bular phase modelling

3D code

He cores in 3D 00000 Outlook and summary

# Nebular-phase spectral modelling of the Garching 3D explosion simulations

Anders Jerkstrand

Department of Astronomy, Stockholm University





Nebular phase modelling

3D code 000 He cores in 3D

Outlook and summary 000





• Code is 1D but allows for 3D-informed artificial mixing by virtual grid method.

He cores in 3D 00000 Outlook and summary

# Example : Progenitors and nucleosynthesis of Type IIP SNe



If we can measure the amount of O, we should be able to determine  $M_{ZAMS}$ .

#### Example : Progenitors and nucleosynthesis of Type IIP SNe AJ+2012,2014



# Example : Progenitors and nucleosynthesis of Type IIP SNe



Outlook and summary

### Example : Progenitors and nucleosynthesis of Type IIP SNe Highest mass RSGs missing : Direct black holes? IIL/IIn SNe? Late evolution to Ibc SNe?



Jerkstrand, Smartt, Sollerman+2015, MNRAS

• Holds also in larger samples (e.g. *Silverman+2017*).

# Direct determination of the origin of the elements, source by source



**Good diagnostic situation Moderate diagnostic situation** Challenging to diagnose Introduction

lebular phase modellir 000000 3D code

He cores in 3D

Outlook and summary

# Going to 3D



- Initial framework completed in 2020 (Jerkstrand+2020).
- Code currently being developed by PhD student Bart van Baal



He cores in 3D

Outlook and summary

## First application : Gamma decay lines in SN 1987A

3D code

Jerkstrand et al (incl. Wongwathanarat, Janka, Gabler, Diehl) 2020

• Clearly difficult to make any sense of observed line profiles with 1D models.

15  $M_{\odot}$  BSG model, 3 different viewing angles.





phase modelling

3D code OO● He cores in 3D 00000 Outlook and summary

## First application : Gamma decay lines in SN 1987A





 Current 3D models give (marginally) insufficient asymmetry of the <sup>56</sup>Ni.

oular phase modelling

3D code 000 He cores in 3D

Outlook and summary

# He-core models in 3D : Motivation

- 2D hydrosimulations in 1990s : also H-free explosions experience significant mixing. Shigeyama+1990,Hachisu+1991,1994,Nomoto1995.
- Strong mixing was soon also inferred from light-curve fitting of Ibc SNe.



3E O He cores in 3D 00000 Outlook and summary

# He-core models in 3D : Method

- Progenitor models from Woosley 2019 : Instantaneous removal of the H envelope at He ignition.
- Annop Wongwathanarat is running long-term simulation grid covering He core masses and explosion energies. First model (He 3.3) finished.



He cores in 3D

Outlook and summary 000



Outlook and summary

# Compositional mixing : physical or numeric?



• Nebular spectra are sensitive to the degree elements are **microscopically** mixed.

# O and Fe lines in 3D under the $j_{el}(\mathbf{x}) = dep(\mathbf{x}) \times ab_{el}(\mathbf{x})$ approximation

• Iron lines ( $\circ$ ) show more asymmetry and diversity than oxygen lines ( $\Box$ ).



• Work ongoing to improve the emissivity calculations.

# O and Fe lines in 3D under the $j_{el}(\mathbf{x}) = dep(\mathbf{x}) \times ab_{el}(\mathbf{x})$ approximation

• Iron lines ( $\circ$ ) show more asymmetry and diversity than oxygen lines ( $\Box$ ).



• Work ongoing to improve the emissivity calculations.

Introduction

ase modelling

He cores in 3E

Outlook and summary

The most common type of SNe :  $M_{ZAMS} = 8-12 M_{\odot}$  stars Ertl+2018, Jerkstrand+2018 : ...but..Stockinger+2020: First spectral predictions (1D) Ejecta mixes strongly

also at low mass.



• The hunt for the first clear detection of an **electron-capture supernova** is ongoing but our (toy) 1D prediction needs replacement by 3D models.



ular phase modelling

He cores in 3D 00000 Outlook and summary

## Higher-mass Type II SNe

- r
- Large set of models by Michael Gabler
- Test accuracy of the (significant) set of 1D SUMO models.
- Make progress on the "Red Supergiant" and "Missing Oxygen" problems.



- In the nebular phase we see the interior of the whole exploded star and can learn about **nucleosynthesis** and **ejecta morphology**.
- Non-thermally powered gas at intermediate densities  $\rightarrow$  Modelling is complex, needing 3D, NLTE, and radiative transfer.
- We currently have results or **diagnostic potential for 20 elements** : H, He, C, N, O, Ne, Na, Mg, Si, S, Cl, Ar, K, Ca, Ti, Fe, Co, Ni, Zn, Sr.
- 3D modelling of both Type IIP and Type Ibc SNe in progress.
- Gamma decay line analysis of SN 1987A shows that current models still don't quite capture enough <sup>56</sup>Ni asymmetry.