Supernova abundance analysis with NLTE spectral models

Anders Jerkstrand

Max-Planck-Institut für Astrophysik, Garching

Max Planck Institute for Astrophysics

Introduction	Spectral synthesis modelling	Type II SNe	Explosive nucleosynthe- sis ^{. 58} Ni	
Outline				

- Introduction to SNe and their nucleosynthesis
- Spectral synthesis modelling and the SUMO code
- Application 1: Type II SNe and the origin of oxygen
- Application 2: Explosive burning yields of stable nickel
- Superluminous and pair-instability SNe

About 1 per century per galaxy

1 Core-collapse of a **massive star** $(M \gtrsim 8 M_{\odot})$ as it runs out of fuel at the end of its life (80%)

2 Thermonuclear explosion of a white dwarf exceeding the Chandrasekhar limit $(1.4 \ M_{\odot})$ (20%)

http://proftimobrien.com/2014/02/supernova-2014j-in-m82/

Nucleosynthesis in massive stars

- Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al, P in Universe
- Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the Universe

Nucleosynthesis in massive stars

- Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al, P in Universe
- Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the Universe

Introductior	n	Spectral synthesis Type II S modelling	Ne Explosive nucleosynthe- Superluminous SNe Summary _{cie} , 58 _{Ni}				
The origin of the elements							
Ab.	EI.	Main source	Nebular lines seen in SNe				
1	Н	Big Bang	Many				
2	He	Big Bang	He I 5016, 7065, 1.08 μ m, 2.06 μ m				
3	0	CCSN	[O I] 5577, [O I] 6300, 6364 , O I 7774, O I 9263 +				
4	С	AGB stars+CCSN	[C I] 8727, 9824/9850, 1.44 μ m, CO lines				
5	Fe	CCSN+TNSN	[Fe II] 7155, 1.26 μ m, 1.64 μ m, 18 μ m, 26 μ m				
6	Ne	CCSN	[Ne II] 12.8 μ m				
7	Si	CCSN+TNSN	[Si I] 1.10 μ m, 1.20 μ m, 1.60/1.64 μ m, SiO lines				
8	Ν	AGB stars	[N II] 6548, 6583				
9	Mg	CCSN	Mg Ι] 4571, 1.50 μm				
10	S	CCSN	[S I] 1.082 μm, 1.13 μm				
11	Ar	CCSN	[Ar II] 6.99 μm				
12	Ni	CCSN+TNSN	[Ni II] 7378 , 1.93 μm, 6.6 μm, 10.7 μm, [Ni I] 3.1 μm				
13	Ca	CCSN	[Ca II] 7300, NIR triplet, Ca I 4200				
14	AI	CCSN	-				
15	Na	CCSN	Na I 5890, 5896, 1.14 $\mu { m m}$				

Few quantitative results by direct source analysis

 Inverse modelling: Measure line luminosities + assume uniform conditions and analytic forms valid in certain limits (e.g. LTE, optically thin)

Forward modelling: Radiative transfer modelling of multi-zone explosion models with self-consistent nucleosynthesis

• Code is 1D but allows for mixing by 'virtual grid' option

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe Superluminous SNe Summary modelling circ. ⁵⁸Ni

NLTE solutions and atomic data set

60 atoms/ions in NLTE, \sim 100 levels each \rightarrow 8500 level solutions in each zone and $\sim\!300{,}000$ transitions

- Energy levels : Good
- A-values : Good
- Thermal collision strengths : Medium, probably cover most important lines
- Non-thermal collision cross sections Weak, mostly Bethe approximation
- Photoionization cross sections Medium. GS ok, meta-stable some
- Recombination rates Medium
- Charge transfer rates : Weak. 150 rates, lack many important metal-metal

Current reference library maintained at

https://star.pst.qub.ac.uk/wiki/doku.php/users/ajerkstrand/start

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe- Superluminous SNe Summary modelling eie. 58 Ni

NLTE solutions and atomic data set

New thermal collision strengths from Barlem et al (submitted) in Type Ib SN model

- \bullet Stellar evolution/explosion models from KEPLER (Woosley & Heger 2007) \to all nucleosynthesis self-consistent
- Consider macroscopic mixing effects of core from 2D/3D models
- \bullet Parameterized molecular cooling of O/Si/S and O/C zones

Hammer+2010, 3D model

Ejecta setup in SUMO

Introduction Spectral synthesis **Type II SNe** Explosive nucleosynthe- Superluminous SNe Summary modelling eier 58_{NI};

Type IIP model spectra

AJ+2012,2014

Type IIP model spectra Automa

Introduction Spectral synthesis Type II SNe Explosive nucleosynthemodelling spectral AJ+-20156 (MNRAS)

Highest mass stars missing : are they collapsing directly to black holes?

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe Superluminous SNe Summary eier 58 Ni: Type IIb SNe: Stars that have lost almost all their H envelope

AJ+2015a (A&A)

 $\begin{array}{c|cccc} \mbox{Introduction} & \mbox{Spectral synthesis} & \mbox{Type II SNe} & \mbox{Explosive nucleosynthe} & \mbox{Superluminous SNe} & \mbox{Summary} \\ \mbox{sie} & \mbox{58}_{Ni} & \mbox{Superluminous SNe} & \mbox{Summary} \\ \mbox{Type IIP and IIb SNe make up 2/3 of all CCSNe but} \\ \mbox{contribute} & \leq 16\% & \mbox{of total O production} \\ \mbox{.} \end{array}$

- Most stellar evolution models underpredict Mg/O compared to solar...why?
- $\bullet\,$ Two main diagnostics : Mg I] 4571 and Mg I 1.50 $\mu m.$
- $\bullet~$ Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- $\bullet~{\rm Mg}$ I 1.50 $\mu{\rm m}$: Simpler formation, but less often observed

- Most stellar evolution models underpredict Mg/O compared to solar...why?
- $\bullet\,$ Two main diagnostics : Mg I] 4571 and Mg I 1.50 $\mu m.$
- $\bullet~$ Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- $\bullet~$ Mg I 1.50 μm : Simpler formation, but less often observed

	Spectral synthesis modelling	Type II SNe	Explosive nucleosynthe- cic ^{. 58} Ni	
Stable nic	kel			

• Main diagnostic line: [Ni II] 7378

- Use forward model to identify lines present between 7000-7600 Å(7)
- 4-component fit (atomic data constraints remove 4 DOF)
- Determine L₇₃₇₈, L₇₁₅₅, L₇₃₀₀, ΔV

AJ+2015b (MNRAS)

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe Superluminous SNe Summary etc. 58 Ni Stable nickel: inverse modelling with guidance from forward model

• Forward model: LTE, optically thin conditions. Then

- L_{7155} and $M(^{56}Ni)$ determines T
- T, L_{7378} , L_{7155} gives Ni II/ Fe II ratio

• Forward model: Ni II / Fe II \approx Ni / Fe

SN 2012ec: Ni/Fe = 3.2 times solar

• Analysis of [Ni II] 1.93 $\mu \rm m$ line gives very similar numbers \rightarrow robustness of result

	modelling		_{cic} . ⁵⁸ Ni		
	modelling		sis. 58 Ni		
Introduction	Spectral synthesis	Type II SNe	Explosive nucleosynthe-	Superluminous SNe	Summary

SN	Ni/Fe (times solar)	Reference
Crab	60 - 75	Macalpine1989, Macalpine2007
SN 1987A	0.5 - 1.5	Rank1988, Wooden1993, AJ+2015
SN 2004et	${\sim}1$	AJ+2012
SN 2006aj	2 - 5	Maeda+2007, Mazzali+2007
SN 2012A	~ 0.5	AJ+2015b
SN 2012aw	~ 1.5	AJ+2015b
SN 2012ec	2.2 - 4.6	AJ+2015b

- Average ratio \geq solar
- $\bullet\,$ If true in larger samle, Type Ia must make Ni/Fe \leq solar $\rightarrow\,$ constraints on explosions models
- Sometimes much larger: what does it mean?

AJ+2015c (ApJ)

AJ+2015c (ApJ)

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe Superluminous SNe Summary sie S8 Ni Ne/Fe is a tracer of which progenitor layer was explosively burnt derkstrand, Thrumes, Magkotsios 2015

26 / 33

- A new class of extremely bright SNe discovered about 10 years ago
- Emit $E = 10^{51}$ erg, 100 times more energy than normal SNe
- Power source is unknown.

Gal-Yam 2012

- A new class of extremely bright SNe discovered about 10 years ago
- Emit $E = 10^{51}$ erg, 100 times more energy than normal SNe
- Power source is unknown.

Radioactivity

Ex: Pair-instability SNe

Neutron star rotation energy $E \approx$

$$10^{51} \left(\frac{P}{5 \text{ ms}}\right)^{-2}$$

Ejecta kinetic energy $E \approx 10^{51}$

Smartt & Heger 2016

Explosion models (neger & Woosley 2002)							
Model	M _{ZAMS}	0	Si	S	⁵⁶ Ni	SN Type	
	(M_{\odot})	(M_{\odot})	(M_{\odot})	(M_{\odot})	(M_{\odot})		
He80	${\sim}140$	47	14	5	0.1	normal SN	
He100	~ 200	44	23	10	6	superlum.	
He130	$\sim \! 260$	33	24	11	40	superlum.	

Explosion models (Heger & Woosley 2002)

 Macroscopic mixing small (e.g. Joggerst & Whalen 2011, Chatzopoulus+2013) → can use 1D ejecta models to good accuracy.

- Gamma rays are trapped in deep-lying ⁵⁶Ni, Si, S, Ca layers
- Gas is cold (*T* < 4000 K) and neutral (*x_e* < 1)

 \rightarrow Expect lines of Fe I, Si I, S I, Ca I, Ca II,...

Introduction Spectral synthesis Type II SNe Explosive nucleosynthe Superluminous SNe Summa esc 58 Ni Pair-instability SNe: model spectra at +400d

• Forest of Fe I, Ca I, Ca II, S I, Si I lines.

 $\bullet~\mbox{Cold gas} + \mbox{strong line blocking} \rightarrow \mbox{dim below 6000 Å}$

 Introduction
 Spectral synthesis modelling
 Type II SNe
 Explosive nucleosyntheeis- 58_{Ni}
 Superluminous SNe
 Sum

 Pair-instability SNe:
 fit to candidates is poor

Jerkstrand, Smartt, & Heger+2016 (MNRAS)

• No good fit to current PISN candidates (SN2007bi, PTF12dam, LSQ14an, 2015bn) \rightarrow PISNe probably remain to be discovered

	Spectral synthesis modelling	Type II SNe	Explosive nucleosynthe- sis ^{. 58} Ni	Summary
Summary				

- Supernovae are important sources of nucleosynthesis, but so far we have few quantitative results on production in individual sources and classes
- Spectral modelling of Type II SNe with SUMO indicate low/moderate amounts of **oxygen**, and origin in low-mass stars ($M_{ZAMS} \sim 8 18$). Some results on **abundance ratios** are becoming available, e.g. Mg/O
- The [Ni II] 7378 line can be used to determine the amount of ⁵⁸Ni produced in the explosion. A sample of CCSNe show Ni/Fe ~ solar, but in a few cases much higher. Follow-up analysis with nucleosynthesis simulations show high values requires high neutron excess of the fuel, only found in the silicon shell of the progenitor. This puts constraints on explosion models.
- For superluminous SNe, spectral grid shows highest O masses (> 10 M_{\odot}) found in any SN so far. Origin must be very high mass stars.
- Pair-instability SN models fail in spectroscopic modelling tests : not confirmed to exist