AT2017gfo - the first kilonova

Anders Jerkstrand

Max-Planck-Institut für Astrophysik, Garching

Neutron star mergers and kilonova creation

AT2017gfo

LIGO multi-messenger paper

Nucleosynthesis

 NS-NS and NS-BH mergers suggested to be important source of r-process elements long ago (Lattimer & Schramm 1974, Eichler 1989)

Metzger+2010 : first predictions of KN appearance

- Radioactivity closely follows a $t^{-1.3}$ power law
- \bullet Assuming an iron-like opacity, the transient peaks at ${\sim}1d$ and ${\sim}\;10^{42}$ erg/s.

Kasen 2013 : What is opacity?

- \bullet Completely depends on composition. E.g. lanthanides \rightarrow 100 times higher than Fe.
- $\bullet\,$ If so, the transient peaks at ${\sim}10d$ and in the IR rather than optical

• As most r-process elements lack atomic data, opacity is highly uncertain

7 / 16

AT2017gfo - bolometric light curves

 \bullet **Opacity** A single-component fit requires a low opacity \rightarrow not consistent with predictions

AT2017gfo - bolometric light curves

• Mass The best estimate is 0.04 M_{\odot} , higher than most predictions. Almost certainly wind following delayed BH formation. This delay also explains low opacity.

Anders Jerkstrand

9 / 16

AT2017gfo - bolometric light curves

• A forced high opacity \rightarrow can fit later points but not early ones. Also, the power law is less consistent with $t^{-1.3}$.

AT2017gfo - spectra

LIGO multimessenger paper

Anders Jerkstrand

11 / 16

AT2017gfo - Spectral analysis: possible first detection of r-process production (Cs and Te)

Determining the wind opacity constrains Y_e , and in turn the survival time of the HM neutron star

Impact of survival time

- Higher Y_e
- Ligher r-process elements

Metzger+2014

Impact of survival time

• Observations:

- KNe have been searched for following sGRBs before but never clearly identified. It seems they typically do not contrast against the afterglows.
- Why was AT2017gfo different? Because the GRB afterglow was unusually weak. Implications for next few years?
- Modelling:
 - Biggest hurdle right now is the radiative transfer treatment.
 - $\bullet\,$ Also, low opacity ejecta finish diffusion phase at ${\sim}1d \rightarrow \mathsf{NLTE}$ effects
 - Most simulations predict $M_{dynamic} \sim M_{wind} \rightarrow \rightarrow$ need to consider 2-component models