Diagnosing nucleosynthesis production in supernovae

Anders Jerkstrand, MPI for Astrophysics

Max Planck Institute for Astrophysics

The nebular phase : our window on stellar nucleosynthesis

- 100d 1000d post explosion.
- Emission lines from all nuclear burning regions visible.
- Data collection rate: ~5-10 per year (<1% of all discovered SNe).
- Current amount of objects: ~50-100

The SUMO code : a state-of-the-art forward modelling tool

Jerkstrand+2011, 2012

Radioactive decay and gamma-ray thermalization

Degradation of Compton electrons

- Spencer-Fano Equation
- Ionization, excitation, heating

Heating = cooling

NLTE statistical equilibrium

- 22 elements, first three ionization stages
- 10,000 levels

Temperature

Radiative transfer

- Monte Carlo-based, Sobolev approximation, 300,000 lines
- Code is 1D but allows approximate treatment of mixing by virtual grid method.

Elements currently diagnosed from supernova emission line spectra

Good diagnostic situation Moderate diagnostic situation Poor diagnostic potential

> Jerkstrand 2017, Handbook of supernovae

Available late-time spectral models for Type II SNe

Oxygen : Standard Type II supernovae from explosions of M_{ZAMS} =10-17 M_{\odot} stars. <M(O)> ~ 0.5 M_{\odot} .

AJ+2012,2014,2015 (MNRAS)

Oxygen: Same picture for Type Ib/IIb SNe: these are mainly *mass donors* from low-mass progenitor range. AJ+2015 (A&A) Ergon+2015 (A&A)

"Weak" Type II SNe: from 8-10 M $_{\odot}\,$ stars

Jerkstrand, Ertl, Janka+2018

Data: Maguire+2012

- Mg, O, Na, C all strong → Fe core progenitors, not ONeMg core progenitors (more later)
- Competing hypothesis that these would be fall-back SNe from massive stars has little current support.

Oxygen : Very large production only inferred in a rare class of superluminous supernovae Jerkstrand+2017, ApJ

- Independent support from large inferred Mg masses (1-10 M_{sun})
- Implication : Some high-mass stars ($M_{ZAMS} > 40 M_{sun}$) do explode somehow.
- Superluminous supernovae are probably too rare to impact GCE.

The progenitor landscape (local Universe, $Z \sim Z_{sun}$) from hydrostatic nucleosynthesis analysis

Stable nickel: a unique tracer of the innermost layers and the explosion

AJ+2015 (MNRAS)

SN	Ni/Fe (times solar)	Reference
Crab	60 - 75	Macalpine 1989, Macalpine 2007
SN 1987A	0.5 - 1.5	Rank1988, Wooden1993, AJ+2015
SN 2004et	${\sim}1$	AJ+2012
SN 2006aj	2 - 5	Maeda+2007, Mazzali+2007
SN 2012A	\sim 0.5	AJ+2015
SN 2012aw	~ 1.5	AJ+2015
SN 2012ec	2.2 - 4.6	AJ+2015

- Average ratio ≥ solar. If true in larger sample, Type Ia SNe must make Ni/Fe \leq solar \rightarrow constraints on both CC and TN explosions models.
- Sometimes significantly larger: what does it mean?

Stable nickel: a unique tracer of the innermost layers and the explosion AJ,Magkotsios,Timmes+2015 (ApJ)

• Solar production requires $Y_e \sim 0.499$, whereas supersolar requires $Y_e \sim 0.497$.

The Ni/Fe ratio may tell us which progenitor layer was explosively burned AJ,Magkotsios,Timmes+2015 (ApJ)

Can help on constraining mass cuts used in GCE models and late shell burning physics.

For example, KEPLER grid gives [Ni/Fe]=+0.1-0.3 dex depending on piston location (Woosley & Heger 2007).

An exception: Electron capture supernovae have predicted Ni/Fe >> solar. But no SN yet observed shows this.

Jerkstrand, Ertl, Janka+2018

Summary

- Stellar element production and supernova explosion physics can be directly diagnosed by **nebular-phase spectroscopy** of supernovae.
- H, He, C, N, O, Ne, Na, Mg, Si, S, Cl, Ar, K, Ca, Fe, Co, Ni have so far been diagnosed to various extents.
- The **SUMO code** provides state-of-the-art synthetic spectra of explosion models.
- <u>Oxygen</u>: Good diagnostic lines, and strongest indicator of MS mass and hydrostatic burning yields.
 - Type II SNe produce 0.1-1 $\rm M_{sun}$ O and appear to arise from 8-17 $\rm M_{sun}$ stars.
- <u>Nickel</u>:
 - An important diagnostic of explosive burning.
 - A sample of CCSNe show mostly solar Ni/Fe, but sometimes several times larger. This may be explained by which progenitor layer provided the main explosivesilicon burning fuel: *oxygen* (gives solar) or *silicon* (gives supersolar).