

NGC 1260 (S0/Sa), 73 MPc

Discovery of a massive iron reservoir in superluminous supernova SN 2006gy A. Jerkstrand, K. Maeda, K. Kawabata Science 2020, vol 367, issue 6476





## SN 2006gy : one of the brightest SNe ever seen

- Rise time 70d, peak magnitude -22.
- Radiated energy ~10<sup>51</sup> erg (factor 2 uncertain due to extinction uncertainties).
- Type IIn, narrow (100 km/s) P-Cygni Balmer lines.
- Broad asymmetric Balmer lines. H $\alpha$  red wing to ~4000 km/s, unusual damped blue side.
- No significant radio or X-ray emission.
- General consensus: a large CSM shell (≿10 M<sub>☉</sub>) was ejected ≾100y before the supernova.



### The supernova landscape



## LETTERS

# Pulsational pair instability as an explanation for the most luminous supernovae



# Kawabata+2009: Strange, unknown lines seen in the last obtained spectrum at 394 days



## Identification of the lines : Fe I



1.

2.

### Identification : Fe I



Approach 1: Search constraints for any temperature and density.

Parameters:

- *M*<sub>Fe</sub>
- *T*
- $x = n_e/n_{FeI}$
- Density, as expressed by a filling factor *f*

Solve NLTE emissivities including optical depth with Sobolev selfabsorption (SUMO code, Jerkstrand, Fransson & Kozma 2011).







**Approach 3**: Luminosity constraints, assume the iron comes from <sup>56</sup>Ni and this powers the 394d emission.

Result:  $0.2 < M_{\rm Fe} < 2.1~M_{\odot}$ 

All constraints together:  $0.3 < M_{\rm Fe} < 2.1 \ M_{\odot}$ 



How can one get an interacting supernova with  $\gtrsim 0.3 \ M_{\odot}$  of <sup>56</sup>Ni and a  $\gtrsim 10 \ M_{\odot}$  H-rich CSM ejected  $\lesssim 100y$  ago?

Massive star candidates:



1) Pulsational PISN?

• Can be ruled out: No <sup>56</sup>Ni production so no iron lines

### 2) CCSN with a major LBV outburst just prior to collapse?

- Vast majority of CCSNe make  $M_{Fe} < 0.2 M_{\odot}$ , and those who make more would have  $E_{kin} \gtrsim 10^{52}$  erg.
- CCSNe are O-rich but in SN 2006gy no O lines seen

Coincidence problem

#### 3) A M(He-core) ~90 M<sub>sun</sub> pair instability supernova?

- Fails to reproduce light curve including 394d drop
- No pulsations predicted, and low-metallicity expected whereas SN 2006gy ~ solar

### White dwarfs to the rescue?

## 4) A white dwarf spiralling into a red giant, ejects its envelope and explodes as a la supernova?



✓ Causally links mass ejection - SN

✓ Common envelope ejection a well established process - entire stellar envelopes can be ejected on timescale of few years/decades

 $\checkmark$  Ia SNe make just the right amount of <sup>56</sup>Ni (0.3-0.7 M<sub> $\odot$ </sub>)

## Spectrum of a decelerated Ia SN fits well

Standard Ia explosion model (W7) with velocities reduced factor 7 to mimic a deceleration due to strong interaction.



## Light curve and final iron velocities for Ia-CSM model also consistent



Code : SNEC (Morozova+2015)

- Too small CSM masses: too narrow light curve and insufficient iron deceleration.
- Too large CSM masses: too long lasting interaction and too strong deceleration.
- At  $M_{\rm CSM} \sim 13~M_{\odot}$  all properties roughly correct.

## **Energy budget**



-> Normal Ia SNe ( $E_{kin}^0 \sim 1.3 \times 10^{51}$  erg) are within budget

Note:  $E_{\rm kin} \sim 10 \ M_{\odot} \times (1500 \ {\rm km \ s^{-1}})^2 \sim 2 \times 10^{50}$  erg left in kinetic energy at 394d



Wavelength (Å)

# Questions raised if WD-RSG merger is the right explanation

How do you get a WD close to a RG/RSG star?



How do you get it to spiral in, eject virtually all of the RG/RSG envelope, and merge with the core?



## Can a WD form before a massive (NS-forming) companion ends its evolution?

- Binary stellar evolution simulations allow for mass reversals and WD massive star systems.
- First mass transfer by Roche lobe overflow: can move more mass than CE (too short,  $\leq 10^4$  y). Require similar initial masses  $M_1/M_2 \gtrsim 0.4$ .



#### SUPERNOVA: THE RESULT OF THE DEATH SPIRAL OF A WHITE DWARF INTO A RED GIANT

WARREN M. SPARKS AND THEODORE P. STECHER Goddard Space Flight Center, Greenbelt, Maryland Received 1973 June 18; revised 1973 September 13

### THE CRITICAL RADIUS AND THE EQUIVALENT RADIUS OF THE LAGRANGIAN LOBE FOR A BINARY SYSTEM

2



• If the companion is massive enough (>5 times the WD mass), the system will never settle into RLOF accretion but the WD will plunge into the companion ,starting typically when  $R_{OR} \sim (2-4) R_G$ .

20

### Simulating the in-spiral and common envelope phase with SPH



### 1. Merger with a RG (AGB) star.

WD-RG CE merger likely channel to produce WD-WD close binaries (normal la progenitors).

With an AGB star companion another WD ready (->Super-Chandra merger explosion). Some tension with estimated CSM mass in SN 2006gy.

#### 2. Merger with a RSG.

3

Sub-Chandra double detonation explosion as WD merges with He core. No tension with estimated CSM mass.

> Need one of these explosion channels to happen within 100y of the CE ejection.

## **Explosion**



## Summary

 Lines in the emission spectrum of bright IIn supernova SN 2006gy have been identified as Fe I : new emission line diagnostic.



- The luminosity in these iron lines indicate a large iron mass,  $\gtrsim 0.3 M_{\odot}$ .
- We propose a model scenario where a white dwarf merges with a massive companion as it enters its RG/RSG phase.
  - Explains ~10 M<sub>☉</sub> CSM close to the SN (common envelope evolution can eject entire stellar envelopes in a short time).
  - Explains the synchronisation between CSM creation and SN explosion
    - The WD drops to the core on a time-scale of ~years in the inspiral.
    - Being degenerate it can explode upon high mass accretion.
  - Explains the large iron mass (WD SNe make ~0.5  $M_{\odot}$ , CCSNe ~0.1  $M_{\odot}$ )
  - Explains why E<sub>rad</sub> ~10<sup>51</sup> erg (M<sub>ejecta</sub> >> M<sub>CSM</sub>, in this limit is most of the SN kinetic energy converted to radiation).
  - Light curve and spectral models show good agreement.

Thank you for listening!