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Physics of optically thin ejecta

- Steady state conditions : Power out = Power in.

- Radioactivity heats, ionises and excites the gas: reemission
mainly by low-lying forbidden lines of common elements.

- Line luminosities can probe
» Element mass

»Volume of emission region
» Density

- Low density —> NLTE conditions —> atomic data (A-
values, collision cross sections, photoionisation cross
sections, charge transfer rates) important.

- Supernovae: Atomic data situation medium-good: in
several applications not the main limiting factor.

. Kilonovae: Atomic data main bottleneck to more
accurate results.
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Pros

- Probes the core where the star’s nucleosynthesis -
hydrostatic and explosive - can be inferred.

- Line profiles diagnostic of core’s 3D structure and
link to explosion physics.

- Lower velocities than photospheric phase —> less
line blending (and lower T gives fewer active lines).

- Steady state conditions : no sensitivity to
thermodynamic history of ejecta.

. Limited radiative transfer effects —> “clean view”
and for computational aspect, rapid convergence
even in a Lambda iteration.

Cons

- Complex (NLTE) modelling, and associated

challenge in getting physical conditions right.

- Highly non-linear emissivities : small error in

T can give big error in e.g. inferred mass.

- Complex mixing in the explosion (mainly

macroscopic) —> most modelling so far limited
to 1D with artificial mixing and can only partly
account for this.

- [llumination bias: We see mainly what is

illuminated by gamma rays.

- SNe rapidly dim —> limited S/N in observed
spectra.




Radiative transfer codes for late phases

- Self-consistent explosion models or
crafted ejecta (both density profile and
composition)?

-1-zone models (Axelrod, Mazzali, Maeda)

1D models
- Monte Carlo (SUMO, SEDONA, ARTIS)

. . Optically thin or with radiative
- Grid-based (CMFGEN)

transfer?

-3D models . Thermalization calculated or
- Monte Carlo (SEDONA, ARTIS, SUMO- parameterised?
LIGHT)

- Size and quality of atomic data library?



SUMO Jerkstrand+2011,2012

Radioactive decay and ~-ray transport

Distribution of relativistic
electrons

@ Spencer-Fano equation

NLTE statistical equilibrium

@ 22 of first 28 elements in periodic

table, 3 ion. stages, ~100 exc. states
each

@ Energy loss by coll. ionization,
excitation, and Coulomb cooling

Radiative transfer
@ Monte Carlo driver

@ Sobolev approximation (modified for continuum
destruction)

@ 300,000 atomic lines, 3,000 bound-free continua,
free-free, electron scattering

Temperature

@ Heating (non-thermal,
photoion., charge
transfer) = cooling

(line cooling, rec.,

free-free)




CMFGEN uillier & Mmillier (1998); Hillier & Dessart (2012)

Solution of moments of radiative-transfer equation + closure. Yields I,, J,, F, versus depth
from far-UV to far-IR (105 to 100 frequencies).

Time-dependent or steady state mode.

Solution of statistical equilibrium equations (O(1000) unknowns at each depth).
Complex model atoms and processes.

Non-local y-ray energy deposition + non-thermal processes.

Initial conditions from progenitor/explosion model in homologous expansion (most
elements up to Ni + Ba; multiple ionization stages treated).

Optical-thin conditions: special treatment of mixing.



SUMO Jerkstrand+2o011

Treat mixing statistically to avoid microscopic mixing : unique approach possible with Monte Carlo only.
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CMFGEN

* Chemical segregation treated with a “shuftled-shell” approach: macroscopic mixing but NO
microscopic mixing (see Dessart & Hillier 2020).
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CMFGEN

Spectrum formation regions in a 15.2 My RSG explosion model at 350d
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Results examples

Explosive nucleosynthesis
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Hydrostatic nucleosynthesis
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Important final tests for models that have passed reproduction of photospheric light curves

Results examples

Gal-Yam 2009
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Results examples

SNe from the lowest masses, ~8-10 Msun, Nnow well matched with subluminous IIP class.
Confirm ~10%0 erg explosions. No electron-capture SNe yet seen.
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Results examples

Tests of 3D explosion models -
So far only simple applications such as gamma ray line profiles.

3D models for SN 1987A by

Jerkstrand+2020
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Ongoing for la SNe since few years (Botyanski 2017/2018, Shingles 2020)



Outlook

1D codes have relatively good artificial mixing schemes, and 3D nebular RT codes emerging.

Need for 3D explosion simulations evolved at least until shock breakout or (better) until the
onset of “homology”. 56Ni/s6Co decay influences dynamics for ~weeks.

Need for detailed nucleosynthesis: sensitivity of composition to nuclear network, dynamics,
resolution, neutrino effects, ..

Cover full mass range, single vs. binary evolution (CCSN)

Major limitation for KN spectra is the scarcity of atomic data for r-process elements => Need for
an “Opacity Project”? How accurate is existing data?

KN thermalization : ground work laid by Berkeley group.

Community dissemination: published explosion/merger/progenitor simulations preferably made
public to allow for post-processing, code comparison etc.



