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Supernovae - the deaths of stars

Rate: About 1 per century per galaxy. Discovery rate: 1000/year

1 Core-collapse of a massive star
(M & 8 M⊙) as it runs out of fuel at
the end of its life (75%)

More envelope stripping −→

Type IIP / IIL/ IIb / IIn / Ib / Ic

Credit: www.phys.olemiss.edu

2 Thermonuclear explosion of a
white dwarf exceeding the
Chandrasekhar limit (1.4 M⊙) (25%)

Type Ia

Credit: hetdex.org
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The origin of the elements

Ab. El. Main source Nebular lines seen in SNe
1 H Big Bang Many

2 He Big Bang He I 5016, 7065, 1.08 µm, 2.06 µm

3 O CCSN [O I] 5577, [O I] 6300, 6364, O I 7774, O I 9263 + ..

4 C AGB stars+CCSN [C I] 8727, 9824/9850, 1.44 µm, CO lines

5 Fe CCSN+TNSN [Fe II] 7155, 1.26 µm, 1.64 µm, 18 µm, 26 µm

6 Ne CCSN [Ne II] 12.8 µm

7 Si CCSN+TNSN [Si I] 1.10 µm, 1.20 µm, 1.60/1.64 µm, SiO lines

8 N AGB stars [N II] 6548, 6583

9 Mg CCSN Mg I] 4571, 1.50 µm

10 S CCSN [S I] 1.082 µm, 1.13 µm

11 Ar CCSN [Ar II] 6.99 µm

12 Ni CCSN+TNSN [Ni II] 7378, 1.93 µm, 6.6 µm, 10.7 µm, [Ni I] 3.1 µm

13 Ca CCSN [Ca II] 7300, NIR triplet, Ca I 4200

14 Al CCSN -
15 Na CCSN Na I 5890, 5896, 1.14 µm

Mostly theory: Few quantitative results by direct source analysis
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Elements with Z > 30 hard to see due to rapidly declining abundances
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Nucleosynthesis in massive stars

Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al,
P in Universe
Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the
Universe

H → He

He → C, O

C → O, Ne, Mg, Na

Ne → O, Si, S, Mg

O → Si, S, Ca, Ar

Si → Fe, Ni, 44Ti

5,000 km/s
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The nebular phase: an opportunity to see what supernovae

are made of and determine nucleosynthesis yields

Baade 1945: Exponential tails!

Borst 1950: Radioactivity!
Colgate & McKee 1969: 56Co!
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Data collection rate: a few per year.

Total number of objects today:∼50

From ∼100 to ∼1000 days

post explosion

100d 200d
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How can we determine element masses in SN ejecta from

their nebular spectra?

1 Inverse modelling: Measure line luminosities + assume uniform
conditions and analytic forms valid in certain limits (e.g. LTE, optically
thin)

Accuracy varies a lot depending on line/epoch

Identify interesting
explosion models

to test

Identify physical
regimes

2 Forward modelling: Radiative transfer modelling of multi-zone
explosion models with self-consistent nucleosynthesis

Time-consuming
If a line doesnt fit, is abundance wrong or something else in model?
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Forward modelling: the SUMO code Jerkstrand 2011, PhD thesis,

Jerkstrand, Fransson & Kozma 2011, Jerkstrand+2012

Radioactive decay and γ-ray transport

Slow-down of relativistic
electrons

Temperature

Heating = cooling

NLTE statistical equilibrium

21 of 28 elements from H to
Ni, 3 ion. stages, ∼100 exc.
states each

Radiative transfer

300,000 atomic lines, 3,000 bound-free
continua, free-free, electron scattering

Code is 1D but allows for mixing by ’virtual grid’ option
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Modelling Type IIP SNe Jerkstrand+2012, 2014

Stellar evolution/explosion models from KEPLER (Woosley & Heger
2007) → all nucleosynthesis self-consistent

Consider macroscopic mixing effects of core from 2D/3D models

Hammer+2010, 3D model

C
O

56Ni

H-zone

He-zone
O/C zone

O/Ne/Mg

O/Si/S

Si/S
56Ni

Ejecta setup in SUMO
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Type IIP model spectra
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Type IIP model spectra Jerkstrand+2014
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First “well” matching SN models like these have only emerged in the
last ∼5 years → modelling now at a point where we can start to infer
abundances
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Type IIP progenitor distribution Jerkstrand+2015 (MNRAS)

High mass stars (M > 17 M⊙) missing : are they collapsing directly to
black holes or explode as other SN types?
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Same results for Type IIb SNe Jerkstrand, Ergon, Smartt+2015 (A&A)
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Type IIP and IIb SNe make up 2/3 of all CCSNe but
contribute . 16% of total O production?
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No SNe in this range?
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Relative abundances: example of magnesium

Most stellar evolution models underpredict Mg/O compared to solar by
factor ∼2...why?

Main diagnostic line : Mg I 1.50 µm.

New method presented
in Jerkstrand+2015
(A&A):

Show Mg/O ≈

0.5-2 times solar
in SN 2011dh
(IIb)

Sample study
under way
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Application 2: Explosive yields of Ni and Fe

Explosive silicon burning → Fe
(made as radioactive 56Ni) and
Ni as two of the main products

Relative ratios can tell us about
progenitor structure and
explosion mechanism

Hammer+2010
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Stable nickel

Main diagnostic line: [Ni II] 7378
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Jerkstrand, Smartt, Sollerman+2015 (MNRAS)
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Ni/Fe ratios in 7 CCSNe Jerkstrand,Smartt,Sollerman+2015 (MNRAS)

SN Ni/Fe (times solar) Reference

Crab 60− 75 Macalpine1989, Macalpine2007
SN 1987A 0.5− 1.5 Rank1988, Wooden1993, AJ+2015
SN 2004et ∼1 AJ+2012
SN 2006aj 2− 5 Maeda+2007, Mazzali+2007
SN 2012A ∼ 0.5 AJ+2015
SN 2012aw ∼ 1.5 AJ+2015
SN 2012ec 2.2− 4.6 AJ+2015

Average ratio ≥ solar

If true in larger samle, Type Ia SNe must make Ni/Fe ≤ solar →
constraints also on Ia explosion models

Sometimes much larger than solar: what does it mean?
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Follow-up analysis: what is Ni/Fe ratio diagnostic of?

Ye(=
Np

Nn + Np
) = 0.499 : Only good solutions for Ni/Fe ∼ solar
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Follow-up analysis: what is Ni/Fe ratio diagnostic of?

Ye = 0.497 : Large allowed region opens up for supersolar
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Ne/Fe is a tracer of which progenitor layer was explosively
burnt Jerkstrand, Timmes, Magkotsios+2015 (ApJ)
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Important constraints on explosion mechanism, as well as consequences
for yield grids used in galactochemical evolution models
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Electron capture supernovae

Hypothesized explosion mechanism for ∼8-9 M⊙ stars
Despite small mass range, steep IMF → ∼10% of all core-collapse SNe
May dominate production of a few heavy elements Z=30-40
(Zn,Ge,As,Se,Br,Kr,Rb,Sr,Y,Z) Wanajo2011
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Electron capture supernovae

Spectral models suggest no known SN matches expections from
ECSN nucleosynthesis (e.g. >20 times solar Ni/Fe) → remain to be
discovered and may not exist Jerkstrand, Ertl, Janka, Mueller in prep.

Crab SN remnant not included in analysis
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The two radioisotopes 57Ni and 44Ti

SN 1987A: only SN with 4 explosive burning isotopes (56Ni, 57Ni, 58Ni,
44Ti) determined

Ratio Ratio (times solar) Reference
44Ti/56Ni 1.6± 0.5 Jerkstrand, Fransson, Kozma 2011

Boggs 2016, Science
58Ni/56Ni ∼ 1 Jerkstrand+2015 (MNRAS)
57Ni/56Ni 1-2 Kurfess 1992

A high-entropy burning of O-shell fuel is needed

Strong asymmetry Nagataki 1998,2000
Neutrino wind Wongwathanarat+2017

Cas A : Similar mass of 44Ti (1.5 × 10−4M⊙), but
56Ni mass unknown.

Renaud+2006
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Summary

Nucleosynthesis yields in SNe an be analyzed in the nebular phase.
Clear signals from newly produced He, C, N, O, F, Ne, Na, Mg, Si, S,
Cl, Ar, Ca, Fe, Co, Ni have been identified
Radiative transfer models have in the last ∼5 years advanced to the
point that model spectra resemble observed spectra
Type II SNe appear to come from low-mass stars (8 < MZAMS < 17M⊙)
with < O >= 0.4M⊙. The large O masses of 1.5 M⊙ per SN used in
standard chemical evolution models is not confirmed by observations.
Mg/O and Na/O ratios generally close to solar
As with progenitor analysis, nucleosynthesis analysis indicates that many
stars with MZAMS > 18M⊙ may collapse directly to black holes
However, some massive stars definately explode (hypernovae)
Ni/Fe ratios in core-collapse SNe are mostly around solar, but
sometimes significantly higher.
Solar values means burning of O-shell fuel, supersolar burning of Si-shell
fuel.
No evidence for electron-capture SNe from nebular spectra
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