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SN 2006gy : one of the brightest
SNe ever seen

Rise time 70d, peak magnitude -22.

Radiated energy ~10°1 erg (factor 2 uncertain due
to extinction uncertainties).

Type lin, narrow (100 km/s) P-Cygni Balmer lines.

Broad asymmetric Balmer lines. Ha red wing to
~4000 km/s, unusual damped blue side.

No significant radio or X-ray emission.

General consensus: a large CSM shell (=10 Mo)
was ejected <100y before the supernova.
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The supernova landscape

Massive star White dwarf
Mass accretion

from some kind
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Pulsational pair instability as an explanation for the

most luminous supernovae
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Kawabata+2009: Strange, unknown lines seen in the
last obtained spectrum at 394 days

SN 2006gy 394d
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Srnlth et al. (2008b). Kawabata et al. claimed a detectlon nf
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Identification of the lines : Fe |
L.5;J€rkstrand+2016: A low-energy pair instability supernova model
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Identification : Fe | 5100 A 25D
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Approach 1: Search
constraints for any
temperature and density.

Parameters:

. MF

- T

e X = I/le/nFe]

 Density, as expressed by
a filling factor f

€

Solve NLTE emissivities
iIncluding optical depth
with Sobolev self-
absorption (SUMO code,
Jerkstrand, Fransson &
Kozma 2011).

How much iron is there?
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How much iron is there?

Result:
f=1:Mg 2025 M,
f=0.1:Mg, 20.08 M,
f=0.01: Mg, 2 0.03 M,

1< 0.01 : No solutions!
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Optically thick, LTE:
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How much iron is there?

Approach 2: Spectral
constraints.

« Correct ratio of Fe Il and Fe |
lines in spectral models.

* lonization degree
constrained by power input
(=observed luminosity).

Result:
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How much iron is there?

Approach 3: Luminosity 109
constraints, assume the iron
comes from 56Ni and this
powers the 394d emission.
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How can one get an interacting supernova
with = 0.3 M, of %Ni and a = 10 M H-rich CSM

ejected =< 100y ago?

Massive star candidates:

"\ 1) Pulsational PISN?
e Can be ruled out: No °6Ni production so no iron lines

2) CCSN with a major LBV outburst just prior to collapse?
e Vast majority of CCSNe make Mre < 0.2 Mo, and

those who make more would have E,.. > 10°° erg.

o e CCSNe are O-rich but in SN 2006gy no O lines seen
Coincidence

problem
3) A M(He-core) ~90 Msun pair instability supernova?
* Fails to reproduce light curve including 394d drop

* No pulsations predicted, and low-metallicity expected
whereas SN 2006gy ~ solar
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White dwarfs to the rescue?

4) A white dwarf spiralling into a red giant, ejects its envelope and
explodes as a la supernova?

v Causally links mass ejection - SN

v Common envelope ejection a well established process - entire stellar
envelopes can be ejected on timescale of few years/decades

Vv la SNe make just the right amount of 56Ni (0.3-0.7 Mo)
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Spectrum of a decelerated la SN fits well

Standard la explosion model (W7) with velocities reduced factor 7 to mimic a
deceleration due to strong interaction.
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Light curve and final iron velocities for la-CSM model
also consistent

Code : SNEC (Morozova+2015)
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* Too small CSM masses: too narrow light curve and insufficient iron deceleration.
* TJoo large CSM masses: too long lasting interaction and too strong deceleration.
o At Mqq\y ~ 13 M, all properties roughly correct.

15



Energy budget

+70d

—— Dereddened spectrum at 2006-10-24,f= 1.0
Raw photometry 2006-10-29

—4— Dereddened photometry

Polynomial fit to NIR photometry
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r

adiated — 9 X 1050 erg
—> Normal la SNe (E)_~ 1.3 X 10°! erg) are within budget

Note: Eg, ~ 10 Mg x (1500 km 3_1)2 ~ 2 % 10°Y erg left in kinetic energy at 394d
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Excesses
from BB

Energy budget
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Smith+2010:
adiated — (2 3) X 1051 erg,
“too much for a la”
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Based on fitting blackbodies:
this likely overestimates the
UV contribution.
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Questions raised if WD-RSG merger is the right
explanation

How do you get a WD close to a RG/RSG star?

How do you get it to spiral in, eject virtually all of the RG/RSG envelope,
and merge with the core?

How do you get it to explode?

18



1

Can a WD form before a massive (NS-forming) companion
ends its evolution?

* Binary stellar evolution simulations allow for mass reversals and WD -
massive star systems.
* First mass transfer by Roche lobe overflow: can move more mass than CE
(too short, < 10*y). Require similar initial masses M,/M, > 0.4.

Tauris & Sennels 2000
t= 0.0 Hyr 2~ My M.
P=10.0 days I""—- M3 Mg WS Me
1
47,3 -~ CE
10. 0 70.51 —
Fa : —
RLOF 019 @ WhR oG
8 TRy 1.48 10.52 ! 300 knss
1136 C_(® ecore  MS fa.0 o 105"
0 19 8 ag®
0.86 10.52 t=73.0 Myr Mwp= 0. 86 Mg
e=10.764
vg_l,ls - 228 ]'qﬂ.fr3
0 26 10 52 These systems observed,
WD RSG e.g. van Kerkwijk and Kulkarni 1999
Population studies: M5/l 2() M e.g. Willems & Kolb 2004
companion
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SUPERNOVA: THE RESULT OF THE DEATH SPIRAL OF A WHITE DWARF
INTO A RED GIANT

WARREN M. SPARKS AND THEODORE P. STECHER
Goddard Space Flight Center, Greenbelt, Maryland

Received 1973 June 18; revised 1973 September 13

THE CRITICAL RADIUS AND THE EQUIVALENT RADIUS OF
THE LAGRANGIAN LOBE FOR A BINARY SYSTEM

q = My|Mg veserate|  Ra*/Rom | joue. real Ror| " ranes
UELCAAS RG radius

1 1.186 | or stable 0.378
0.8 1.060 (units of 0.398
0.6 0.918 |wD orbital 0.424
04 0‘750 radius) 0461
0.3 0.649 0.486

=02 e a0530 L0052
0.5 0.459 0.546
0.1 0.375 0.578l
0.05 0.265 0.626

* |f the companion is massive enough (>5 times the WD mass), the system will
never settle into RLOF accretion but the WD will plunge into the
companion ,starting typically when R, ~ (2 — 4) R,
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Simulating the in-spiral and common envelope phase with SPH

‘ 130 Rsun

Simulations predict
ejection of whole envelopes
on time-scales 1-10y.

e.g. Terman+1995, Yorke+1995,
Sandquist 1998, Taam
and Sandquist 2000
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3 Explosion

1. Merger with a RG (AGB) star.
WD-RG CE merger likely channel to produce
WD-WD close binaries (normal la progenitors).

With an AGB star companion another WD ready
(—>Super-Chandra merger explosion). Some

tension with estimated CSM mass in SN 2006g9y.

2. Merger with a RSG.

Sub-Chandra double detonation explosion as
WD merges with He core._No tension with
estimated CSM mass.

Need one of these explosion
channels to happen within 100y of
the CE ejection.
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Summary

* Lines in the emission spectrum of bright lin supernova SN 2006gy have
been identified as Fe | : new emission line diagnostic.

- The luminosity in these iron lines indicate a large iron mass, 2 0.3 M.

- We propose a model scenario where a white dwarf merges with a massive
companion as it enters its RG/RSG phase.

« Explains ~10 Mo CSM close to the SN (common envelope evolution can
eject entire stellar envelopes in a short time).

- Explains the synchronisation between CSM creation and SN explosion
- The WD drops to the core on a time-scale of ~years in the inspiral.
* Being degenerate it can explode upon high mass accretion.

- Explains the large iron mass (WD SNe make ~0.5 Mo, CCSNe ~0.1 Mo)

« Explains why Erad ~1051 erg (Mgjecta >> Mcsw, in this limit is most of the
SN kinetic energy converted to radiation).

» Light curve and spectral models show good agreement.

Thank you for listening!
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