
PART A

Stellar evolution foundation
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Welcome to the ball game!
A star can, in a simplest framework, be defined by 
• Birth mass M
• Metallicity Z. Reduction to a single parameter possible as many stellar generations and mixing processes damp out 

fluctuations in individual galactic regions. X + Y + Z = 1, where X is H mass fraction, Y is He mass fraction and Z is the 
mass fraction of all other elements.

• Angular momentum (“rotation”) !. Reduction to a single parameter possible because early MS brings about close to 
rigid-body rotation independent of the initial profile. The star can later develop a differential profile.

But also:

• Magnetic field strength B ?
• Binary companion (M2, initial separation d, !2): removes or adds mass (which can also change the angular momentum) 

at certain points in time. 

And perhaps:
• Initial conditions? A philosophical question: To what extent do small random differences in initial conditions lead to a 

fundamentally different star later on?  The question has obtained recent new impetus for supernova studies where it 
has become clear that very small perturbations in later burning stages can give very different outcomes for the 
collapsing star.
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Freitag, Liljegren, Höfner 2017

Simulation, Asymptotic Giant Branch star

Observations, Betelgeuse
(Red Supergiant)

3

For most their lives stars behave
pretty well. But in late stages…

ESO/Montargès et al. 2020

https://ui.adsabs.harvard.edu/abs/2017A&A...600A.137F/abstract


https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/movies/Yadav_2019/si_iso_vel_pseudocol_smooth.mp4 Yadav+2020

The final 420 seconds in
the core of a 18.88 Msun
star : the O/Si/S shell merges
with the O/Ne/Mg shell.
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https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/movies/Yadav_2019/si_iso_vel_pseudocol_smooth.mp4
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...94Y/abstract


The HR diagram
• Luminosity and surface temperature on the y and x axes
(the two things you can most easily measure).
• A  main sequence band (~90% of stars) and post-MS 

islands (~10%) – white dwarfs, giants, red supergiants, 
yellow supergiants (e.g. Polaris), blue supergiants, 
Luminous Blue Variables, Wolf-Rayet stars.

On the main sequence:
• "~$! with some exponent a.
• Since "~%"$# for a black-body,  % must scale 

weaker with $ than $$" for " to increase with $ as 
observed.

• Smallest stellar masses ~ 0.08 &⨀ at ~10-4 Lsun: 
below this mass central temperature never reaches 
the H ignition temperature.

• Largest stellar masses ~100-200 &⨀at ~106 Lsun : 
regulated by Eddington limit (or possibly tighter 
limit by star formation constraints).

• Stars vary factor ~10& in mass but factor ~10'( in 
luminosity. 

• There is little scatter à a single dominant 
parameter governs both " and $. Is it mass? 5Fr
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A preview of late stellar evolution: some famous post-MS stars
Red supergiant Betelgeuse

Luminous Blue Variable Eta CarinaWolf-Rayet star WR 124

Red Giant R Sculptoris

Blue supergiant
Rigel
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From spatially resolved cases: clearly
complex stars with strong mass loss.
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The initial mass function

• About 90% of stars are &)*+, < 0.4 &⨀ red 
dwarfs: will reach post-MS stage only in time >> 
age of the universe.

• Distribution of masses at birth well described by
the Salpeter distribution,

-.

-+!"#$
~&)*+,

$".&0,

over the whole mass range 0.08 – 200 &⨀.

Few stars will become core-collapse supernovae 
(,1234 ≿ ./,⨀ needed, as we will se later), and 
of supernovae the vast majority come from 10-20 
&⨀ stars:

• One 10 &⨀ star for 223 1 &⨀ stars.
• One 40 &⨀ star for 26 10 &⨀ stars
• One 200 &⨀ star for 1100 10 &⨀ stars

Observed mass distribution in 
a cluster with massive stars.

Schneider+2018,Science

https://ui.adsabs.harvard.edu/abs/2018Sci...359...69S/abstract


Components of late stellar evolution

Energy 
generation 

LSE

Radiative

Convection

Matter transport

Energy transport

Winds

Some
fundamental
microphysics

and timescales
(into all boxes)

Rotation

Neutrino cooling

Angular momentum
transport (rotating stars only)

Blue : Part A
Green : Later

Binarity

Thermodynamics 
of matter (EOS)

Plus hydrostatic
equilibrium,
mass conservation,
energy 
conservation. 8



Fundamental microphysics and time-scales
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Photon-matter interaction
Cross section: 

1 =
Number of hits per unit time per target [s$']

Flux of particles [cm$"s$']

E.g. electron scattering 156 = 6.65 ∗ 10$"0 cm" ”Thomson cross section”
In general case cross sections are frequency-dependent.

Mean-free path:

L789 ≡
'

:;%&'()%*
[cm]        ”Mean distance travelled between interactions”

Opacity:

N ≡
'

<=+,-
=

:;%&'()%*
<

[cm2 g-1]     “Cross section per unit weight of material”.  

Note if gas is completely ionized O>!?@A>B/Q has no (Q, $) dependency : completely specified by the 
composition.

Fully ionized H gas: N56 =
:./
7-

= /. U cm2 g-1.  Solar H/He mixture: 0.34 cm2 g-1.

interaction

Photons

Particles
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Rosseland opacity: The particular frequency-integral of NC

ND =
VW$&

X
Y
(

E 1

NF

Z[

Z$
\]

$'

that allows recovery of the correct bolometric flux by:

^ =
4VW$&

3NQ
ND
$'∇$

Rosseland opacity
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Mean molecular weights

a = Ob$ = b$c
QdG ∗ (1 + fG)

gG
= b$Qc

dG ∗ (1 + fG)

gG
= b$

Q

g

gG: Molecular weight of species i. A molecular weight unit is the “amu” which is approximately the mass of a proton/neutron 
(1/12 of a 12C nucleus mass, exactly). gG ≈ jG (atomic weight).

Definition g ≡ ∑
H0∗ 'JK0

L0

$'
= ”Mean molecular weight per parOcle” (counlng all atoms, ions and free electrons).

Similarly, define

gA ≡ ∑
H0∗K0
L0

$'
=“Mean molecular weight per free electron”

and

gGM; ≡ ∑
H0
L0

$'
= “Mean molecular weight per ion”

(includes also neutral atoms)

xi mass fraction of element i
yi ionization degree of element i

Species !, fully ionized "! , $ully ionized !, neutral "!, neutral

H 0.5 1 1 ∞
He 1.33 2 4 ∞

C 1.71 2 12 ∞

Z-> ∞ 2 2 ∞ ∞
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Radiative diffusion

How long does it take for photons to travel from center to 
surface of the star? Random walk of photons:

m =
1

3
n'/"L789

o-G88 = n
L789

W
=

3 m

L789

"
L789

W
=
9 m "

WL789
=
9 m "NQ

W

Q ≈
&

4X
3
%&

→ o-G88 =
27N&

4XW%
= 26,000f

N

0.4 cm2/g

&

&⊙

%

%⊙

$'

N = number of steps

Mean-free path 

Mean distance
travelled after
N steps

Put & = ( to get time to reach surface of star 

startstart

end

D



Specific heat capacity : how much heat needs to be added to a substance, per unit mass, to increase the 
temperature by 1 K? (unit erg/g/K)

What is “heat”? It is (expressed per unit mass) \s = \t + u\v, where \t is change in internal energy (per 
unit mass) and \v is the change in specific volume.

The process comes in two flavors: 
1. under constant pressure (WP) 
2. under constant volume (WQ).

For a perfect, monoatomic gas, t =
1
2;R5
S

=
&
"
ℜ
L
$, and

• WQ = (
-U
-5
)Q= (

-V
-5
)Q=

&
"
ℜ
L

• Can show WP − WQ =
ℜ
L

(for derivation see e.g. Kippenhahn section 4.1)

Then WP =
0

"

ℜ

L
and γWX ≡ yY/yZ = 5/3 γWX=“adiabatic exponent” or ”heat capacity ratio”

For a photon gas or a relativistic particle gas, can show γWX= 4/3.  (Exercise to derive)

Specific heat capacities !!and !"
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Virial theorem Hydrostatic equilibrium:
\a

\z
= −

{z(|)

4X|#

Muliply by 4X|&and integrate

Y

(

D

4X|&
\a

\z
\z = −Y

(

D

4X|&
{z(|)

4X|#
\z

Integrate LHS by parts

4X|&a (
D − Y

(

D

12X|"
\|

\z
a \z = 0 − 0 − Y

(

D
3a

Q
\z

For a perfect gas 
a

Q
=
ℜ

g
$ = WP − WQ $ = ~!- − 1 WQ$

For monoatomic case ~!- =5/3 and, with t the internal 
energy per unit mass: 

a

Q
=
2

3
t and then LHS = −2ÉG;>

where ÉG;> is the total internal energy.

RHS:

−Y

(

D
{z

|
\z = É@?![

So

É@?![ = −2ÉG;>

Note to derive this form we have assumed

1) Hydrostatic equilibrium
2) Perfect monoatomic gas

)*
)+ = 1

4.*"/

The virial theorem is useful e.g. to determine
the thermal evolution time-scale of a star (next slide).
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Time-scales relevant for stellar evolution
Nuclear time-scale:

Ñ;V\ =
]3456)&'7')*)'890'
^+3456)&'7')*)'890'

1011 years for H-burning in the sun.  A few hours for Si burning in a massive star.

Hydrodynamic time-scale:

Ñ6K-?M =
D

@
= Ö ~

_+

D2 =
D1

_+
~

'

" _<̀
30 minutes for the sun (Q~1 g cm-3). 1 second for iron core in massive star 

(Q~10a g cm-3).

Kevin-Helmholtz time-scale (time-scale for significant structural (radius) change in a star when gravitational contraction 
provides the luminosity):

Ñbc =
ÉG;>

"
=
−É@?![/2

"
≈
{&"

2%"
= 1.5 ∗ 10dy

&

&⨀

"
%

%⨀

$'
"

"⨀

$'

Thermal adjustment time-scale (time for a thermal fluctuation to spread through the star). Can show

Ñ>6A?7!e~ Ñbc

Virial theorem

Energy release rate per unit mass
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Electron scattering 0.4gA
$' Klein-Nishina corrections at $ ≿ 10aK (lowers N). 

Note no Q, $ dependency otherwise if gas is fully ionized.

Free-free ≈ 1.0Q
5

#]f b

$d/"
à̅"g" Q, $ $' g#$% Q, $ $' All opacities of form $$d/" called “Kramer opacity”.

Bound-free Typically a ]$&dependency of cross-section which is the same as 
free-free à gives same $$d/" form when Rosseland-integrated for 
single ion and b$ ≫ ionization threshold.
Special topic: H- ion (important e.g. in sun’s surface layers)

Bound-bound In addition to atomic lines, molecular lines can be important at low T (≾ 5000 å) 
not because molecules are very abundant but because have many states. Very 
hard to model molecules and dust à opacities at low temperatures very 
uncertain and this is an obstacle to accurately model cool, evolved envelopes.
Modern tables include effect of billions of transitions.

In stellar evolution models tables are used where opacity is looked up as function of $, Q, and composition.
17

Opacity
CommentsRosseland N [cm2/g]Type

An electron-ion pair close enough 
Together can absorb a photon.

e-

ion+ e-

e-

e-

e-

e-

ion+
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Opacity

Solar composition material Vs depth in 1 and 15 &⊙ stars
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Roughly Kramer’s law

Thomson floor, ~ 0.34

Hint of Klein-
Nishina dropoff 
beginning.Hansen Figs 4.2 and 4.6

centre surface

Mostly e- scattering

Free-free

This opacity
“mountain” contributes
to making the outer
solar region convective.



Understanding the MS – the starting point for 
late stellar evolution

19



Assume ideal gas:

Hydrostatic 
equilibrium:

Note: The luminosity depends only on mass and opacity (and g), not on the energy 
generation rate! Discovered by Arthur Eddington before the energy generation by 
nuclear reactions was understood. " ∝ && derived without knowing how stars work! 20

With a diffusion time expression, we can relate L and M for a star
a =

ℜ

g
Q$

\a

\|
= −

{z | Q(|)

|"
→ a\~

{&Q\

%

Then

$\ ~
{&g

%ℜ
= 1.2 ∗ 10d K

g

0.5

&

&⊙

%

%⊙

$'

Now approximate luminosity ~ internal radiative energy / diffusion time à

" =

4X%&

3
V
$\
2

#

27
4XW

N&
%

= 1 ∗ 10&#
N

0.4 cm"g$'

$' g

0.5

#
&

&⊙

&

c subscript denotes values in core

universal gas constant (8.315E7 erg/K/g)

Compare "⨀ = 4 ∗ 10&& erg s-1

erg s-1

Take characteristic T as mean of Tc and Tsurf ~ Tc/2.



How does R depend on M (on MS)?
Turns out one can only get to this by quite complex derivations using so called “homology relations”  (e.g. Kippenhahn
chapter 20). With an energy generation function è ∼ $C, a perfect gas law, and constant opacity one may derive

ë ~,
g$h
gJi

Pp chain: í~4 → %~&(.#

CNO cycle: í~16 → %~&(.a

Then %" grows only with & as a 0.8 - 1.6 power law.

From the previous slide we have &~"'/&. Then %~"
(;7<)
1(;>1). We can then write

$A88 =
"

4X1%"

'/#

~ "
'
# $

F$'
f(FJ&)

í = 4: "~$A88
0.0

í = 16: "~$A88
a.f

For post-main sequence stars the homology ansatz is poor and these relations less accurate. 21

Good agreement with observed 
main sequence.

0~2!##$.&



Through eclipsing binaries one can determine M 
from orbital properties and check the basic idea:
mass is the dominant factor for a star’s properties 

on the MS

Eker+2018

Same M can still give somewhat different ", $A88 due to

• Different age (e.g. sun’s L evolves factor 2 over its MS time).
• Different metallicity (the plotted sample covers ~ 0.1-2 times 

solar).
• Different rotation.

22

Note that the mass can be
quite accurately inferred from
the star’s color alone.

MS stars whose masses could
be determined from binary orbit. 0 ∝ 4

".'

0 ∝ 4
(.)

7 4⨀2 4⨀ 30 4⨀

https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.5491E/abstract


Acceleration	of	a	shell:

V = V@?![ − V9?ABBV?A$@?!-GA;>
@!B

− V9?ABBV?A$@?!-GA;>
?!-G!>GM;

Any hydrostatic equilibrium (V = 0) needs V9?ABBV?A$@?!-GA;>
?!-G!>GM; < V@?![, or

1

Q

\a?!-

\|
<
{z

|"

a?!- =
1

3
V$# → "ïñ =

4

3Q
V$&

\$

\|
=

Nó

4X|"W

Then, for z = & (ó = "):

" <
4XW{&

N

Use now " ≈ "⨀
+

+⨀

&
→ &7!H~195 &⨀

The Eddington luminosity : sets the 
maximum mass of stars

23

)2
)* =

36/7
4892+

" < 3.8 ∗ 10#"⨀ ∗
+

+⨀
for N = 0.34 cm2 g-1

(will be derived later, ó is luminosity at mass coordinate z)



Stellar evolution processes and equations
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\|

\z
=

1

4X|"Q

\a

\z
= −

{z(|)

4X|#

\(ó&'( + ó)$%*)

\z
= è

∗
$, Q, d', d", . .

− ôC $, Q, d', d", . .

\$

\z
= −

3

4VW

N

$&
ó&'(
4X|" "

lconv = Mixing-Length-Theory sol.

Stellar structure equations (hydrostatic limit)

Energy transport
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Momentum conservation
(for Ñ;V\ , Ñbc ≫ Ñ6K-?M)

Mass conservation

Energy conservation
(for Ñ;V\ ≫ Ñbc)

• Lagrangian form (mass as independent variable rather than radius).
• Want to solve for the 6 quantities {r, r, P ,T, ó&'(, ó)$%*} as function of mass coordinate for given current 

composition d', d", . ..An EOS comes in as the sixth physical law to close the system.
• Additional constitutive relations needed for: opacity k, nuclear burning rate è, heat capacity cP (enters MLT). All 

these (and the EOS) depend only on local quantities ö, õ, úh, úl, . . , no derivatives.

Four differential equations
plus a scheme for convection:

Example/comment:

Special case (hydrostatic limit) of an 
equation of motion.

Physical law:

*Exclude the fraction of nuclear energy release
emitted as neutrinos.

1

2

3

4

5

7,-. is the radiative transport rate (diffusion limit), 
Can include also conduction (rarely needed).

7/012 is the convective transport rate.

Note MESA has also
time-dependent terms
in Eqs (2) and (3).

Neutrino cooling

Nuclear 
burning 
power

Composition



ùû,
ùü
= ùû,

ùü nuclear	+ ùû,
ùü diffusion

Composition equations
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In the hydrostatic approximation, may solve composition equations separately from the structure equations 
(iterate Initial Value Problem solution for the composition with Boundary Value Problem for the structure). 
However, MESA solves the equation blocks fully coupled which is more general and natural –
good efficiency is retained by innovative time step selection algorithms. (Paxton+2011)

Detailed nucleosynthesis results (e.g. s-process) are often done as a post-processing step : for the evolution 
of the star’s structure one needs only species relevant for the energy generation.

Includes convective mixing, which is
treated as as diffusion process (more later).
“Normal” diffusion typically unimportant.

https://ui.adsabs.harvard.edu/abs/2011ApJS..192....3P/abstract
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Simple solutions to the stellar structure equations : 
polytropes

Make ansatz that pressure is uniquely defined by the density only, and of form

a = åQm ≡ å†
'J<3.  

Then, don’t need to solve for temperature, which in turn allows to skip the (sometimes complicated) equations for
energy conservation and transport : eqs 3, 4 and 5 on slide 18.      

Turns out such an ansatz is useful for quite a broad range of applications, e.g. (derivations later),

• Degenerate, non-relativistic gas: a ∝ Q0/& (O = 3/2)
• Degenerate, relativistic gas: a ∝ Q#/& (O = 3)
• Fully convective, fully ionized, ideal gas: a ∝ Q0/& (O = 3/2)
• Isothermal, fully ionized gas: a ∝ Q (O = ∞)

Polytropes are not just theoretical curiosities, they are often used in many types of simulations of pre-supernova 
stars when large parameter spaces need investigating. 

Polytropic 
exponent E

Polytropic index n = 1 / (E – 1)

K is a known constant

K is a free parameter

Polytropic constant K

Care the polytripic exponent ~
is not the same as the adiabatic exponent ~ad :
But they both often take on values 5/3 and 4/3.
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Energy transport
Internal energy can be transported by three modes: radiation, conduction and convection. Let ó(z) represent this 
total energy flux (erg/s).

In hydrostatic equilibrium, a\v = 0 and any change in total energy flux over two surfaces bounding a mass shell 
must be due to internal energy being created inside the shell by nuclear reactions, minus any neutrino cooling (as 
neutrinos escape freely and we don’t bookkeep them):

\ó

\z
= è∗ − ôC

Where è∗is the nuclear energy generation rate (excluding neutrinos) and ôC is the neutrino cooling rate.

Conduction can, by certain choice of variables, be expressed as a type of radiative transport. Therefore one often 
breaks down

ó = ó?!- + ó\M;[

www.machinedesign.com

ó?!- may include conductive
transport.

http://www.machinedesig/


Radiative energy transport
The mean-free path is

L789 =
1

NQ
∼
4X

3

%&

N&
= 2 cm

&

&⨀

$'
%

%⨀

&

The temperature change over a mean-free-path is, roughly

∆$ ~
$\

%
L789 = 10$# K

$\

10d å

$' &

&⨀

$'
%

%⨀

"

This is completely neglegible and the radiation field will therefore be well described by a blackbody at a well-defined local 
temperature. Then, the radiation energy density is

£ = V$# (erg cm-3)

The short L789 also means transport of photons will be well described as a diffusion process, which has the general form

§ = −m∇O

where j is the flux of particles (cm-2 s-1), n is the particle number density (cm-3) and

m =
'
&
•L789 is the coefficient of diffusion (v is the particle speed), unit cm2 s-1.

, for N = 0.34 cm2 g-1

,where V = 7.56 ∗ 10$'0 erg cm-3 K-4
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If we count flux of energy instead of flux of particles (just multiply both sides by the mean photon energy), we get:

?̂!- =
1

3

W

NQ

\£

\|
=
4VW$&

3NQ

\$

\|

Inserting ?̂!- =
e'&@ 7

#n?2 ,

\$

\|
= −

3

16XVW

NQó?!-

|"$&

or, with \z = 4X|"Q\|, equivalently

\$

\z
=

3

64X"VW

Nó?!-

|#$&

which is the form used in the stellar structure equation set.

Radiative energy transport
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Conductive opacity

• Energy transport by conduction can become important at very high density e.g. in white dwarfs.

• In general, \̂M;- = b\M;-∇$ where b\M;- is the coefficient of conduction (unit erg K-1 cm-1 s-1)

=
4VW$&

3Q

b\M;-
4VW$&

3Q

∇$ ≡
4VW$&

3Q

1

N\M;-
∇$

Then

?̂!- + \̂M;- =
4VW$&

3Q

1

N\M;-
+

1

N?!-
∇$

• Clearly, if N\M;- becomes smaller than N?!-, energy is transported by conduction more efficiently than by 
radiation. 

Conduction involves energy transport by electrons moving through the material, hitting other electrons 
and ions along the way. They diffuse down a density/temperature gradient just as photons à basically 
the same process just for two different particles. Conduction can be important in white dwarfs.

\̂M;- represents energy flow by particles, ?̂!- by photons.



Energy transport by convection.
Prelude: Nabla (or del) notation

∇ (“nabla” or “del”) denotes, in stellar structure tradition, the dimensionless derivative of temperature with respect to 
pressure as one moves in depth: 

∇ ≡

\$
\z

/
\a
\z

$/a

Because \ ln¶ = -o

o
, one can also write this as

∇ ≡
\ ln$

\ lna

Similarly, the quantity

∇L=
\ ln g

\ lna

refers to a dimensionless g gradient.

On this form one has to remember that nablas do not refer to (local) EOS derivatives
but derivatives along a depth movement. 

All textbooks and most articles use these
classic notations so good to know them.
∇ = ∇5 in the MESA papers.
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In stars energy transport by convection is a key process.

It arises from a multi-dimensional instability that allows hot bubbles to form, accelerate, and 
transport internal energy upwards towards the star’s surface.

In theoretical frameworks, the origin of the fluctuations/bubbles is not specified, neither is the 
dissolution mechanism.

http://abyss.uoregon.edu/~js/ast122/lectures/lec14.html

https://blogs.nasa.gov/ISS_Science_Blog/2011/04/15/post_1301433765536/

1) The bubble is born with 
a slight T excess. Assumption
of pressure equilibrum à
it becomes buoyant.

2) The buoyancy accelerates
the bubble. If conditions allow,
its T excess keeps growing. 

3) The bubble eventually 
dissolves and releases its 
excess energy.

Energy transport by convection

33



Energy transport by convection:
Conditions for on-set

Dynamic stability: is a temperature-perturbed blob returned towards its origin when starting to move
by buoyancy?

Start from requiring ⁄\Q \| peMp > ⁄\Q \| BV??. “The blob’s density decreases slower than the density 
of its surroundings as it moves upwards, so it will soon become too dense to stay buoyant”.

Ansatz: Pressure equilibrium with surroundings : corresponds to subsonic bubble motions.

An EOS can generally be written as

\Q =
ZQ

Za
\a +

ZQ

Z$
\$ +

ZQ

Zg
\g →

\Q

Q
=
a

Q

ZQ

Zu

\a

a
+
$

Q

ZQ

Z$

\$

$
+
g

Q

ZQ

Zg

\g

g

≡ ©≡ −Z≡ ™

Note these gradients are negative
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∇?!-< ∇!- +
©

Z
∇L Ledoux stability criterion

∇?!-< ∇!-
Schwarzschild stability criterion
(specific case of homogenous composition)

Note that ∇L can be positive or negative, but is normally positive (heavier elements typically lie deeper in the star 
where pressure is higher). The Ledoux stability criterium is then more easily satisfied than the Schwarzschild one 
à molecular weight gradients stabilize.

If both stability conditions are satisfied there is no convection and energy flux is carried by radiation and conduction only.
If neither is satisfied convection is active and carries some part of the energy flux (to be determined). If Ledoux is satisfied 
but not Schwarzschild, we have a situation called semi-convection.

“How does the (adiabatic) blob’s 
temperature (∇!- ) vary with position 
compared to the surroundings 
(∇?!- )”? Its motion is damped out 
only if it varies faster (cools faster) 
and thus loses its buoyancy.

From this the stability criterium can be transformed to (Exercise Set 1):

∇ < ∇peMp +
©

Z
∇L

What happens in practice is that one often first tries a solution without convection, which then gives a solution 
for the gradient when only radiative transport is considered, ∇ = ∇?!- . If instability is then indicated, one ”turns 
on” convection (see later). Further, one can show ∇peMp≥ ∇!- (and in some theory variants these are assumed 
equal) so the stability test can be written

Gradient of blob under 
an adiabatic motion.



Given a total luminosity ó>M> (including both radiative and convective transport), and assuming hydrostatic equilibrium, the 
gradient that would mean that all energy is transported by radiation is 

∇?!- ≡
3

16XVW{

Nóto/ (z)a
z$#

What about ∇!-? The derivation is lengthy (see e.g. Kippenhahn Sec 4.1) but rests on just the first law of thermodynamics.
One gets:

∇!-≡
a

$

\$

\a B
=
a

$

Z

QWP

So, with formulas for ∇?!- and ∇!- , we can now determine whether a certain structure will start to convect or not. In the 
Schwarzschild case the answer depends only on local state variables Q, a, $, WP, and the EOS (Z part), in the Ledoux case also 
on the composition gradient ∇L .

The quantitive framework used to calculate the convective energy flux is mixing-length-theory (next section).

Note for radiation pressure limit, ∇?!-= ≠ ∗ N ∗
e 7
7

= 6 ∗ 10$0
e(7)
q⨀

7
+⨀

$'

s subindex means at constant entropy = adiabatic motion

How to get ∇ÆØù and ∇Øù
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Energy transport by convection : Mixing-Length-Theory (MLT)
Make ansatz that convective energy flow is carried by a set of identical blobs that move a certain distance ó7 (the mixing length) 
before dissolving. The geometry (typically spheres) and size (typically set to equal ó7) of these are ingoing assumptions. If we can 
calculate the velocity v and temperature excess ∞õ in such blobs, we can determine their energy transport.

The value of ó7 is determined from calibration to observations. Normally one expresses it in units of pressure scale heights 
ïP = −\|/\ lna(unit cm):

™+q5 = ó7/ïP (dim-less)          Typically ™+q5 = 1.5 − 2 from stellar calibrations. Single free parameter of MLT framework.

Derivation. Put up equations for momentum and internal energy evolution of a blob. Assume initially small perturbations in 
temperature and velocity, r5A

r5
≪ 1 and [A

[
≪ 1, so ∆$ and • arise by buoyancy evolution and their values at bubble burst time is 

independent of initial fluctuation properties.

One blob of mass & releases & ∗ ≠P ∗ Δ$ of energy (erg) when it bursts. If the number density of blobs is O and they move with 
velocity •, then

\̂M;[ = ≥Q•WPΔ$ , where ≥ is a volume filling factor assumed to be ~1.

In the general case blobs are allowed to exchange energy with the surroundings by radiative diffusion also.
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In practice:

Find numerically the root to an equation relating ∇ to local quantities (a, $, ó, Q, N, ó7, É¥ñ, ≠P) and one spatial 
derivative (ïP).

Limits:

Strongest possible convection: ∇à ∇ad

Weak convection: ∇à ∇rad

In a region with some degree of convection, ∇rad is always larger than ∇ad , so partially effective convection always 
gives a gradient in between these limits: 

∇ad < ∇ < ∇rad.

Energy transport by convection : Mixing-Length-Theory (MLT)
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Examples:

Convective (outer) layers in the 
sun:

∇ = ∇!- + 10
$'"

∆$ ~ 0.1 K

• ~ 10 km s-1

(=10$0 times the sound speed)

Lifetime of a blob ~10d.

It turns out often ∇à ∇ad, and 
then the details of the theory 
don’t matter : there is a 
correctly captured limiting 
behaviour.

Massive stars have steep T-dependency 
for energy generation (e.g. T16 for CNO-
cycle). This leads to very compact energy 
generation centra (high ó>M>/z) and 
radiative diffusion is unable to transport 
all this flux. 

µ?!- ≡
3

16XVW{

Nó>M> (z)a

z$#

The sun gets a very high N in outer 
layers which makes radiative diffusion 
inefficient and convection is triggered.

Hansen Figs 5.2 and 5.6

Low-mass stars

43456 = 15 4⨀ model

Convective
(adiabatic)

Radiative

Convective
(adiabatic)

Radiative

Convective
(non-adiabatic)

Energy transport by convection : Mixing-Length-Theory (MLT)

center surface

High-mass stars

Mr/M=0.997
, r/R = 0.8

Radiative
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Convection: compositional mixing
Convection normally mixes matter so quickly and efficiently that a convective zone has a homogenous 
composition at any given time: e.g. changes in nuclear composition arising in the inner (small) burning core 
rapidly spread throughout the whole (large) convective core.

For detailed modelling, compositional mixing is treated with a diffusion equation, with velocity from the MLT 
solution:

m\
\M;[ =

1

3
•™+q5ïP

Use this diffusion coefficient in

\dG

\o -G88
=

Z

Zz
4X|"Q "m\

\M;[ ZdG

Zz

Note that m\\M;[ is usually many orders of magnitudes larger than m for particle diffusion. In general, 
compositional mixing by real diffusion is inefficient and does not need to be considered except in some very 
particular/special cases.

, unit cm2 s-1

Mean-free path of convective blobs

Energy generation
region

Convection region
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Convection: Overshooting
The Ledoux and Schwarzschild criteria are local. But the motion of a convective blob is a trajectory over a finite distance 
–> what happens, exactly, at the border between stable and unstable layers? Here blobs could arrive with a significant 
velocity and “overshoot” before decelerating and breaking up à further transport of both heat and composition over 
the border into the formally stable region.

Two common approaches: 
1. Extend the convective region with some length Δ|M[ = ™M[ïP . Often ™M[ ∽ 0.2 is used, can be calibrated to some 

extent by model-data comparisons.
2. Add a compositional diffusive mixing term that tapers off into the stable region, m\M[ | = m\

\M;[,pM?-A?
∗

∑du −2|| − |pM?-A?|)/≥M[ï9 . From Herwig 1997 who derive ≥M[ ≈ 0.02 from multi-D simulations of Freytag+1996 
combined with reproducing the observed MS width. However, in other contexts quite different values are needed 
(see later).  MESA uses this method, and allows the use of different ≥M[ at different boundaries.

m\
\M;[,pM?-A? is the convective diffusion coefficient just inside the stability boundary (obtained from MLT solution).

Importance of overshooting:
• MS lifetimes and luminosities.
• CO core masses.
• Late shell mergers in massive stars.

https://ui.adsabs.harvard.edu/abs/1997A&A...324L..81H/abstract
https://ui.adsabs.harvard.edu/abs/1996A&A...313..497F/abstract
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Convection: semi-convection
When Ledoux stability is fulfilled but Schwarzschild is not (the molecular weight gradient is needed to prevent convection) à
can show that in this situation oscillations grow with time à matter mixes somehow by ”vibrational instability”, “semi-
convection”

Treatment: Diffusion coefficient for compositional mixing with: 

1. m\
BA7G = ≠ ∗ m?!-m\

\M;[/(m?!- + m\
\M;[) (KEPLER, ≠ = 0.1)   Weaver+1978  m?!- = 1/3

!\51

t<2
-V

-5

$'

2. m\
BA7G = ™B\ å?/6≠PQ ∗ ∇ − ∇!- / ∇!- − ∇ +

u
v
∇L (Langer 1983,1985, used in MESA). å?=radiative 

conductivity=4VW$#/3NQ. ™B\∼ 0.1.
3. m\

BA7G = m?!- ∗ mGM;G\
'/" ∗ ∇?!- − ∇!- /

u

v
∇L Spruit 1992

Different recipes can give m\BA7G varying by several orders of magnitude : semiconvection is an essentially unsolved problem 
in astrophysics.

Semi-convection is typically unimportant for energy transport but can be important for composition mixing.  Semi-convection 
is related to compositional gradients and massive stars develop significant such in their cores at late times.

Important mainly for post-MS evolution:
• Shell H burning and phase when the RSG structure is developed (early or late in He burning). Inefficient semi-convection 

favours “blue loops” in the HR diagram.
• Core He burning and mass of final CO cores.
• Core silicon burning: electron captures lead to significant g gradients and can give semi-convective layers.

For mGM;G\ see Eq. 61 in this paper 

https://ui.adsabs.harvard.edu/abs/1978ApJ...225.1021W/abstract
https://ui.adsabs.harvard.edu/abs/1983A&A...126..207L/abstract
https://ui.adsabs.harvard.edu/abs/1985A&A...145..179L/abstract
https://ui.adsabs.harvard.edu/abs/1992A&A...253..131S/abstract


Example of overshooting and semi-convection

Paxton 2013 
(MESA paper 2)
Fig 11

Notion here: 
∇5= ∇

∇q= ∇!- +
©

Z
∇L

∇"#$> ∇%& ∇#$:
L & S unstable

∇"#$< ∇% &∇#$:
L & S stable

∇"#$< ∇%∶ L stable
> ∇#$∶ S unstable
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https://iopscience.iop.org/article/10.1088/0067-0049/208/1/4/pdf
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Equation of state

Radiation pressure: a?!- =
'
&
V$# = 2.5 ∗ 10'(

5
'(Bb

#
dyne cm-2 £ = 3a

Gas pressure, ideal gas approximation:  a@!B = Ob$ =
ℜ
L
Q$ = 8.3 ∗ 10'#g$'Q

5
'(B b dyne cm-2 £ =

&
"
a + ÉGM;.$9M>A;>G!e

Need to know ionization state (Saha, plus possibly consideration of pressure ionization)
Holds also for relativistic particles.

Electron degeneracy pressure:  
$ = 0 limit: a-A@ = 6 ∗ 10"" ∗ (d 2d" − 3 d" + 1 '/" + 3 ln d + 1 + d" '/" ),    where d = 9C

7&\
= 1.2 ∗ 10$'(OA

'/&

= 1.0 ∗ 10'&
<

L)

0/&
, d ≪ 0 (non-relativistic limit) £ =

&

"
a, ∇!-= 0.4

= 1.2 ∗ 10'0
<
L)

#/&
, d ≫ ∞ (ultra-relativistic limit) £ = 3a, ∇!-= 0.5

The EOS softens (5/3 to 4/3 exponent) when electrons become relativistic (velocities saturate at • → W so cannot increase 
pressure by higher velocities in addition to higher density). Transition at  d~1 → Q/gA

\?G> ∼ 10f g cm-3.

Internal energy:

Note there is just one “gas pressure” component for each particle type. This limits to Ob$ when degeneracy effects 
are negligible, and a-A@ when they are dominant. See e.g. Kippenhahn Chapter 15 for the general intermediate range.

Fermi momentum

dyne cm-2 Electron number density



At solar centre, degeneracy
pressure ~15% of total pressure.

At yet higher densities, ion 
degeneracy pressure becomes 
important at 
7093
7)

&/"
OA
\?G> = 8 ∗ 10#

OA
\?G>j&/" ≥ 10'' g cm-3

2 ∝ /
7/+

2 ∝ /
7/+

2 ∝
/"

/+

Absolute locations of regime 
boundaries depend on g and gA ,
here drawn for particular values of 
these.

Equation of state

./ = 12345 ∗ .?/A

./ = 12345 ∗ /B

( .8C
)DE,F

./ = 12345 ∗ .B/A
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When is degeneracy pressure important?

Central densities are higher in lower-
mass stars.

Degeneracy parameter

π = π
OA

$&/"

(no analytic form available)

π → −∞ No degeneracy
π → +∞ Strong degeneracy

Degeneracy starts to be important
for  π ≽ 0.

Kippenhahn Fig 23.3

$
∝
O A
"/
&Burning of pure 

H stars
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Burning of pure 
He stars

Burning of pure 
C stars



Hansen Fig 2.12

Degeneracy plays an 
important role sooner
or later for all low and
intermediate-mass
stars &)*+, ≼ 10 &⨀.

More massive stars evolve
along tracks avoiding
degeneracy regimes.
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