce
an explosion from models of core collapse SNe. However, to get a gamma-
ray burst several special properties of the collapsing star are likely to be
needed. This is also indicated by the fact that only a very small fraction
of all SNe produce GRB’s. From the beaming angle, corresponding to a
solid angle of Ω ∼ 0.03, we observe only every <∼ 200 of all GRB’s. More
detailed estimates of this factor vary between 75 − 500. The total GRB
rate (including the ones with beaming away from us) is estimated to be
∼ 33 Gpc−3 year−1. The typical rate should then be one GRB per ∼ 3×105

years for a typical galaxy. Therefore, only a fraction of one per ∼ 3 × 103

SNe will become a GRB.
In the standard GRB scenario the main ingredients is a rapidly rotating

stellar core, and a low mass or absent stellar envelope. The former is needed
to produce a jet, while the latter is needed to get the jet out of the star.

The main parameters of the collapsing core are the specific angular mo-
mentum, j = J/M . During the first seconds a centrifugally supported disk
forms with interior to R ≈ j2/GM . For reasonable values of j this is
∼ 100 − 200 km. Because the centrifugal support is much smaller in the
polar direction the matter in this direction continues to accrete onto the
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black hole, until this region is nearly empty (Fig. 97). The density contrast
between the equatorial disk, where the density is ∼ 109 g cm−3, and the
polar direction will therefore be very large.

The accretion rate in the disk is considerably lower, ∼ 0.07 M⊙ s−1, than
that of free-fall, MR/Vff ∼ Mρ1/2/450 ∼ 1 M⊙ s−1. With a total mass in
the disk of 0.1 − 1 M⊙, the accretion will be sustained for 10–20 s.

Most of the energy losses from the disk will, because of the high temper-
ature, ∼ 1010 K, be in the form of neutrinos. Because the disk dominates the
neutrino luminosity, the neutrino radiation field will be highly anisotropic.
Neutrino annihilation, k, ν + ν̄ → e− + e+, above the disk may then pro-
duce electron-positron pairs in this region. These can then give rise to a
jet perpendicular to the disk. The details of this mechanism are, however,
uncertain.

Another suggestion uses some kind of electromagnetic extraction of the
energy from the disk in a similar manner as a pulsar. A magnetic field
anchored in the disk and treading the black hole horizon can tap the black
hole on rotational energy by the so called Blandford-Znajek mechanism. The
total amount of rotational energy is in principle enormous, ∼ 1054 ergs, but
again, this mechanisms is not worked out in sufficient detail for a proper
evaluation of its merits.

In some way or another a large amount of energy is likely to be deposited
in the polar directions above the disk on a time scale of the order of 1-100
s. This is the starting point of the two jets along the rotational axis of the
star.

As the jet is launched from the center, it propagates outwards through
the star. Fig. 98 shows a simulation of this from the inner region up to
the point when it interacts with the circumstellar medium in the form of
a wind from the progenitor. The radius of the Wolf-Rayet progenitor is in
this model 8 × 1010 cm and the He-core mass 15 M⊙.

While inside the star, the narrow jet will be preceded by a cocoon, con-
sisting of shocked material from the stellar core and envelope, as well as the
shocked jet. This cocoon propagates through the star with a sub-relativistic
velocity, ∼ (5 − 10) × 104 km s−1, although the jet itself is relativistic with
Γ ∼ 10. As it penetrates through the surface of the star the cocoon spreads
in angle and also accelerates down the steep density at the surface. This
results in a Lorentz factor of ∼ 5− 10 for the cocoon and an angular extent
of ∼ 30◦.

In Fig. 99 we show the density and Lorentz factor at the final epoch
of the model above. Although only ∼ 20 at the time of the jet breakout,
the final Lorentz factor in the jet reaches >∼ 100 as the internal energy is
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converted to kinetic energy by the adiabatic expansion. A most important
thing to note in the figure is the highly variable Lorentz factor in the jet.
As the faster material will catch up with the slower, internal shocks in the
jet will form, explaining the initial burst.

The cocoon mentioned above is interesting because although it only con-
tains a minor fraction of the total energy, it has a factor of 5–10 larger an-
gular extent than the jet itself. The solid angle, and thus the probability of
observing it, is therefore a factor of 25−100 larger. The lower Lorentz factor
means that the radiation from the cocoon should be considerably softer. It
has been proposed that this may explain the so called X-ray flashes (XRF’s),
which has most of their energy in the X-ray rather than gamma-ray domain.

The collapsar model is a very likely candidate to explain the long bursts.
The duration of the burst is set roughly by the time scale of the launch of
the jet. It is, however, difficult to see that this can be much shorter than
seconds, and the model has therefor problems explaining the short bursts.
In principle, it is, however, possible also to get very short bursts from the
interaction of the jet and the head of the cocoon.

7.3 Neutron star mergers

We know that binary neutron stars exist, as the famous case of the Hulse-
Taylor pulsar PSR1913+16 shows. This system will decay by gravitational
radiation on a time scale of ∼ 108 years. Because both stars have a mass
close to 1.4 M⊙, the result will most likely be a black hole, unless a very
large fraction of the mass is expelled. The energy release in connection to
this may be very large, comparable to that in an ordinary core collapse
supernova. The time scale will be of the order of milliseconds. This has lead
to the suggestion that merging neutron stars may have something to do with
GRB’s, and was for a long time the most popular GRB model. As we have
seen, there is now compelling evidence that the long GRB’s are connected
to supernovae. This evidence does, however, not apply to the short GRB’s.
In particular, this models has some properties which can easier explain the
short time scales connected with this class of GRB’s.

As the neutron stars spiral in they will lose more and more of the orbital
energy by gravitational radiation. The final merger will occur on a time
scale of the order of milliseconds. Because of the large angular momentum
the tidal forces will distort and tear apart the stars, and a flattened, disk
like configuration will form (Fig. 100). While most of the mass results in a
black hole of mass ∼ 2.5 M⊙, a substantial fraction, ∼ 0.1 − 0.2 M⊙, will
stay in the form of en extremely hot accretion disk. The temperature of this
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will be ∼ 1010 K, and it will therefore lose most of its internal energy as
neutrinos. The accretion rate will be ∼ 1 M⊙ s−1, so the disk will have a
life time of ∼ 0.1 − 0.2 s. The total energy in the neutrinos will be of the
same order as for a core collapse SN, ∼ 1053 ergs, more than enough to feed
a GRB with a moderate amount of beaming. The fundamental problem is
just how to convert the neutrino energy into photons.

Similar to the collapsars, there are two main mechanisms which have
been proposed for this, neutrino annihilation or electromagnetic extraction.
The neutrinos produce electron-positron pairs, which give rise to a jet per-
pendicular to the disk. This then convert its kinetic energy into heat by
internal shocks, giving rise to a gamma-ray burst. Because the neutron star
binary is not expected to have any circumstellar medium, the afterglow is
expected to be the result of interaction of the outflow with the interstellar
gas, having a constant density.

The main problem with this mechanism is that detailed simulations show
that the efficiency of the neutrino pair annihilation is relatively inefficient.
The energy converted into pairs is ∼ 5 × 1049 ergs, which may be too low.
This is especially true since it is difficult to obtain the narrow beaming sug-
gested by the afterglow observations. Although highly uncertain, the MHD
extraction of energy may be the most promising, but also most complex to
calculate.

Summarizing this model, it has the virtue of being based on events which
we know will take place, and that the total energy available is sufficient. The
drawbacks is the difficulty of converting this energy to photons. In addition,
the frequency of these mergers is highly uncertain, although estimates give
a rate of one merger per ∼ 106 years for a typical L⋆ galaxy.
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Figure 89: Abundances in one pure deflagration model (top) and two delayed
detonation models started at 1.62 s (b) and at 1.51 s (c). Note the absence of
oxygen and carbon in the delayed detonation models (Gamezo et al. 2005)
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Figure 90: GRB distribution on the sky for bursts observed with BATSE
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Figure 91: Examples of light curves observed with BATSE.
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Figure 92: Distribution of durations of gamma-ray bursts detected by
BATSE. The duration is defines as the time, T90, between when 5% and
95% of the total number of counts are measured.

Figure 93: Hardness – duration correlation of BATSE bursts. The HR is
defined as the ratio of the fluency in the 100-300 keV channel divided by
that in the 50 – 100 keV channel (from Qin et al. 1999)
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Figure 94: Radio light curve for GRB970508 at 8.46 GHz. Note the rapid
fluctuations due to interstellar scintillations in the light curve during the
first ∼ 50 days (Frail 2003).
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Figure 95: Light curves of the afterglow of GRB011121 obtained with HST
(triangles) and ground based telescopes (diamonds). Note the bump in the
light curve at 10-30 days, consistent with that from a of SN 1998bw, dimmed
by ∼ 55% (Bloom et al 2002).
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Figure 96: Spectral sequence of GRB030329/SN2003dh with VLT (Hjorth
et al 2003). Note the power law spectrum on April 3 and the gradually
stronger supernova contribution. The dashed line shows the spectrum of SN
1998bw at an age of 33 days.
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Figure 97: Density in the center ∼ 7 s after collapse. Inside of ∼ 200 km the
centrifugally supported torus can be seen. In the polar direction the density
is very low because the lack of centrifugal support has emptied this region.
(MacFadyen & Woosley 1999)
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Figure 98: Simulation of jet propagation and breakout. The different panels
show the Lorentz factor and density at six epochs, 5, 10, 12, 20, 40, and 70
s. (from Zhang, Woosley, Heger 2003)
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Figure 99: Density and Lorentz factor in the jet in Fig. 98 at 70 s. Note the
highly variable density and especially Lorentz factor (Zhang, and Woosley
2002).
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Figure 100: Evolution of the neutron star binary at different epochs after
the start of the simulation. The contours show the density and temperature,
while the arrows show the velocity field. (Ruffert & Janka 2001).
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