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Supernovae - the death of stars

1 Core-collapse of a massive star
(M & 8 M⊙) as it runs out of fuel at
the end of its life (80%)

More envelope stripping −→

Type IIP / IIL/ IIb / Ib / Ic

Credit: www.phys.olemiss.edu

2 Thermonuclear explosion of a
white dwarf exceeding the
Chandrasekhar limit (1.4 M⊙) (20%)

Type Ia

Credit: hetdex.org 2 / 14



3/14

Introduction Supernova spectral modelling Hydrostatic nucleosynthesis Explosive nucleosynthesis NLTE solutions and current
atomic data situation

Outlook and summary

The origin of the elements
CCSN : Core-collapse supernova. TNSN: Thermonuclear supernova

Ab. El. Main source Nebular lines seen in SNe
1 H Big Bang Many

2 He Big Bang He I 5016, 7065, 1.08 µm, 2.06 µm

3 O CCSN [O I] 5577, [O I] 6300, 6364, O I 7774, O I 9263 + ..

4 C AGB stars+CCSN [C I] 8727, 9824/9850, 1.44 µm, CO lines

5 Fe CCSN+TNSN [Fe II] 7155, 1.26 µm, 1.64 µm, 18 µm, 26 µm

6 Ne CCSN [Ne II] 12.8 µm

7 Si CCSN+TNSN [Si I] 1.10 µm, 1.20 µm, 1.60/1.64 µm, SiO lines

8 N AGB stars [N II] 6548, 6583

9 Mg CCSN Mg I] 4571, 1.50 µm

10 S CCSN [S I] 1.082 µm, 1.13 µm

11 Ar CCSN [Ar II] 6.99 µm

12 Ni CCSN+TNSN [Ni II] 7378, 1.93 µm, 6.6 µm, 10.7 µm, [Ni I] 3.1 µm

13 Ca CCSN [Ca II] 7300, NIR triplet, Ca I 4200

14 Al CCSN -
15 Na CCSN Na I 5890, 5896, 1.14 µm

Still few quantitative direct source results
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Spectral synthesis modelling: the SUMO code Jerkstrand 2011,

PhD thesis, Jerkstrand, Fransson & Kozma 2011, Jerkstrand+2012, later updates..

Radioactive decay and γ-ray transport

Distribution of Compton
electrons

Spencer-Fano equation

Temperature

Heating = cooling

NLTE statistical equilibrium

22 of 28 elements from H to
Ni, 3 ionization stages, ∼100
excitation states each

Radiative transfer

Monte Carlo method

Sobolev approximation

300,000 atomic lines, 3,000 bound-free
continua, free-free, electron scattering

Code is 1D but allows for mixing by ’virtual grid’ option
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Diagnosing hydrostatic element production: example of
oxygen
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Only last 5-10 years have self-consistent spectral models in reasonable agreement
with observed spectra emerged.

Can now test stellar evolution and explosion models in detail, and determine
nucleosynthesis yields to within factor ∼2. 5 / 14
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Diagnosing hydrostatic element production: example of
oxygen
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Only last 5-10 years have self-consistent spectral models in reasonable agreement
with observed spectra emerged.

Can now test stellar evolution and explosion models in detail, and determine
nucleosynthesis yields to within factor ∼2. 5 / 14
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Oxygen yields in RSG explosions Jerkstrand+2015 ,MNRAS

18-30 M⊙ RSGs do not seem to explode. Are they collapsing directly to
black holes? See also Smartt 2009 for progenitor detection perspective.
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Same picture for H-stripped SNe (Jerkstrand,Ergon,Smartt+2015, A&A).

Problem for standard GCE models where these stars make most O.
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The brightest Ic SNe : Highest O masses inferred so far (&
5 M⊙). This means some massive stars do explode AJ+2017
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High ionization lines (O II, O III) hold
clue to still unknown powering
mechanism.

Ejecta are significantly clumped.
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Diagnosing iron-group production: example of nickel

Main diagnostic line: [Ni II] 7378
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[Fe II] 7172 Å
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Use forward model to
identify which lines
present in spectral region
(result: 7) and in which
regime they form

Make 4-component fit
(atomic data constraints
remove 4 DOF) for
LNi II 7378, LFe II 7155,
LCa II 7300, ∆V

Obtain Ni/Fe ratio
analytically

Jerkstrand+2015,MNRAS
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Ni/Fe ratios in 7 CCSNe Jerkstrand+2015, MNRAS

SN Ni/Fe (times solar) Reference

SN 1987A 0.5− 1.5 Rank+1988, Wooden+1993, Jerkstrand+2015

SN 2004et ∼1 Jerkstrand+2012

SN 2012A ∼ 0.5 Jerkstrand+2015

SN 2012aw ∼ 1.5 Jerkstrand+2015

SN 2006aj 2− 5 Maeda+2007, Mazzali+2007

SN 2012ec 2.2− 4.6 Jerkstrand+2015

Crab 60− 75 Macalpine+1989, Macalpine+2007

Average ratio ≥ solar.

If true in larger sample, Type Ia must make Ni/Fe ≤ solar →
constraints on both CCSN and TNSN explosions models.
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Ne/Fe ratio is a diagnostic of which progenitor layer was
explosively burnt Jerkstrand, Timmes, Magkotsios+2015, ApJ
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NLTE solutions and current atomic data situation

SUMO treats 60 atoms/ions in NLTE, ∼ 150 levels each → ∼10,000 level
solutions in each zone and ∼300,000 transitions with specific atomic data.

Energy levels : Good

A-values : Good

Thermal collision strengths : Medium, probably cover most important
(low-lying) transitions

Non-thermal collision cross sections : Poor, mostly Bethe
approximation

Photoionization cross sections : Medium. GS ok, meta-stable some

Recombination rates : Medium

Charge transfer rates : Poor. 150 rates, lack for many important
metal-metal reactions

Current reference library maintained at
https://star.pst.qub.ac.uk/wiki/doku.php/users/ajerkstrand/start
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NLTE solutions and current atomic data set

Example how models still change with new atomic data for common atoms:
New thermal collision strengths from Barklem+2017 (- - -)in Type Ib SN
model:
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Outlook and ongoing work

Chemistry: Molecule and dust formation known to be important in
SNe.
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r-process elements: For kilonova modelling and advanced supernova
modelling. See talk by Jon Grumer later today for first GRASP2K +
SUMO results.

Full 3D modelling. Desired as 3D explosion simulations reveal strong
asymmetries.
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Summary

Supernovae are important sources of nucleosynthesis, but so far we have
few quantitative results on production in individual sources and classes.

Spectral modeling today done with NLTE over ∼ 104 levels, e.g. with
the SUMO code.

Modelling of Type II SNe (from RSGs) indicate low/moderate amounts
of oxygen ejected, and origin in low-mass stars (MZAMS ∼ 8− 18 M⊙).

For superluminous Ic SNe, models indicate the highest O masses (> 5
M⊙) found in any SN so far. Must originate from very massive stars.

A sample of CCSNe show Ni/Fe ∼ solar, but in a few cases higher.
Follow-up analysis show high values requires high neutron excess of the
fuel, only found in the silicon shell of the progenitor.

Accurate atomic and molecular data crucial to being able to model SNe
to the accuracy needed.

THANK YOU FOR LISTENING
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