Introduction OO Supernova spectral modell O Hydrostatic nucleosynthesis 000 xplosive nucleosynthesi

NLTE solutions and current appric data situation

Outlook and summary OO

Supernova abundance analysis with NLTE spectral models

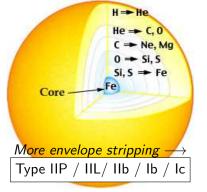
Anders Jerkstrand

Max-Planck-Institut für Astrophysik, Garching

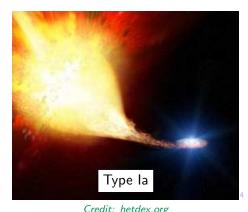
Max Planck Institute for Astrophysics

Supernovae - the death of stars

1 Core-collapse of a massive star $(M \gtrsim 8 M_{\odot})$ as it runs out of fuel at the end of its life (80%)


Introduction

00

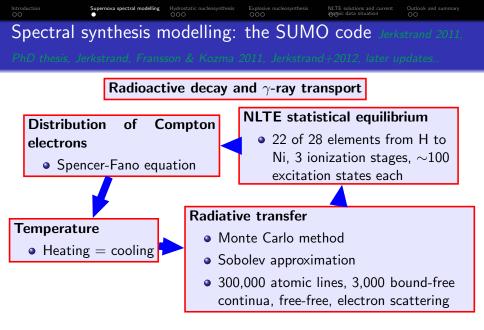

2 Thermonuclear explosion of a **white dwarf** exceeding the Chandrasekhar limit $(1.4 \ M_{\odot}) (20\%)$

NLTE solutions and current

Explosive nucleosynthesis

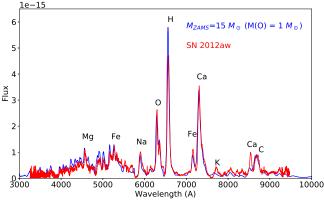
Credit: www.phys.olemiss.edu

Introduction


Supernova spectral mo O Hydrostatic nucleosynth

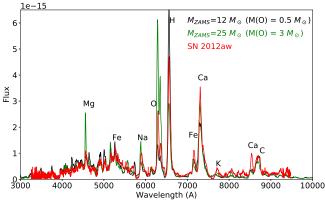
Explosive nucleosynthesi 000 NLTE solutions and cu monic data situation Outlook and summar OO

The origin of the elements


CCSN : Core-collapse supernova. TNSN: Thermonuclear supernova

Ab.	EI.	Main source	Nebular lines seen in SNe	
1	Н	Big Bang	Many	
2	He	Big Bang	He I 5016, 7065, 1.08 μ m, 2.06 μ m	
3	0	CCSN	[O I] 5577, [O I] 6300, 6364 , O I 7774, O I 9263 +	
4	С	AGB stars+CCSN	[C I] 8727, 9824/9850, 1.44 μm, CO lines	
5	Fe	CCSN+TNSN	[Fe II] 7155, 1.26 μ m, 1.64 μ m, 18 μ m, 26 μ m	
6	Ne	CCSN	[Ne II] 12.8 μm	
7	Si	CCSN+TNSN	[Si I] 1.10 μ m, 1.20 μ m, 1.60/1.64 μ m, SiO lines	
8	Ν	AGB stars	[N II] 6548, 6583	
9	Mg	CCSN	Mg I] 4571, 1.50 μ m	
10	S	CCSN	[S I] 1.082 μm, 1.13 μm	
11	Ar	CCSN	[Ar II] 6.99 μm	
12	Ni	CCSN+TNSN	[Ni II] 7378, 1.93 μm, 6.6 μm, 10.7 μm, [Ni I] 3.1 μm	
13	Ca	CCSN	[Ca II] 7300, NIR triplet, Ca I 4200	
14	AI	CCSN	-	
15	Na	CCSN	Na I 5890, 5896, 1.14 $\mu { m m}$	
Still few quantitative direct source results				

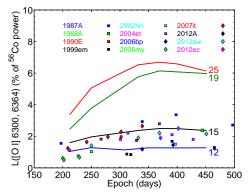
• Code is 1D but allows for mixing by 'virtual grid' option


Diagnosing hydrostatic element production: example of oxygen

Jerkstrand+2014

- Only last 5-10 years have self-consistent spectral models in reasonable agreement with observed spectra emerged.
- Can now test stellar evolution and explosion models in detail, and determine nucleosynthesis yields to within factor ~2.

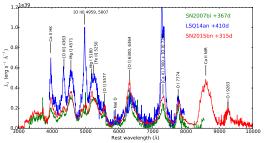
Diagnosing hydrostatic element production: example of oxygen



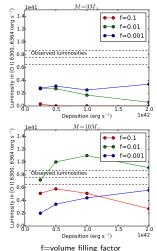
Jerkstrand+2014

- Only last 5-10 years have self-consistent spectral models in reasonable agreement with observed spectra emerged.
- Can now test stellar evolution and explosion models in detail, and determine nucleosynthesis yields to within factor ~2.

• 18-30 M_{\odot} RSGs do not seem to explode. Are they collapsing directly to black holes? See also Smartt 2009 for progenitor detection perspective.

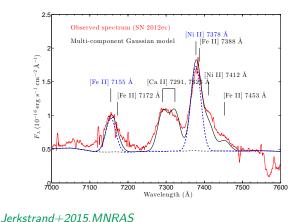


• Same picture for H-stripped SNe (Jerkstrand, Ergon, Smartt+2015, A&A).


• Problem for standard GCE models where these stars make most O.

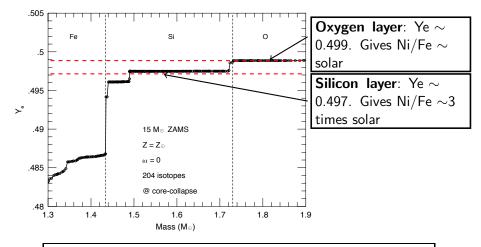
The brightest Ic SNe : Highest O masses inferred so far ($\gtrsim 5 M_{\odot}$). This means *some* massive stars do explode Arradia

Hydrostatic nucleosynthesis


- High ionization lines (O II, O III) hold clue to still unknown powering mechanism.
- Ejecta are significantly clumped.

NLTE solutions and current

• Main diagnostic line: [Ni II] 7378


- Use forward model to identify which lines present in spectral region (result: 7) and in which regime they form
- Make 4-component fit (atomic data constraints remove 4 DOF) for $L_{\rm Ni~II~7378}$, $L_{\rm Fe~II~7155}$, $L_{\rm Ca~II~7300}$, ΔV
- Obtain Ni/Fe ratio analytically

Introduction Supernova spectral modelling Hydrostatic nucleosynthesis Cool Supernova spectral modelling Supernova spectral modellin

SN	Ni/Fe (times solar)	Reference
SN 1987A	0.5 - 1.5	Rank+1988, Wooden+1993, Jerkstrand+2015
SN 2004et	${\sim}1$	Jerkstrand+2012
SN 2012A	~ 0.5	Jerkstrand+2015
SN 2012aw	~ 1.5	Jerkstrand+2015
SN 2006aj SN 2012ec	2-5 2.2-4.6	Maeda+2007, Mazzali+2007 Jerkstrand+2015
Crab	60 — 75	Macalpine+1989, Macalpine+2007

- Average ratio \geq solar.
- If true in larger sample, Type Ia must make Ni/Fe \leq solar \rightarrow constraints on both CCSN and TNSN explosions models.

Ne/Fe ratio is a diagnostic of which progenitor layer was explosively burnt Jankeurand, Tanmes, Magkotalos(2010, ApJ

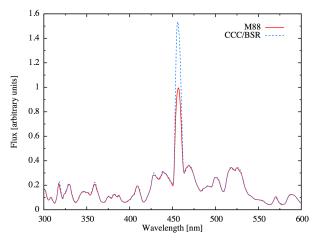
Important constraints on explosion mechanism and "mass cut"

NLTE solutions and current atomic data situation

SUMO treats 60 atoms/ions in NLTE, \sim 150 levels each \rightarrow \sim 10,000 level solutions in each zone and \sim 300,000 transitions with specific atomic data.

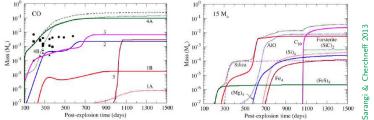
Explosive nucleosynth

• Energy levels : Good


Supernova spectral modelling

- A-values : Good
- Thermal collision strengths : Medium, probably cover most important (low-lying) transitions
- Non-thermal collision cross sections : Poor, mostly Bethe approximation
- Photoionization cross sections : Medium. GS ok, meta-stable some
- Recombination rates : Medium
- Charge transfer rates : Poor. 150 rates, lack for many important metal-metal reactions

Current reference library maintained at https://star.pst.qub.ac.uk/wiki/doku.php/users/ajerkstrand/start


NLTE solutions and current atomic data set

Example how models still change with new atomic data for common atoms: New thermal collision strengths from Barklem+2017 (- - -)in Type Ib SN model:

Introduction Supernova spectral modelling Hydrostatic nucleosynthesis Explosive nucleosynthesis NLTE solutions and current Outlook and summary Outlook and ongoing work

• **Chemistry**: Molecule and dust formation known to be important in SNe.

- r-process elements: For kilonova modelling and advanced supernova modelling. See talk by Jon Grumer later today for first GRASP2K + SUMO results.
- Full 3D modelling. Desired as 3D explosion simulations reveal strong asymmetries.

Introduction Supernova spectral modelling Hydrostatic nucleosynthesis Cool of the structure of the structure

- Supernovae are important sources of nucleosynthesis, but so far we have few quantitative results on production in individual sources and classes.
- $\bullet\,$ Spectral modeling today done with NLTE over $\sim 10^4$ levels, e.g. with the SUMO code.
- Modelling of Type II SNe (from RSGs) indicate low/moderate amounts of oxygen ejected, and origin in low-mass stars ($M_{ZAMS} \sim 8 18 M_{\odot}$).
- For superluminous Ic SNe, models indicate the highest O masses (> 5 M_{\odot}) found in any SN so far. Must originate from very massive stars.
- A sample of CCSNe show Ni/Fe \sim solar, but in a few cases higher. Follow-up analysis show high values requires high neutron excess of the fuel, only found in the silicon shell of the progenitor.
- Accurate atomic and molecular data crucial to being able to model SNe to the accuracy needed.