Introduction Stellar nucleosynthesis

le- Nebular analysis gen nucle- Type nthesis model Type IIb SNe Typ SN

Type Ibc-BL SNe Explosive nucleosynthesis us Outllok summa

The origin of oxygen: results from supernova spectral synthesis modelling

Anders Jerkstrand

1 Core-collapse of a massive star $(M \gtrsim 8 M_{\odot})$ as it runs out of fuel at the end of its life

2 Thermonuclear explosion of a white dwarf exceeding the Chandrasekhar limit $(1.4 M_{\odot})$

Credit: www.phys.olemiss.edu

Credit: hetdex.org

- Hydrostatic (pre-SN) burning main source of C, O, F, Ne, Na, Mg, Al, P in Universe
- Explosive SN burning main source of Si, S, Ar, Ca, Fe, Ni in the Universe

T I		Cul		-					
	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa

The origin of the elements

Ab.	EI.	Main source	Nebular lines seen in SNe
1	Н	Big Bang	Many
2	He	Big Bang	He I 5016, 7065, 1.08 μ m, 2.06 μ m
3	0	CCSN	[O I] 5577, 6300, 7774, 9263, 1.13 μ m, 1.31 μ m
4	С	AGB stars+CCSN	[C I] 8727, 9824/9850, 1.44 μ m, CO lines
5	Fe	CCSN+TNSN	[Fe II] 7155, 1.26 μ m, 1.64 μ m, 18 μ m, 26 μ m
6	Ne	CCSN	[Ne II] 12.8 µm
7	Si	CCSN+TNSN	[Si I] 1.10 μ m, 1.20 μ m, 1.60/1.64 μ m, SiO lines
8	Ν	AGB stars	[N II] 6548, 6583
9	Mg	CCSN	Mg I] 4571, 1.50 μm
10	S	CCSN	[S I] 1.082 μm, 1.13 μm
11	Ar	CCSN	[Ar II] 6.99 μm
12	Ni	CCSN+TNSN	[Ni II] 7378, 1.93 μ m, 6.6 μ m, 10.7 μ m, [Ni I] 3.1 μ m
13	Ca	CCSN	[Ca II] 7300, NIR triplet, Ca I 4200
14	AI	CCSN	-
15	Na	CCSN	Na I 5890, 5896, 1.14 μ m

Virtually no empirical confirmation by direct source analysis

Introduction Stellar nucle osynthesis Oxygen nucle osynthesis Oxygen nucle osynthesis os

Methods:

- Measure line luminosities + assume uniform conditions and analytic forms valid in certain limits (e.g. LTE, optically thin) Important complement but not accurate enough on its own
- Forward modelling : free composition in single zone Simple and fast, but many free parameters and to some extent unphysical
- Forward modelling : multi-zone explosion models with self-consistent nucleosynthesis Recent progress (Dessart & Hillier 2011, AJ 2011 (PhD thesis), Maurer 2011 (PhD thesis), AJ+2012, 2014, 2015a, 2015b, 2016)

- MPI code typically run of 100 cores
- Code is 1D but allows for mixing

Oxygen nucleosynthesis

Nebular

Convolve with a Salpeter (SFR $\propto M_{ZAMS}^{-2.35}$) Initial Mass Function (IMF):

Type IIb SNe

Oxygen nucle-

osynthesis

Source	M _{ZAMS}	$Rate \ (yr^{-1})$	$<$ O > (M_{\odot})	O prod. rate $(M_{\odot} { m yr}^{-1})$
Supernovae				
Type II	8-40	0.02	1.5	0.03
Type lb/c	40-130	0.007	3	0.02
Pair-instability	130-260	$< 5 imes 10^{-4}$	40	< 0.02
Type Ia	2-8	0.005	0.1	$5 imes 10^{-4}$
Eruptions and winds				
Wolf-Rayet winds	>40	$3 imes 10^{-3}$	5	$2 imes 10^{-3}$
Pair-instability eruptions	100-130	$< 5 imes 10^{-3}$	1	$< 5 imes 10^{-3}$
Novae	2-8	30	$1 imes 10^{-5}$	$3 imes 10^{-4}$

Modelling Type IIP SNe Anoma Anoma

Nebular

 \bullet Stellar evolution/explosion models from KEPLER (Woosley & Heger 2007) \to all nucleosynthesis self-consistent

Type IIb SNe

• Consider macroscopic mixing effects of core from 2D/3D models

Type IIP models

 \bullet Parameterized molecular cooling of O/Si/S and O/C zones

Hammer+2010, 3D model

Ejecta setup in SUMO

Superluminous Outllo

AJ+2012,2014

AJ+2012,2014

- $\bullet~\mbox{Most}~O$ is neutral \rightarrow traces total O mass
- Forms by thermal collisional excitation
- Neglegible blending
- Minor radiative transfer effects
- $\bullet\,$ This wavelength range always observed with high S/N
- \rightarrow Probably the most robust diagnostic of any SN element

Robustness check 1 : [O I] 5577 Arction

Nebular

Type IIP

models

LTE formulae expected to be accurate:

Type IIb SNe

$$\frac{L_{5577}}{L_{6300,6364}} = 38 \exp\left(\frac{-25790}{T}\right) \tag{1}$$

$$L_{6300,6364} = 9.7 \times 10^{41} \exp\left(\frac{-22720}{T}\right) M_{OI} \text{ erg/s}$$
 (2)

Time	$L_{5577}/L_{6300,6364}$	Т	M(OI)
(d)	-	(K)	(M_{\odot})
250	0.12	4170	0.6
369	0.057	3740	0.6
451	0.025	3330	0.6

Good consistency with best-fit model for 6300, 6364 : $M(O) = 0.8 M_{\odot}$ (all ejecta), $M(O) = 0.4 M_{\odot}$ (ONeMg zone)

Introduction Stellar nucle Nebular Oxygen nucle Type IIP Type IIB SNe Type Ibc-BL Explosive nucleosynthesis Oxygen luminosities in a sample of Type IIP SNe : $M_{ZAMS} \approx 10 - 17 M_{\odot}, < O >=0.4 M_{\odot}$

• Standard models predict Type IIP SNe also in the 17-30 range, and < O $>=1.0 M_{\odot}$.

	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa
Туре	IIb SN	е							

- \bullet Progenitor has been stripped but all but $\sim 0.1~M_{\odot}$ of its H envelope.
- $\bullet\,$ Class includes famous SNe such as Cas A and 1993J. Recent surveys $\to\,$ 10-15% of all CCSNe.
- Two main candidate mechanisms for H envelope stripping:

Binary systems (gravitational stripping) Any *M_{ZAMS}*.

Single massive stars (wind stripping) $M_{ZAMS} \gtrsim 25 M_{\odot}$

AJ+2015a

	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa
Magn	esium								

- Current stellar evolution models underpredict Mg/O by factor >2...why?
- $\bullet\,$ Two main diagnostics : Mg I] 4571 and Mg I 1.50 $\mu m.$
- $\bullet\,$ Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- $\bullet~{\rm Mg}$ I 1.50 $\mu{\rm m}$: Simpler formation, but less often observed

	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa
Magn	esium								

- \bullet Current stellar evolution models underpredict Mg/O by factor ${>}2...{\sf why}?$
- $\bullet\,$ Two main diagnostics : Mg I] 4571 and Mg I 1.50 $\mu m.$
- $\bullet~$ Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- $\bullet~{\rm Mg}$ I 1.50 $\mu{\rm m}$: Simpler formation, but less often observed

mirodaction	osynthesis	analysis	osynthesis	models	rype no Sile	SNe	cleosynthesis	SNe	summa
Stable	e nicke								

- Use forward model to identify lines present (7)
- 3-component fit (atomic data constraints remove 4 DOF)

• Determine T range, and from this determine mass range

NI: / Г о				models		Sive	cleosynthesis	SNe	
Introduction	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa

SN	Ni/Fe (times solar)	Reference
Crab	60 — 75	Macalpine1989, Macalpine2007
SN 1987A	0.5 - 1.5	Rank1988, Wooden1993, AJ+2015b
SN 2004et	${\sim}1$	Jerkstrand2012
SN 2006aj	2 - 5	Maeda2007, Mazzali2007
SN 2012A	~ 0.5	AJ+2015b
SN 2012aw	~ 1.5	AJ+2015b
SN 2012ec	2.2 - 4.6	AJ+2015b

- Average ratio close to solar
- $\bullet\,$ If true in largee samle, Type Ia much make Ni/Fe $<1 \rightarrow$ constraints on explosions models
- Sometimes much larger : what does it mean?
- The Crab is extreme : only viable model is electron capture SN

AJ+2015 (ApJ)

	Stellar nucle- osynthesis	Nebular analysis	Oxygen nucle- osynthesis	Type IIP models	Type IIb SNe	Type Ibc-BL SNe	Explosive nu- cleosynthesis	Superluminous SNe	Outllok summa
SLSN	е								

- A new class of extremely bright SNe discovered about 10 years ago
- Emit 100 times more energy than normal SNe
- Type IIn or Type Ic
- Power source is unknown. Candidates:

Radioactivity

$$E \approx 10^{51} \left(\frac{M(^{56}\text{Ni})}{5M_{\odot}} \right)$$

Gamma-ray thermalization.

Neutron star
rotation energy
$$E \approx 10^{51} \left(\frac{P}{5 \text{ ms}}\right)^{-2}$$

Ejecta kinetic energy $E \approx 10^{51}$

spin-down + thermalization of Circumstellar interaction + X-ray thermalization. Magnetic

Heger & Woosley 2002

Model	M _{ZAMS}	E_{kin}	He	0	Si	S	⁵⁶ Ni	SN Type
	(M_{\odot})	$\left(10^{52}~{}_{erg} ight)$	(M_{\odot})	(M_{\odot})	(M_{\odot})	(M_{\odot})	(M_{\odot})	
He80	${\sim}140$	1.6	0.7	47	14	5	0.1	normal SN
He100	~ 200	3.8	0.9	44	23	10	6	superlum.
He130	~ 260	8.1	2	33	24	11	40	superlum.

 Macroscopic mixing small (Joggerst & Whalen 2011, Chatzopoulus+2013, Chen+2014, Whalen+2014)? can use 1D ejecta models to good accuracy.

Gas is cold and neutral

 Gamma rays are trapped in deep-lying Fe, Si, S, Ca layers

Expect lines of Fe I, Si I, S I,...

Introduction Stellar nucle- Nebular Oxygen nucle- Type IIP Type IIb SNe Type Ibc-BL Explosive nu- Superluminous Outlok summa osynthesis analysis osynthesis models SNe cleosynthesis SNe

Pair-instability supernovae

• No good fit to current PISN candidates (SN2007bi and PTF12dam)

- A subclass of low-velocity Type IIP SNe : match with electron capture SNe or low-mass iron core SNe? Compute spectra of 1D explosion models produced in-house
- The key to more accurate modelling is to use full 3D explosion models Development of 3D spectral code underway, application to in-house 3D models
- Build up statistically significant samples for each SN class
- Type Ib/c SNe High mass stars and the main source of O, or gravitationally stripped low-mass stars? What explosion models to use?

Introduction Stellar nucle Nebular Oxygen nucle Type IIP Type IIb SNe Type Ibc-BL Explosive nu- Superluminous Quality operations adressed in this talk

- What nucleosynthesis products do we observe in SNe?
 - Clear signals from newly produced He, C, N, O, Ne, Na, Mg, Si, S, Ca, Fe, Co, Ni have been identified
- How do inferred yields of O and related products compare with assumptions in standard chemical evolution models?
 - Type II SNe appear to come from low-mass stars ($M_{ZAMS} \lesssim 18)$ with small amounts of nucleosynthesis, $< O >= 0.4~M_{\odot}$
 - The large O masses of 1.5 M_{\odot} per SN used in standard chemical evolution models is not confirmed by observations, and the main source of O is unclear
 - $\bullet~Mg/O$ and Na/O ratios general close to solar

• What do the yields tell us about stellar nucleosynthesis and SN physics?

- As with progenitor analysis, nucleosynthesis analysis indicates that many stars with $M_{ZAMS}>18M_\odot$ may collapse directly to black holes
- However, some massive stars definately explode
- $\bullet~$ SN ejecta are not microscopically mixed \rightarrow constraints on convection
- Current stellar evolution models fail to reproduce high enough Mg/O ratio