[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Determining the nucleosynthesis of supernovae by nebular spectral modelling

Anders Jerkstrand

Department of Astronomy, Stockholm University

- 1. Introduction to supernovae and their nucleosynthesis
- 2. Spectral synthesis modelling and the SUMO code
- 3. Application 1: Type II SNe and the origin of oxygen
- 4. Application 2: The Ni/Fe ratio as a diagnostic of the explosion
- 5. Application 3: Superluminous SN 2006gy detection of a massive iron reservoir upends old ideas
- 6. Outlook and summary

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Supernovae - the deaths of stars

1 Core-collapse of a massive star $(M \gtrsim 8 M_{\odot})$ as it runs out of fuel at the end of its life.

Credit: www.phys.olemiss.edu

2 Thermonuclear explosion of a white dwarf as some accretion process ignites runaway burning of the C and O.

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Nucleosynthesis in massive stars

- Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al, P in Universe.
- Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the Universe.

Nucleosynthesis in massive stars

• Hydrostatic (pre-SN) burning: main source of C, O, F, Ne, Na, Mg, Al, P in Universe.

• Explosive SN burning: main source of Si, S, Ar, Ca, Fe, Ni in the Universe.

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

The origin of the elements

Still few quantitative results by SN spectral analysis $\Big|_{\scriptscriptstyle{4/28}}$

Oxygen nucleosynthesis : theoretical $M(O)$ vs M_{ZAMS}

6 / 28

[Introduction](#page-1-0) **[Nebular phase modelling](#page-7-0)** [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

1. Inverse modelling: Measure line luminosities, assume uniform conditions and use analytic forms valid in certain limiting physical regimes (e.g. LTE, optically thin,..).

2. Forward modelling: Radiative transfer modelling of multi-zone explosion models with self-consistent nucleosynthesis.

Forward modelling: the SUMO code

Jerkstrand 2011, PhD thesis, Jerkstrand, Fransson & Kozma 2011, Jerkstrand+2012

Radioactive decay and γ -ray transport

• Code is 1D but allows for mixing by 'virtual grid' option.

 $AJ+2012,2014$ 9/28

AJ+2012,2014

Type IIP model spectra Jerkstrand, Smartt, Sollerman+2015, MNRAS

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Highest mass stars missing : are they collapsing directly to black holes? Or maybe become stripped-envelope SNe?

• True also in larger samples (e.g. $Si/vernan + 2017$).

Stripped-envelope supernovae: also here small amounts of oxygen and low-mass progenitors

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Jerkstrand, Ergon, Smartt+2015, A&A

Most IIb-Ib-Ic SNe seem to come from stars stripped by binary interaction.

- Growing consensus that many stars at $M_{ZAMS} \gtrsim 20$ M_{\odot} fail to explode with neutrino mechanism : cores too compact (e.g. O'Connor & Ott 2011)
- No massive stars detected in progenitors imaging (e.g. Smartt 2009, 2015).
- Some candidates emerging for disappearing stars (Kochanek+2008, Adams+2017,Reynolds+2015).

Relative abundances: example of magnesium

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

• Most stellar evolution models underpredict Mg/O compared to the solar value (factor 2-3)...why?

SN 2011dh

- Two main diagnostics : Mg I 4571 and Mg I 1.50 μ m.
- Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- Mg I 1.50 μ m : Simpler formation, but less often observed
- Oxygen : $n_{OII} \approx n_e \rightarrow$ $L_{O-rec} \propto f_O \times n_e^2$ where f_{Ω} is the oxygen filling factor (constrained from $[O II]$. • Magnesium : n*MgII* ≈ n*Mg* \rightarrow L_{Mg-rec} \propto M_{Mg} \times n_e • O and Mg recombination lines together gives Mg mass. 10⁻³ 10⁻² 10⁻¹ 10⁰
Filling factor f₀
Jerkstrand+2015,A&A 10^{-2} ¹ $\ensuremath{\mathrm{Mg}}\xspace$ mass $(\ensuremath{\mathrm{M}_\odot}\xspace)$ $\ensuremath{\overline{\mathrm{O}}}$ $10⁰$ Mg mass (M_{\odot}) Region ruled out $from [O II]$ λ 6364/ λ 6300 ratio Region ruled out from [O I] $\lambda\lambda$ 6364, 6300 $fine-struct$

Relative abundances: example of magnesium

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

- Most stellar evolution models underpredict Mg/O compared to the solar value (factor 2-3)...why?
- Two main diagnostics : Mg I 4571 and Mg I 1.50 μ m.
- Mg I] 4571 : Relatively sensitive to model detail \rightarrow large error bars
- Mg I 1.50 μ m : Simpler formation, but less often observed

14 / 28

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

- Use forward models to identify lines present between 7000-7600 Å.
- 4-component fit gives $L_{\rm [Ni~II]}$ 7378 and $L_{\rm [Fe II]}$ 7155.
- This luminosity ratio robustly links to the Ni/Fe abundance ratio.
- Fe emission comes from decayed ⁵⁶Ni, so this ratio probes the ⁵⁸−60Ni/56Ni production.

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Ni/Fe ratios in CCSNe

Jerkstrand, Smartt, Sollerman et al 2015, MNRAS

- Average ratio \geq solar.
- If true in larger sample, Type Ia SNe must make $Ni/Fe \leq solar \rightarrow$ constraints on Ia explosions models.
- Sometimes ratio is significantly larger. what does it mean?

• If this interpretation is correct, SNe mostly burn and eject oxygen shell material, but sometimes silicon shell material. 18 / 28

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Wongwathanarat et al. 2017

- Ongoing work in several groups to determine explosive nucleosynthesis η in better detail (Garching, NC State, Princeton, Oak Ridge..).
- Uncertain neutrino physics limits accuracy of η predictions for those layers cycled close to NS.

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

- Radiated energy $\sim 10^{51}$ erg (compare 10^{49} erg normal SNe).
- Type IIn : interaction with a massive slow-moving CSM indicated from narrow H lines. This CSM ($\sim 10M_{\odot}$) ejected \lesssim 100y before the SN.
- A vast and diverse set of models proposed over the years: pair-instability SN, pulsational pair instability SN, an LBV exploding into an Eta-Carina like eruption. All of them involve the explosion of a massive star.

Smith et al. 2007

- Only clearly identified elements : Fe II and Ca II. Explosive burning products suggested.
- Line widths indicate ~ 1500 km s⁻¹ expansion.

Identification : Fe I! Jerkstrand, Maeda & Kawabata 2020, Science

Pulsational PISNe: $M_{Fe} = 0$. Ruled out.

Ia SNe: M*Fe* ∼ 0.5 M⊙. Could it be?

Could SN 2006gy be the result of a merger of a white dwarf with a massive star?

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

- Causally connects the massive CSM ejection and the SN (inspiral \rightarrow common envelope ejection followed by explosion when WD reaches the centre of the other star).
- Common envelope ejection a well established process entire stellar envelope expected to be ejected on timescales of years/decades.
- Ia SNe make the right amounts of 56 Ni (0.3 0.7 M).

Spectrum of a decelerated Ia SN fits well

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

Standard Ia explosion model (W7) with velocities reduced factor 7 to mimic

a deceleration due to strong interaction with a massive CSM.
 2.5×10^{-16}

- No flux scaling a major strength of the model.
- Physical conditions (temperature which sets the SED, and ionization which sets the line ratios), and the amounts of Fe and Ca seem correct.
- Light curve shown to be well produced by Ia SN hitting a 10-15 M_{\odot} CSM (see paper).

[Introduction](#page-1-0) [Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0) [SN 2006gy](#page-24-0) [Outlook and summary](#page-30-0)

- 1. How do you get a WD close to a RSG or RG star?
- 2. How do you get it to spiral in, eject virtually all the envelope, and merge with the core of the other star?
- 3. How do you get it to explode?

Outlook

Advent of 3D nebular-phase models (Jerkstrand et al, 2020, MNRAS, see also Botyanszki+2017, 2018 and Shingles+2020 for Ia cases)

- Allow tests of 3D explosion simulations.
- Understand degree of validity of 1D models, and how to best use 1D models.
- Which microphysics to trade off?

Elements currently diagnosed from supernova nebular spectra

Good diagnostic situation Moderate diagnostic situation Poor diagnostic potential

[Introduction](#page-1-0) **[Nebular phase modelling](#page-7-0) [Oxygen](#page-10-0) [Stable nickel](#page-18-0)** [SN 2006gy](#page-24-0) Out**look and summary** [Outlook and summary](#page-30-0)

Summary

- Supernovae are import element producers, nebular-phase spectral modelling allows direct inferrence of hydrostatic and explosive nucleosynthesis yields.
- Spectral modelling of Type II SNe with SUMO indicate low/moderate amounts of **oxygen** (≤ 1 M_☉), with no clear candidates from the $M_{ZAMS} \ge 20$ M_{\odot} range.
- Some results on **abundance ratios** are becoming available, e.g. Mg/O .
- The [Ni II] 7378 line can be used to determine the amount of ^{58–60}Ni produced in the explosion. A sample of CCSNe show Ni/Fe \sim solar, but in a few cases a higher ratio. A solar value indicates explosive burning of the oxygen shell, whereas a supersolar value indicates burning of the silicon shell of the progenitor.
- A large iron reservoir ($\sim 0.5 M_{\odot}$) identified in the superluminous IIn SN 2006gy. Model scenario of a Ia SN exploding inside a recently ejected common envelope promising.

- **•** Stellar evolution/explosion models from KEPLER (Woosley & Heger 2007) \rightarrow all nucleosynthesis self-consistent
- Consider macroscopic mixing effects of core from 2D/3D models
- Parameterized molecular cooling of $O/Si/S$ and O/C zones

Hammer+2010, 3D model

Ejecta setup in SUMO

Identification of the lines : Fe I

1e37 Jerkstrand+2016: A low-energy pair instability supernova model

How much iron is there?

Approach 1: Search constraints for any temperature and density.

Result: $M_{\text{Fe}} \gtrsim 0.1 M_{\odot}$

Approach 2: Spectral constraints.

Result: $M_{\text{Fe}} \gtrsim 0.3 M_{\odot}$

Approach 3: Luminosity constraints, assume the iron comes from 56Ni and this powers the 394d emission.

Result: $0.2 < M_{\text{Fe}} < 2.1 M_{\odot}$ All constraints together: $0.3 < M_{\text{Fe}} < 2.1 M_{\odot}$

Light curve and final iron velocities for Ia-CSM model also consistent

- Too small CSM masses: too narrow light curve and insufficient iron deceleration.
- Too large CSM masses: too long lasting interaction and too strong deceleration.
- At $M_{CSM} \sim 13 M_{\odot}$ all properties roughly correct.

Energy budget

 \rightarrow Normal la SNe (E_{kin}^{0} ∼ 1.3 × 10⁵¹ erg) are within budget

Note: $E_{\rm kin} \sim 10~M_\odot \times~ \left(1500~{\rm km~s^{-1}}\right)^2 \sim 2\times 10^{50}$ erg left in kinetic energy at 394d 2 ~ 2 × 10⁵⁰

Can a WD form before a massive (NS-forming) companion ends its evolution? 1

• Binary stellar evolution simulations allow for mass reversals and WD massive star systems.

SUPERNOVA: THE RESULT OF THE DEATH SPIRAL OF A WHITE DWARF **INTO A RED GIANT**

WARREN M. SPARKS AND THEODORE P. STECHER Goddard Space Flight Center, Greenbelt, Maryland Received 1973 June 18; revised 1973 September 13

THE CRITICAL RADIUS AND THE EQUIVALENT RADIUS OF THE LAGRANGIAN LOBE FOR A BINARY SYSTEM

2

If the companion is massive enough (>5 times the WD mass), the system will never settle into RLOF accretion but the WD will plunge into the companion.

20

Simulating the in-spiral and common envelope phase with SPH

SN la

22

Need one of these explosion

channels to happen within 100y of

the CE ejection.

Sub-Chandra double detonation explosion as WD merges with He core. No tension with estimated CSM mass.

2. Merger with a RSG.

With an AGB star companion another WD ready (—>Super-Chandra merger explosion). Some tension with estimated CSM mass in SN 2006gy.

1. Merger with a RG (AGB) star.

3 Explosion

WD-RG CE merger likely channel to produce WD-WD close binaries (normal Ia progenitors).

SN Ia

Predicted WD masses

PISN light curves

Only a 90 M_\odot He core makes ~0.5 M_\odot of ⁵⁶Ni. But peak would require 5-10 M_\odot \longrightarrow must be CSI that powers main light curve.

Light curve simulations find no agreement.

Comparison to SN 1987A

W15: Reasonable. Quite large ⁵⁶Ni asymmetry (550 km/s) and moderate ejecta mass (14 M_{sun})

