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© Introduction to SNe and their nucleosynthesis

© Spectral synthesis modelling and the SUMO code
© Application 1: Hydrostatic burning yields : Oxygen in Type Il SNe
© Application 2: Explosive burning yields : Ni and Fe
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Supernovae - the deaths of stars

Rate: About 1 per century per galaxy. Discovery rate: 1000/year

Core-collapse of a massive star Thermonuclear explosion of a
(M z 8 My) as it runs out of fuel at white dwarf exceeding the

the end of its life (75%) Chandrasekhar limit (1.4 Mg) (25%)

H="He. | T
He == C, O, i
C == Ne, Mg ',
0==5i,5
_SI,5 == Fe
Fe,

Core —™

More envelope stripping —
Type IIP /1IL/ 1Ib / 1In / Ib / Ic

Credit: www.phys.olemiss.edu

Credit: hetdex.org
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The origin of the elements

Ab. | EL Main source Nebular lines seen in SNe

1 H Big Bang Many

2 He Big Bang He | 5016, 7065, 1.08 um, 2.06 um

3 0 CCSN [O 1] 5577, [O 1] 6300, 6364, O | 7774, O 1 9263 + ..
4 C | AGB stars+CCSN [C 1] 8727, 9824/9850, 1.44 pm, CO lines

5 Fe CCSN+TNSN [Fe 11] 7155, 1.26 um, 1.64 um, 18 pum, 26 um

6 Ne CCSN [Ne 1] 12.8 um

7 Si CCSN+TNSN [Sil] 1.10 um, 1.20 um, 1.60/1.64 um, SiO lines
8 N AGB stars [N 11] 6548, 6583

9 Mg CCSN Mg 1] 4571, 1.50 um

10 S CCSN [S1]1.082 pm, 1.13 um

11 | Ar CCSN [Ar 11] 6.99 um

12 | Ni CCSN+TNSN [Ni 1] 7378, 1.93 pum, 6.6 pm, 10.7 pm, [Nil] 3.1 um
13 | Ca CCSN [Ca 11] 7300, NIR triplet, Ca | 4200

14 | Al CCSN -

15 | Na CCSN Na | 5890, 5896, 1.14 um

Mostly theory: Few quantitative results by direct source analysis
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5 Fe CCSN+TNSN [Fe I1] 7155, 1.26 um, 1.64 um, 18 pum, 26 um
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Elements with Z > 30 hard to see due to rapidly declining abundances
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Nucleosynthesis in massive stars

@ Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al,
P in Universe

@ Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the
Universe

5,000 km /s

7
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The nebular phase: an opportunity to see what supernovae

are made of and determine nucleosynthesis yields
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How can we determine element masses in SN ejecta from

their nebular spectra?

© Inverse modelling: Measure line luminosities + assume uniform
conditions and analytic forms valid in certain limits (e.g. LTE, optically
thin)

@ Accuracy varies a lot depending on line/epoch

Identify interesting Identify physical
explosion models regimes
to test

© Forward modelling: Radiative transfer modelling of multi-zone
explosion models with self-consistent nucleosynthesis
@ Time-consuming
o If a line doesnt fit, is abundance wrong or something else in model?
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Forward modelling: the SUMO code

|Radioactive decay and ~-ray transport

NLTE statistical equilibrium

Slow-down
electrons

of relativistic < @ 21 of 28 elements from H to
Ni, 3 ion. stages, ~100 exc.

states each

Temperature

t

_ _ Radiative transfer
@ Heating = cooling

@ 300,000 atomic lines, 3,000 bound-free

continua, free-free, electron scattering

@ Code is 1D but allows for mixing by 'virtual grid’ option
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Modelling Type IIP SNe

@ Stellar evolution/explosion models from KEPLER (Woosley & Heger
2007) — all nucleosynthesis self-consistent

@ Consider macroscopic mixing effects of core from 2D /3D models

(O H-zone
@ He-zone
@ O/C zone
@® O/Ne/Mg
@ O0/Si/S
O Si/S
® SN

Hammer+2010, 3D model . ]
Ejecta setup in SUMO
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Type IIP model spectra
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Jerkstrand+2012,2014
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Type IIP model spectra
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@ First "well” matching SN models like these have only emerged in the
last ~5 years — modelling now at a point where we can start to infer
abundances
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Type IIP progenitor distribution

@ High mass stars (M > 17 Mg) missing : are they collapsing directly to
black holes or explode as other SN types?
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@ Same results for Type lIb SNe Jerkstrand, Ergon, Smartt+2015 (A&A)
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Type IIP and Ilb SNe make up 2/3 of all CCSNe but

contribute < 16% of total O production?
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Relative abundances: example of magnesium

@ Most stellar evolution

models underpredict Mg/O compared to solar by
factor ~2...why?

@ Main diagnostic line : Mg | 1.50 um.

0
New method presented 10
in Jerkstrand+2015 Region ruled out Region ruled out |
from [O 1] from [O 1] ANG364, 6300
(A&A) 6364/ A6300 ratio ‘

fine-structure .~
-

@ Show Mg/0O =~
0.5-2 times solar
in SN 2011dh
(11b)

@ Sample study
under way

Mg mass (Mg)
=
S

Solar Mg/O

10° 107 10"

10
Filling factor fo
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Application 2: Explosive yields of Ni and Fe

@ Explosive silicon burning — Fe
(made as radioactive *°Ni) and
Ni as two of the main products

@ Relative ratios can tell us about
progenitor structure and
explosion mechanism

, d 1
ok ke vl L : a
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Stable nickel

@ Main diagnostic line: [Ni 1] 7378
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Jerkstrand, Smartt, Sollerman+2015 (MNRAS)
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Ni/Fe ratios in 7 CCSNe

SN Ni/Fe (times solar) Reference

Crab 60 — 75 Macalpinel989, Macalpine2007
SN 1987A 05—-15 Rank1988, Wooden1993, AJ+2015
SN 2004et ~1 AJ+2012
SN 2006aj 2-5 Maeda+2007, Mazzali4-2007
SN 2012A ~ 0.5 AJ+2015
SN 2012aw ~ 1.5 AJ+2015
SN 2012ec 22—-46 AJ+2015

@ Average ratio > solar

@ If true in larger samle, Type la SNe must make Ni/Fe < solar —
constraints also on la explosion models

@ Sometimes much larger than solar: what does it mean?

17/ 23
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Follow-up analysis: what is Ni/Fe ratio diagnostic of?

Np

= ——" ) =0.499| Only good solutions for Ni/Fe ~ solar
N+ N,,) yg /
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Follow-up analysis: what is Ni/Fe ratio diagnostic of?

Ye = 0.497 | Large allowed region opens up for supersolar
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Jerkstrand, Timmes, Magkotsios+2015 (ApJ)
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Ne/Fe is a tracer of which progenitor layer was explosively

burnt
505 L T 1T 7 ‘ TaT T T T T 1T ‘ T T 1T T T 7T ‘ T 17T ]
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@ Important constraints on explosion mechanism, as well as consequences
for yield grids used in galactochemical evolution models
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Electron capture supernovae

@ Hypothesized explosion mechanism for ~8-9 M, stars

@ Despite small mass range, steep IMF — ~10% of all core-collapse SNe

@ May dominate production of a few heavy elements Z=30-40
(Zn,Ge,As,Se,Br,Kr,Rb,Sr,Y,Z) Wanajo2011

p b g - ¥ L .
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Electron capture supernovae

@ Spectral models suggest no known SN matches expections from
ECSN nucleosynthesis (e.g. >20 times solar Ni/Fe) — remain to be
discovered and may not exist Jerkstrand, Ertl, Janka, Mueller in prep.

@ Crab SN remnant not included in analysis
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The two radioisotopes ®>’Ni and *Ti

@ SN 1987A: only SN with 4 explosive burning isotopes (°°Ni, >’Ni, 58Ni,
44Ti) determined

Ratio Ratio (times solar) Reference
44Ti/56Ni 1.6+0.5 Jerkstrand, Fransson, Kozma 2011
Boggs 2016, Science
S8Nj /°CNi ~1 Jerkstrand+2015 (MNRAS)
57Ni /°CNi 1-2 Kurfess 1992

@ A high-entropy burning of O-shell fuel is needed

o Strong asymmetry Nagataki 1998,2000
@ Neutrino wind Wongwathanarat-+2017

@ Cas A : Similar mass of **Ti (1.5 x 10_4I\/I@), but %°Ni mass unknown.

Renaud+2006
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Nucleosynthesis yields in SNe an be analyzed in the nebular phase.
Clear signals from newly produced He, C, N, O, F, Ne, Na, Mg, Si, S,
Cl, Ar, Ca, Fe, Co, Ni have been identified

Radiative transfer models have in the last ~5 years advanced to the
point that model spectra resemble observed spectra

Type Il SNe appear to come from low-mass stars (8 < Mzams < 17Mg)
with < O >= 0.4Mg. The large O masses of 1.5 M per SN used in
standard chemical evolution models is not confirmed by observations.
Mg/O and Na/O ratios generally close to solar

As with progenitor analysis, nucleosynthesis analysis indicates that many
stars with MZAMS > 18 M may collapse directly to black holes
However, some massive stars definately explode (hypernovae)

Ni/Fe ratios in core-collapse SNe are mostly around solar, but
sometimes significantly higher.

Solar values means burning of O-shell fuel, supersolar burning of Si-shell
fuel.

No evidence for electron-capture SNe from nebular spectra
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