

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

The SUMO code AJ+2011, 2012

Radioactive decay and gamma ray thermalization

• Code is 1D but allows treatment of mixing by virtual grid method.

Standard IIP supernovae: explosions of $M_{ZAMS} \sim 10-17$ M_{\odot} stars _{AJ+2015 (MNRAS)}

- Can be modelled quite well with virtual grid method in 1D.
- "RSG problem" is real: confirmed from two directions.
- However, first object with possibly M > 20 ~M_{sun} now discovered (Anderson+2018). Low metallicity.
- Same trend for Type IIb SNe (AJ+2015 (A&A))

4

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

The monsters

Superluminous Type Ic supernovae

Nebular spectra of SLSN Ic: with galaxy subtraction prototype SN 2007bi (Gal-Yam+2009) is very similar to SN 1998bw AJ+2017

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

- Independent support from large inferred Mg masses (1.5-15 M_{sun})
- Recombination lines suggest material is <u>clumped or compressed</u> in shells (f \leq 0.01).

Standard ⁵⁶Ni-powered models, explosions of 6-10 M_{sun} CO cores fit SN 1998bw quite well.

AJ+2018, in prep. See also Mazzali+2001,Maeda+2006, Dessart+2018.

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

Upper limit set by PPISN limit. Association with PISN (>130 M_{sun}) not likely (AJ+2016).

The mice

Subluminous Type II supernovae

20 years of speculation: low-mass progenitors or high-mass stars with weak explosions and fallback?

e.g. Turatto+1998, Chugai & Utrobin 2000, Zampieri 2003, Pastorello 2004,2006,2009, Nomoto+2013, Spiro+2013

© © Jelger Herder/ Buiten-beeld/Minden Pictures/Co

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

Spectral formation in a M_{ZAMS} =9 M_{\odot} model AJ+2018

- All hydrostatic nucleosynthesis in <u>thin shell</u> in 1D models.
- Despite low mass (0.2 M $_{\odot}$), this thin shell has τ_{γ} ~1 and absorbs significant amount of gamma-ray energy.

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

Comparison to object 1 of 3: **SN 1997D** (the prototype for the subluminous IIP class)

- Mg and O lines in good agreement
- He I 7065 is seen \rightarrow He shell is present
- 1997D convincingly linked to low-mass progenitor (no tuning)

Testing explosion models through line profiles AJ+2018

3-

2

 4×10^{-17}

[Fe II] 7155, 7172

Anders Jerkstrand

7155

1997D

Model

Comparison to SN 2008bk

- Dust forms around 400d
- As convincing fit as for SN 1997D
- Mg, O, Na, <u>C</u> all strong \rightarrow also Fe core progenitor

SN 2005cs: poor fits to 9 M_{\odot} model

No observed object shows <u>explosive</u> nucleosynthesis (⁵⁸Ni) expected from electron-capture SNe AJ+2018

However: is SN 2016bkv the first discovered electron-capture SN?

The landscape from nucleosynthesis analysis

⁵⁸Ni : a unique tracer of explosion

SN	Ni/Fe (times solar)	Reference
Crab	60 - 75	Macalpine 1989, Macalpine 2007
SN 1987A	0.5 - 1.5	Rank1988, Wooden1993, AJ+2015
SN 2004et	${\sim}1$	AJ+2012
SN 2006aj	2 - 5	Maeda+2007, Mazzali+2007
SN 2012A	\sim 0.5	AJ+2015
SN 2012aw	~ 1.5	AJ+2015
SN 2012ec	2.2 - 4.6	AJ+2015

Anders Jerkstrand

Modelling nebular-phase spectra of SNe

Summary

- <u>High-mass end</u>: Long-duration superluminous Ic SNe undoubtedly the explosions of very massive stars, M_{ZAMS} >~ 40 M_{sun}.
 - Which massive stars collapse to the LIGO BHs, which make SNe?
 - Why do SLSN look similar to 1998bw?
- <u>Low-mass end:</u> 8-12 M_{sun} range now opened up for modelling (30-50% of all CCSNe). First models show good agreement with "subluminous IIP" class.
 - Explosions of iron cores in the 9-12 M_{sun} range appears robust.
 - Electron capture supernovae not yet clearly discovered (but SN 2016bvn is a strong candidate)

Nucleosynthesis signatures

- Mg I] 4571
- [O I] 6300, 6364 & 7774. Note 8446 weakens with more O.
- He I 7065
- [C I] 8727 & 9850
- Fe I lines

Anders Jerkstrand

23

AJ+2018