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Supernovae	– the	deaths	of	stars

1 Core-collapse	of	a	massive	star	
as	it	runs	out	of	fuel	at	the	end	of	
its	life

2 Thermonuclear	explosion	of	a	
white	dwarf	exceeding	the	
Chandrasekhar	limit	(1.4	M ⊙)

IaType										IIP						IIL						IIb Ib Ic

Rate

More	envelope	stripping	à
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Supernovae	– open	questions

Stellar	origins
• Which	stars	explode	as	which	Type	of	SNe?
• How	do	H-poor	SNe lose	their	H	envelopes?	How	do	He-poor	lose	their	He?

Explosion	physics	and	compact	object	formation
• How	does	the	explosion	happen?	Is	the	neutrino-mechanism	the	right	one?		MRI	

effects?
• How	are	neutron	stars	and	black	holes	formed?	Which	masses,	spins,	and	kicks?

Nucleosynthesis
• Which	elements	are	made	in	which	supernovae?
• Which	elements	are	mainly	made	by	supernovae,	and	which	by	other	sources?

Application	as	distance	indicators
• How	do	Type	Ia supernovae	work,	and	how	accurately	can	we	measure	cosmological	

distances	with	them?

Exotic	physics
• Can	the	equation	of	state	at	high	densities	be	constrained	by	SNe?
• Do	some	supernovae	form	magnetars,	quark	stars,	gamma-ray	bursts?
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More	massive	stars	produce	much	more	nucleosynthesis

Variation	with
stellar	evolution
physics



Two	main	supernova	phases

Time
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Short	escape	time	for	radiation	
à a	steady-state	tail

Long		escape	time	for	radiation	
à a	diffusion	light	curve

Simple	microphysics	(~LTE) Complex	microphysics	(NLTE)

Many	lines	
excited	and	signi-

ficant optical	depth	–>
Scattering	spectra

Emission-line	spectra

Transition	epochs:	H-rich	SNe:	~150d,	H-poor	SNe:	~30d,	Kilonovae:	~2d

Spectra	probe	
surface	layers	

Spectra	probe
all	ejecta

Photospheric phase Nebular	phase

Few	lines	excited	and	
reduced	optical	depth	-->
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Elements	currently	diagnosed	from	supernova	
emission-line	spectra

Hydrostatic	production
(up	to	Mg)

Explosive	production
(Si	and	beyond)

Rapidly	plummeting	abundances
à Elements	over	Zn	too	rare	to	

be	seen

See	Jerkstrand 2017,chapter	in
Handbook	of	supernovae,
for	a	review	of	key	results
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The	SUMO	code	:	a	state-of-the-art	forward	modelling	tool		
Jerkstrand+2011,	2012

Radioactive	decay	and	gamma-ray	thermalization

Degradation	of	Compton	electrons
• Spencer-Fano Equation
• Ionization,	excitation,	heating

Temperature
• Heating	=	cooling

Radiative	transfer
• Monte	Carlo-based,	Sobolev approximation,	300,000	lines

NLTE	statistical	equilibrium
• 22	elements,	first	three	ionization	stages
• 10,000	levels

• Code	is	1D	but	allows	approximate	treatment	of	mixing	by	virtual	grid	method.

Example	of
best-fitting
explosion	
models	(this	one
from	KEPLER,
Woosley &	Heger
2007)	to	a	Type	IIP
supernova.
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A	crucial	challenge:	considering	3D	effects

3D	simulation	(Hammer+2010)

Set-up	in	SUMO

• In	Monte-Carlo	codes,	one	option	it	to	treat	clumps	in	a	
statistical	manner (Jerkstrand et	al.	2011)	

• Use	3D	simulations	as	guide	to	set	up	the	probability	functions
using	radial	averages	of	distributions.

C
O
Ni



Treatment	of	molecules	and	dust
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Jerkstrand+2012

Dust:
• Apply	a	gray,	time-dependent	
absorption	coefficient.

• Value	can	be	inferred	from	line	
shifts and	IR	observations.

Molecules:
• Assume	O/Si	and	O/C	zones	to	
be	mainly	cooled	by	SiO and	CO	
(a	result	from	chemistry	codes).

• Can	be	tested	in	few	cases	(e.g.	
SN	1987A,	SN	2004et).

SN	2004et
(AJ+2012)
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Oxygen :	Standard	Type	II	supernovae	from	explosions	of	
MZAMS =10-17	M⊙ stars.	M(O)	=	0.1	– 1	M⊙.	
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AJ+2015	(MNRAS)	

• Can	be	modelled	quite	
well	with	approximate	
mixing	methods	in	1D.

• “Red	Supergiant	
problem”	(Smartt	2009)	
appears	confirmed.

• However,	first	object	with	
possibly	M	>	20	~M ⊙ now	
discovered	
(Anderson+2018).	Low	
metallicity	(0.05	Z ⊙).

MZAMS
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Oxygen:	Same	picture	for	hydrogen-poor	(Type	Ib/IIb)	SNe:	
these	appear	to	be	mainly	mass	donors	to	a	companion	
from	low-mass	progenitor	range	(10-20	M ⊙).
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Oxygen :	Very	large	production	only	in	a	rare	class	of	
superluminous supernovae
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• Implication:	Some high-mass	stars	do	explode	somehow	
(but	most	probably	collapse	directly	to	black	holes)

AJ+2017	(ApJ)	

• Independent	support	from	large	inferred	Mg	masses	(1	- 10	M ⊙)	
from	standard	recombination	lines	theory.

f=filling	factor

Too	cold Too	ionized



Low-velocity	Type	II	SNe:	match	models	for	8-10	M ⊙

progenitors

• Mg,	O,	Na,	C	lines	all	strong	à Fe	core	progenitors,	not	
ONeMg cores	(more	later)

Data:	Maguire+2012

AJ+2018
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The	progenitor	landscape	(local	Universe,	Z	~	Z ⊙)	from	inferred	
hydrostatic	nucleosynthesis		yields	
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Nickel:	a	unique	tracer	of	the	innermost	layers	and	the	
explosion

• Forward	modelling	shows	Fe	and	Ni	lines	formed	in	LTE	and	
optically	thin	à can	use	analytic	method.
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Nickel:	a	unique	tracer	of	the	innermost	layers	and	the	
explosion

• Average	ratio	≥	solar.	If	true	in	larger	sample,	Type	Ia SNe must	
make	Ni/Fe	≤	solar	→	constraints	on	both	core-collapse	and	
thermonuclear	explosions	models.

• But	sometimes	significantly	larger	than	solar:	what	does	it	mean?

AJ+2015	(MNRAS)
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Ye =	0.499 Ye =	0.497

Nickel:	a	unique	tracer	of	the	innermost	layers	and	the	
explosion

Ni/Fe	in	solar Ni/Fe	in	solar

• Solar	production	requires	Ye ~	0.499,	whereas	supersolar
requires	Ye ~	0.497.

AJ,Magkotsios,Timmes+2015	(ApJ)

TORCH	simulations,	vary	electron	fraction	Ye,	tempesature,	density
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AJ,Magkotsios,Timmes+2015	(ApJ)

Nickel:	The	Ni/Fe	ratio	tells	us	which	progenitor	layer	was	
explosively	burned

• Can	help	on	constraining	mass	cuts	used	in	galactic	chemical	
evolution	models	and	understand	late	shell	burning	physics.	
For	example,	KEPLER	grid	gives	[Ni/Fe]=+0.1-0.3	dex
depending	on	piston	location	(Woosley &	Heger 2007).
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From supernovae to kilonovae
SNe KNe

Homology ~1 day ~10 sec
Mass 1-10 Msun ~0.01 Msun

Velocity 0.01c (0.1-0.3)c

Powering 56Ni r-process

Composition Z=1-30 Z=40-90

t_peak 10 days 1 day

rho_peak 10-10 g/cm3 10-14 g/cm3

Much lower densities than SNe —> NLTE more important

From	supernovae	to	kilonovae
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Kilonovae:	the	challenge	to	understand	the	spectra

Tanaka+2017
Courtesy	E.	Pian

AT	2017gfo:	observed	spectra
Models,	three	different	ejecta.



Summary
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THANK	YOU	FOR	LISTENING

• Stellar	element	production	and	supernova	explosion	physics	can	be	directly	
diagnosed	by	nebular-phase	spectroscopy of	supernovae	to	determine	their	
yields	and	morpjology.

• H,	He,	C,	N,	O,	Ne,	Na,	Mg,	Si,	S,	Cl,	Ar,	K,	Ca,	Fe,	Co,	Ni have	so	far	been	
diagnosed	to	various	extents.

• The	SUMO	code	provides	state-of-the-art	synthetic	spectra	of	explosion	models.
• Oxygen (An	important	diagnostic	of	hydrostatic	burning	yields):

• Type	II	SNe produce	0.1-1	M ⊙O	and	appear	to	arise	from	8-17	M ⊙ stars.
• Nickel:	(An	important	diagnostic	of	explosive	burning):	

• A	sample	of	CCSNe show	mostly	solar	Ni/Fe,	but	sometimes	several	times	
larger.	

• This	may	be	explained	by	which	progenitor	layer	provided	the	main	
explosive	silicon	burning	fuel:	oxygen (gives	solar	Ni/Fe)	or	silicon (gives	
supersolar Ni/Fe).

• Kilonovae:	The	community	is	currently	transitioning	tools	to	model	ejecta	from	
neutron	star	mergers.	Can	we	identify	these	as	the	main	sources	of	r-process	
elements	in	the	Universe?



Reserve	slides
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Testing	explosion	models	through	line	profiles

1997D1997D
ModelModel

3D	tests	now	in	preparation.

AJ+2018
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• 100d	– 1000d	post	explosion
• Emission	lines	from	all	nuclear	
burning	regions

• Data	collection	rate:	~5-10	per	
year	(<1%	of	all	discovered	SNe).

• Current	amount	of	objects:	~50-
100

Exponential	tails	discovered	by	
Baade+1945.

Type	IIP	SN	(2012aw)

O

Na

H

Fe

Ca Ca

C

Mg K

The	nebular	phase	:	our	window	on	stellar	nucleosynthesis

200100 300 4000
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Jerkstrand,	Ertl,	Janka et	al.	2018:	First	spectral	simulation	of	neutrino-exploded	ejecta

Available	late-time	spectral	models	for	Type	II	SNe

Lisakov+2017

~30-50%	of
all	CCSNe
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Nebular data sample of SLSN Ic now 3

• SN 2015bn virtual clone of SN 2007bi (see also 
Nicholl+2016).

• LSQ14an: additional [O II] and [O III] lines 
(see also Lunnan+2016 for PS1-14bj case)

Jerkstrand+2017
z=0.11-0.16

200-250d:
iPTF13ehe	(Yan+2015)	z	=	0.34
PS1-14bj	(Lunnan+2016)	z=	0.52
iPTF15esb	(Yan+2017)			z	=	0.22
iPTF16bad	(Yan+2017)			z=	0.25
Gaia16adp	(Kangas+2017)	z=0.10



30

Can	start	to	make	detailed	model	comparisons,	e.g.	find
best-fitting	MZAMS
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Type	II	supernovae.	Breakthrough	a	few	year	ago:	Model	
spectra	start	to	agree	quite	well	with	observed	spectra

AJ+2014.	See	also	Dessart+2013.
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However:	is	SN	2016bkv	the	first	discovered	electron-capture	
SN?

SN	2016bkv

Fe-CCSN	model

“ECSN”	model

Hosseinzade+(incl.	AJ)	2018	

Ca
[C	I]	8727,	only	strong
in	Fe	core	models

O	I	8447
pumped	by
Bowen
fluorescence
only	in	ECSN
models

nickel	lines?
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An	exception:	Electron	capture	supernovae	have	
Ni/Fe	>>	solar.	But	no	SN	yet	observed	shows	

this..well Crab? AJ,	Ertl,	Janka+2018
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