Spectral synthesis modelling of kilonovae

Anders Jerkstrand, with Quentin Pognan, Jon Grumer, Smaranika

Banerjee, Eliot Ayache

Stockholm University

European Research Council

Decoding KN spectra

н		Good diagnostic potential															He
Li	Be	Be Moderate diagnostic potential Challenging to diagnose												N	ο	F	Ne
Na	Mg	c	to bi	e de(ined	AI	Si	Ρ	S	сі	Ar					
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ba	57-71	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	As	Rn
Fr	Ra 8	9-10)-103														
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yt	Lu
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		

Claimed (possible) detection in 2017gfo, or potential for detection

Watson+2019,Domoto+2021,2022,Hotokezaka+2022,2023 Sneppen+2023,Pognan+2023,Gillanders+2024

KN spectral synthesis modelling

- Can we reach the circle? Each step out increases compute time by orders of magnitude.
- Atomic data still a major bottleneck.

Why NLTE?

The density evolves as

$$ho \approx 10^{-13} \left(\frac{M}{0.05 \ M_{\odot}} \right) \left(\frac{V}{0.1c} \right)^{-3} t_d^{-3} \ \mathrm{g \ cm^{-3}}$$

(1)

4/8

Compare to a stellar atmosphere: $\sim 10^{-9}~{\rm g~cm^{-3}}.$

Why NLTE?

The density evolves as

$$ho pprox 10^{-13} \left(rac{M}{0.05 \ M_{\odot}}
ight) \left(rac{V}{0.1c}
ight)^{-3} t_d^{-3} \ \mathrm{g \ cm^{-3}}$$

Compare to a stellar atmosphere: $\sim 10^{-9}~{\rm g~cm^{-3}}.$

(1)

Kilonova models Pognan+2022ab,2023

• 1D models for three different $Y_e = 0.15, 0.25, 0.35, 5-20d$.

First NLTE KN spectra Pognan+2022ab,2023

Pognan+2023(optical), Jerkstrand+in prep(IR).

First NLTE KN spectra Pognan+2022ab,2023

Pognan+2023(optical), Jerkstrand+in prep(IR).

Take-home points

- A second generation of KN spectral models are now coming into place considering NLTE and fluorescence. These effects qualitatively change KN spectra from a few days already and are useful for EM follow-up planning and data analysis. Pognan+2023,2023,Shingles+2023
- Post-peak EM gives us information on **slow/inner material** constituting the bulk of the mass of the KN.
- Exploratory 1D models show which elements hold best diagnostic potential from post-peak spectra
 - High Y_e : Rb, Sr, Y, Zr
 - Medium Y_e: Lanthanides, in particular Nd, Sm, Dy
 - Low Y_e : Same as medium Ye
- We are happy to discuss which kind of KN models to pursue for in-depth modelling.

