
Early and late stellar evolution, part III: Star Formation

Problem set 2, June 2, 2008

All problems except those marked (*) are compulsory for pass. Problems marked with (*) are
for higher grades. Please motivate your answers carefully (when applicable). There will be 3
problem sets in total, for this part of the course. A report containing the solutions to these
problem sets should be handed in no later than 2008-06-20, 24:00 for grades higher than
pass. The report can be submitted on paper, or as a PDF sent to alexis@astro.su.se, or
both (as long as the versions are identical). If submitted only in paper form, still send an
email notifying that the report has been submitted. Note that not all problems are explicitly
treated in the lectures; most are in the Stahler & Palla book, however.

1. A spherically symmetric isothermal cloud satisfies the isothermal Lane-Emden equation
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(equation 9.7 in Stahler & Palla), where
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,

ψ = Φ/c2S, cS =
√
RT/µ is the sound speed, Φ is the gravitational potential, G =

6.67 × 10−11 m3 kg s−2 is the gravitational constant, R = 8.31 × 107 erg g−1 K−1 is the
gas constant, µ is the mean molecular weight, T is the gas temperature, and ρc is the
central density.

Let µ = 2, T = 30K, ρc = 7.6 × 10−20 g cm−3 and assume the equation of state
P = ρc2S, where P is the pressure and ρ the density. Assume an external pressure of
Pext = 7.60× 10−12 Pa from the interstellar medium is being applied on the sphere.

(a) What is the sound speed?

(b) What is the mass of the sphere? You may use Figs. 1& 2 to read out values
derived from the solution of the differential equation.

(c) Imagine that the external pressure starts to rise. How high can it rise before the
sphere becomes unstable?

(d) Assume instead that the clouds starts to (isothermally) cool. How much can it
cool before the sphere becomes unstable?

(e) * Solve the isothermal Lane-Emden equation numerically, and reproduce Figs. 1& 2.
To solve the differential equation, show that it is equivalent to solve the non-linear
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system of ordinary first-order differential equations

y′0 = y1

y′1 = exp(−y0)−
2

ξ
y1

where the prime signifies derivation with respect to ξ, y0 = ψ, and the initial
condition is y′0 = y′1 = 0. This may then be solved by e.g. Euler’s method, i.e.
start from the initial condition, and iteratively compute

yi(ξn+1) = yi(ξn) + y′i [ξn, y1(ξn), y2(ξn)] ∆ξn,

where ∆ξn = ξn+1 − ξn is the length step and i ∈ {1, 2}. Check that the solution
converges as ∆ξn → 0 (∀n). You are of course welcome to solve the differential
equation by other means (e.g. by using Mathematica, Maple, or MATLAB).

Figure 1: From Stahler & Palla (2004)

2. The collapse of a Bonnor-Ebert sphere gives rise to a system of differential equations
that have to be solved numerically. To get a rough idea of how a cloud behaves under
collapse, let us study an even simpler case: a homogeneous sphere of gas without
pressure, with gravitation being the only relevant force. The equation of motion can
then be written

r̈ = −GMr

r2
, (1)

where r is the radius, Mr is the mass interior to r, and G is the gravitational constant
(as above).
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Figure 2: From Stahler & Palla (2004)

(a) Let r(t = 0) = r0 and ṙ(t = 0) = 0, and show that
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. (2)

(b) Introduce

cos2(ξ) =
r

r0
(3)

and show that

ξ +
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0

. (4)

(c) How long does it take a shell to free-fall to the origin? Express the time in the
initial density ρ0.

(d) If the uniform sphere had the density ρ0 = ρc of Problem 1, what would be the
total time for the free fall to the origin?

(e) * A wind can sometimes be modelled as antigravity working on gas. The relevant
equation of motion would then be

r̈ = (β − 1)
GMr

r2
,

where β > 1. What are the equations in this case, corresponding to equations
2–4?
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