Spectral synthesis modelling of kilonovae

Anders Jerkstrand, with Quentin Pognan, Jon Grumer, Smaranika

Banerjee, Eliot Ayache, Blanka Vilagos

Explosive transient evolution

Diffusion phase

Higher Doppler broadening and more elements and lines make transition phases less clear in KNe than in SNe

AT2017gfo

GRB-230307A

Among the most complex physical objects in cosmos \rightarrow interpretation needs guidance from **spectral models**.

Empirically inferring SN and KN composition

н	Good diagnostic potential															He	
Li	Be	Moderate diagnostic potential B Challenging to diagnose												N	0	F	Ne
Na	Mg		10 01	e deí		lned	AI	Si	Ρ	S	СІ	Ar					
к	Ca	Sc	ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Хе
Cs	Ba	57-71	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Ро	As	Rn
Fr	Ra 8	9-10	9-103														
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yt	Lu
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		

=Possible identification in AT2017gfo

Watson+2019,Domoto+2021,2022,Hotokezaka+2022,2023 Sneppen+2023,Pognan+2023,Gillanders+2024

KN spectral synthesis modelling

• Can we reach the circle? Each step out can increase the compute time by large factor. KNe are low-density nebulae already from birth

$$\rho \approx 10^{-13} \left(\frac{M}{0.05 \ M_{\odot}} \right) \left(\frac{V_{char}}{0.1c} \right)^{-3} t_{days}^{-3} \ g \ cm^{-3}$$
(1)

Compare to a stellar atmosphere: $ho \sim 10^{-9} {\rm ~g~cm^{-3}}.$

The SUMO code : 1D NLTE radiative transfer

AJ+2011, 2012

Radioactive decay and $\gamma\text{-ray transport}$

R-process atomic data

- Energy levels and A-values: Complete set all elements, ions I-IV with FAC (by Jon Grumer).
 - Overall term structure captured but moderate accuracy for energies \rightarrow wavelengths 10-20% uncertainty.
 - Some ions calibrated to NIST.
- Ionizing collision cross sections: Lotz 1967 formalism.
- Excitation collision strengths: Axelrod 1980, some detailed.
- **Recombination rates**: Constant 10⁻¹¹ cm³s⁻¹, some detailed (Banerjee+,subm.).

Solar r-process abundances

Data from Prantzos+2020

Model illustration, with focus on MIR $M_{ejecta} = 0.05 \ M_{\odot}, \ \rho(v) \propto v^{-3}, \ Z=30-40$ solar composition.

Energy levels and lines in ground multiplets corrected to NIST. Baseline radioactive decay from Wanajo 2014, analytic thermalization efficiency (Kasen+2019).

Transparancy vs wavelength

Only long wavelengths probe the bulk ejecta mass

MIR spectra from Z=30-40 elements

MIR spectra from Z=30-40 elements

EXTRASS - NLTE spectral synthesis in 3D

AJ+2020,vanBaal+2023,2024

- So far can handle only Z=1-30, and optically thin limit.
- Work to add radiative transfer and r-process elements ongoing.

Summary

- Second generation of KN spectral models coming into place considering NLTE and fluorescence. These effects qualitatively change KN spectra from a few days already and are useful for EM follow-up planning and data analysis.
- Tail-phase EM, particular in IR, gives information on **slow/inner material** constituting the **bulk of KN ejecta**.
- **Z=30-40,52,54** are good primary search targets for nebular IR lines (AJ+in prep.).
 - [Se III] 4.55 μm is only good Z = 30 40 candidate for the 4.5 μm flux in AT2017gfo (see also Hotokezaka+2022) - but new rec. rates make doubtful (Banerjee+,subm).
 - [Kr III] 2.20 μ m is a candidate for the observed 2.1 line in GW230307A and AT2017gfo.
 - Limits can be put on Br (Z = 35) and As (Z = 33) to \lesssim solar.