Max-Planck-Institut für Astrophysik

SFB 1258 Neutrinos Dark Matter Messengers

Guest Lecture University Stockholm, November 22, 2022

Core-collapse Supernova Theory The Final Fates of Massive Stars

Hans-Thomas Janka

(Max-Planck-Institut für Astrophysik, Garching, Germany)

Contents

- Introduction to supernovae
- Final stages of stellar evolution
- Physics of stellar core collapse:

Neutrinos, explosion mechanism, dynamics

• Supernova nucleosynthesis and diagnostics

Cas A, SN 1987A, Crab

• Gamma-ray bursts and hypernovae (?)

Concise reviews of much of what I will say:

- H.-T. J., K. Langanke, A. Marek, et al., "Theory of core-collapse supernovae", Physics Reports 442 (2007) 38; astro-ph/0612072
- H.-T. J., "Explosion mechanisms of core-collapse supernovae", ARNPS 62 (2012) 407; arXiv:1206.2503
- H.-T. J., F. Hanke, L. Hüdepohl, et al., "Core-Collapse Supernovae: reflections and directions", PTEP 2012, 01A309; arXiv:1211.1378
- A. Mirizzi, I. Tamborra, H.-T. J., et al., "Supernova neutrinos: production, oscillations and detection, La Rivista del II Nuovo Cimento 39 (2016) 1; arXiv::1508.00785
- H.-T. J., T. Melson, and A. Summa, "Physics of core-collapse supernovae in three dimensions: a sneak preview", ARNPS 66 (2016); arXiv:1602.05576

Introduction

Supernovae in the Universe

- 1-10 supernovae explode in the Universe every second
- ~2 per 100 years in the Milky Way (historical records of ~10 past events, several with visible remnants)
- Several 100 distant supernovae observed every year in surveys

• Energy release in radiation: 10^{49} erg Release of kinetic energy of ejected gas: 10^{51} erg $(1 \text{ erg} = 10^{-7} \text{ J}; 10^{51} \text{ erg} = 1 \text{ bethe})$

• Hypernovae and gamma-ray bursts (GRBs) can release up to 100 times more energy, but occur only in < 1% of all core collapses!

Role of Supernovae

- strongest cosmic explosions
- sources of heavy elements
- driving force of cosmic cycle of matter
- sources of neutrinos and gravitational waves: fundamental physics
- acceleration of cosmic radiation
- birth sites of neutrons stars and black holes
- •
- •
- ullet

SNe in the Cosmic Cycle of Matter

Sanduleak -69 202 Supernova 1987A 23. Februar 1987

Supernova 1987A

- Birthday: Februar 23rd, 1987
- Birth place: Large Magellanic Cloud
- Distance: about 170,000 lightyears
- Origin: blue supergiant star with about 20 solar masses
- Importance:
 - * only nearby supernova in the past 400 years that was visible to the naked eye
 - * unprecidented wealth of observational data
 - * first measurement of extragalactic neutrinos
 - * confirmation of neutron star birth theory
 - * unambiguous information about strongly turbulent processes during stellar explosions

Supernova 1987A

Two dozen (of 10⁵⁸) neutrinos were captured in underground laboratories!

Neutrino Burst of Supernova 1987A

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Supernova 1987A as a teenager **End Points of Massive-star Evolution**

Final Stages of Massive Star Evolution

Onion-shell structure

Final Stages of Stellar Evolution

 Stars with M_{*} > 9 M_{sun}: approach gravitational instability: Hydrostatic (mechanical) equilibrium breaks down

-----> collapse of stellar core to neutron star or black hole

Mechanical equilibrium impossible when adiabatic index of EoS

$$\Gamma_{\rm EoS} = (\partial \ln P / \partial \ln \rho)_{\rm s} < \Gamma_{\rm crit} = 4/3 + \delta_{\rm GR} - \delta_{\rm rot} + \delta_{\rm Vloss}$$

(Reason: for $\Gamma_{EoS} = (4/3 + \epsilon)$ with $\epsilon < 0$ stabilizing pressure gradient increases less steeply with density than destabilizing gravitational force: $P/R \propto \rho^{5/3+\epsilon}$; $GM/R^2 \propto \rho^{5/3}$)

Final Stages of Massive Star Evolution

Stars with ~8–9 M_{sun} develop degenerate ONeMg cores —> collapse by rapid e-capture

Stars with ~9-100 M_{sun} develop Fe cores

—> collapse by nuclear photodisintegration

Stars with > 100 M_{sun} approach gravitational instability before O-burning

—> collapse by e⁺e⁻ pair fomation

(Janka, ARNPS 62. 2012)

Final Stages of Massive Star Evolution

Core Collapse Events and Remnants

BH Formation for Different SN 1987A Engines

(Sukhbold, Ertl, Woosley, Brown, and Janka, arXiv:1510.04643)

Progenitors: Density Profiles

Progenitor models: Woosley et al. (RMP 2002), Sukhbold & Woosley (2014), Woosley & Heger (2015)

$$\xi_{2.5} \equiv \frac{M/M_{\odot}}{R(M)/1000 \,\mathrm{km}} \,,$$

mass $M = 2.5 \, M_{\odot}$

O'Connor & Ott, ApJ 730:70 (2011)

Core Collapse Events and Remnants

Black Holes and GRBs from Rotating Stars

A small fraction of single stars is born rotating rapidly

The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum.

(Yoon & Langer 2006)

Core Collapse Events and Remnants

Core Collapse Events and Remnants

Core-Collapse Events

A heterogeneous class with growing diversity

- Observational diversity: Large variability due to structure of stellar mantle and envelope at time of explosion, also on environment!
- Intrinsic explosion differences: Events also differ largely in energy and Ni production <----> different explosions mechanisms?
- Determining factors of stellar evolution:
 - * mass of progenitor star
 - * "metallicity" (i.e., heavy element abundance of stellar gas at formation)
 - * binary effects
 - * mass loss during stellar evolution
 - * stellar rotation and magnetic fields
- These factors decide about:
 - * neutron star (NS) or black hole (BH) formation in collapse;
 - * explosion mechanism, explosion energy, & Ni production;
 - * lightcurve and spectral properties <--> SN classes;
 - * anisotropy of explosion

Things that blow up

supernovae

- CO white dwarf → Type Ia SN, E≈1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB
 broad line lb/c SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN,≲100B (1B=10⁵¹ erg)
- Very massive collapsar
 IMBH, SN, hard transient
- GR He instability → >100 B SN+SMBH, or 10,000 B
- Supermassive stars → ≥100000 B SN or SMBH

MASS

Physics of Stellar Core Collapse and Explosion

Problems & Questions

- Core collapse SN explosion mechanism(s)
- SN explosion properties; explosion asymmetries, mixing, gaseous remnant properties
- NS/BH formation paths and probabilities
- NS birth masses, kicks, spins
- Neutrino and gravitational-wave signals
- Neutrino flavor oscillations, impact of non-standard physics, e.g. sterile neutrinos
- Heavy-element formation; what are the sites of the r-process(es)?
- What is the equation of state (EOS) of ultra-dense matter?

Onion-shell structure of pre-collapse star

Star develops **onion-shell structure** in sequence of nuclear burning stages over millions of years

(layers not drawn to scale)

Onion-shell structure of pre-collapse star

Star develops **onion-shell structure** in sequence of nuclear burning stages over millions of years

(layers not drawn to scale)

Gravitational instability of stellar core

Fe

Si

Core bounce at nuclear density

 \mathbf{O}

Shock revival

n, p

Proto-neutron star

0

Ni

n, p, α
Explosion and Anucleosynthesis

n, p, α, (Z_k,N_k)

n, p

Shock wave

0

Ni

Neutrinodriven ⁽wind["]

Neutrino Emission Phases

Neutrino Heating and Cooling

$$egin{array}{ccc}
u_{
m e}+n &
ightarrow & e^-+p \ ar{
u}_{
m e}+p &
ightarrow & e^++n \end{array}$$

• Neutrino heating:

$$q_{\nu}^{+} = 1.544 \times 10^{20} \left(\frac{L_{\nu_e}}{10^{52} \text{ erg s}^{-1}} \right) \left(\frac{T_{\nu_e}}{4 \text{ MeV}} \right)^2 \times \left(\frac{100 \text{ km}}{r} \right)^2 (Y_n + Y_p) \qquad \left[\frac{\text{erg}}{\text{g s}} \right]$$

• Neutrino cooling:

$$C = 1.399 \times 10^{20} \left(\frac{T}{2 \text{ MeV}}\right)^6 (Y_n + Y_p) \qquad \left[\frac{\text{erg}}{\text{g s}}\right]$$

2D and 3D Morphology

(Images from Markus Rampp, RZG)

Explosions of $M_{star} \sim 8-9 M_{sun}$ Stars

SN Progenitors: Core Density Profiles

SN Simulations:

"Electron-capture supernovae" or "ONeMg core supernovae"

Janka et al., A&A 450 (2006) 34

Convection is not necessary for launching explosion but occurs in NS and in neutrino-heating layer

ECSN Explosions

- No prompt explosion !
- Mass ejection by "neutrino-driven wind" (like Mayle & Wilson 1988 and similar to AIC of WDs; see Woosley & Baron 1992, Fryer et al. 1999; Dessart et al. 2006)
- Explosion develops in similar way for soft nuclear EoS (i.e. compact PNS) and stiff EoS (less compact PNS)

2D and 3D ECSN Models

Explosions of Stars with M_{star} > 9 M_{sun}

Progenitors: Density Profiles

Progenitor models: Woosley et al. (RMP 2002), Sukhbold & Woosley (2014), Woosley & Heger (2015)

$$\xi_{2.5} \equiv \frac{M/M_{\odot}}{R(M)/1000 \,\mathrm{km}} \,,$$
$$\mathrm{mass} \; M = 2.5 \; M_{\odot}$$

O'Connor & Ott, ApJ 730:70 (2011)

3D Core-Collapse SN Explosion Models 9.6 M_{sun} (zero-metallicity) progenitor (Heger 2010)

3.2

2.8

2.4

 $\mathbf{2.0}$

1.6

1.2

0.8

0.4

0.0

 $10^8 \,\mathrm{cm\,s}$

 v_{ϕ}^2

3D Core-Collapse SN Explosion Models 20 M_{sun} (solar-metallicity) progenitor (Woosley & Heger 2007)

Laboratory Astrophysics

"SWASI" Instability as an analogue of SASI in the supernova core Foglizzo et al., PRL 108 (2012) 051103

3D CCSN Explosion Model with Rotation 15 M_{sun} rotating progenitor (Heger, Woosley & Spruit 2005)

Fig. 1.—Angular velocity Ω as a function of radius *r* for the rotating 15 M_{\odot} presupemova model (*dashed curve*) of Heger, Langer, & Woosley (2000), for the magnetic rotating 15 M_{\odot} presupemova model (*dash-dotted curve*) of Heger et al. (2004), and for our rotating model s15r (*solid curve*).

Janka, Melson & Summa, ARNPS 66 (2016); Summa et al., ApJ 852 (2018) 28 Explosion occurs for angular velocity of Fe-core of 0.5 rad/s, rotation period of ~12 seconds (several times faster than predicted for magnetized progenitor by Heger et al. 2005). Produces a neutron star with spin period of ~1-2 ms.

Pre-collapse 3D Asymmetries in Progenitors

3D Core-Collapse SN Progenitor Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

B. Müller, Viallet, Heger, & THJ, ApJ 833, 124 (2016)

x (x10^3 km)

x (x10^3 km)

3D Core-Collapse SN Explosion Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

This fosters strong postshock convection and could thus reduces the criticial neutrino luminosity for explosion.

B. Müller, PASA 33, 48 (2016); Müller, Melson, Heger & THJ, MNRAS 472, 491 (2017)

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Flash of Ne+O burning creates large-scale asymmetries in density, velocity, Si/Ne composition

3D Explosion of ~19 M Star after Neon-oxygen-shell Merger

R. Bollig et al., arXiv preprint

Observational consequences and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

- Neutrino signals (characteristic modulations)
- Gravitational-wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing
- Light curve shape, spectral features (elmagn. emission)
- Progenitor explosion remnant connection
- Nucleosynthesis

Detecting Core-Collapse SN Signals

IceCube

VIRGO

Superkamiokande

Observational consequences and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

- Neutrino signals (characteristic modulations)
- Gravitational-wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing
- Light curve shape, spectral features (elmagn. emission)
- Progenitor explosion remnant connection
- Nucleosynthesis

Nucleosynthesis & Supernova Diagnostics

Components of CCSN Nucleosynthesis

NS

SN shock

3

2

1

4

Stellar

surface

5

- 1. Shock-heated ejecta: explosive burning
- 2. Neutrino-heated ejecta: normal freezeout from NSE
- Neutrino-driven wind: alpha-rich freezeout r-process? vp-process?
- 4. Neutrino-process in outer shells
- 5. Stellar wind

Components of CCSN Nucleosynthesis

Shock-heated ejecta: 1. explosive burning 2. Neutrino-heated ejecta: normal freezeout from NSE 3. Neutrino-driven wind: 2 NS alpha-rich freezeout 3 r-process? vp-process? 4. Neutrino-process in 1 outer shells 5. Stellar wind 4 **SN** shock

Stellar

surface

5

Nucleosynthesis in Supernovae Ejecta

Crucial parameters for nucleosynthesis in neutrino-driven outflows:

- * Electron-to-baryon ratio Y_e (<---> neutron excess)
- * Entropy (<----> ratio of (temperature)³ to density)
- * Expansion timescale

Determined by the interaction of stellar gas with neutrinos from nascent neutron star:

 $egin{array}{cccc}
u_{
m e}+n &
ightarrow & e^-+p \
ar{
u}_{
m e}+p &
ightarrow & e^++n \end{array}$

$$\begin{split} Y_e &\sim \left[1 + \frac{L_{\bar{\nu}_e}(\epsilon_{\bar{\nu}_e} - 2\Delta)}{L_{\nu_e}(\epsilon_{\nu_e} + 2\Delta)}\right]^{-1} \\ \text{with} \ \epsilon_\nu &= \frac{\langle \epsilon_\nu^2 \rangle}{\langle \epsilon_\nu \rangle} \ \text{and} \ \Delta &= (m_n - m_p)c^2 \approx 1.29 \, \text{MeV}. \end{split}$$

If $L_{\bar{\nu}_e} \approx L_{\nu_e}$, one needs for $Y_e < 0.5$ (i.e. neutron excess):

$$\epsilon_{\bar{\nu}_e} - \epsilon_{\nu_e} > 4\Delta.$$

3D asymmetries from the onset of the explosion determine asymmetry of the SN ejecta and SN remnant. Modeling of the explosion has to be performed in 3D consistently from pre-collapse stage to SNR phase !

3D SN Models: Different Morphologies

Utrobin et al., A&A 624 (2019) A116

Neutron Star Kicks in 3D SN Explosions

Neutron Star Recoil in 3D Explosion Models

Gravitational tug-boat mechanism

$$v_{\rm ns} \approx \frac{2G\Delta m}{r_{\rm i}v_{\rm s}} \approx 540 \left[\frac{\rm km}{\rm s}\right] \frac{\Delta m_{-3}}{r_{\rm i,7} v_{\rm s,5000}},$$

where Δm is normalized by $10^{-3} M_{\odot}$, $r_{\rm i}$ by 10^7 cm, and $v_{\rm s}$ by 5000 km s⁻¹.

Wongwathanarat, Janka, Müller, ApJL 725, 106 (2010); A&A 552, 126 (2013)

Neutron Star Kicks and Young SN Remnants

Analysis of spatial distribution of IMEs (from Ne to Fegroup) in young, nearby SNRs with known NS kick velocities.

Katsuda, Morii, THJ, et al. arXiv:1710.10372

see also: Holland-Ashford, et al., ApJ 844 (2017) 84; Bear & Soker, arXiv:1710.00819

Neutron Star Kicks and Young SN Remnants

Analysis of spatial distribution of IMEs (from Ne to Fe-group) in young, nearby SNRs with known NS kick velocities.

Katsuda, Morii, THJ, et al. arXiv:1710.10372

CRAB: Remnant of low-mass Fe-core SN?

Conclusions

Neutrino-driven Explosions in 3D Supernova Models

- Delayed neutrino-driven mechanism succeeds in 2D and 3D!
- Multi-D models of neutrino-driven explosions are sufficiently mature to test them against observations.
- 3D geometry of neutrino-driven explosions seems to explain morphology of SNRs such as Cas A and SN 1987A.
 What are the Cas A 'jets'? How much Fe is unshocked in Cas A?
- Pulsar kick in CRAB is hardly compatible with origin in ECSN ! Crab could be remnant of exploding low-mass Fe-core progenitor. Do core-collapse ECSNe exist?
Open Questions

 Can neutrino-driven mechanism provide explosion energies of 10⁵¹ erg and more?
 Can cell consistent "bh initio" models explain energies of SN 1087A and CAS.

Can self-consistent "ab initio" models explain energies of SN 1987A and CAS A?

- "Details" of the physics in the core still need further studies. Can dense-matter effects be settled in near future? Neutrino flavor oscillations, high-density equation of state in hot neutron stars
- Progenitor-explosion-remnant systematics from 3D modeling.
 Population studies by 3D simulations including self-consistent 3D pre-collapse conditions; large model grid
- What is the relevance of stellar (core) rotation and magnetic-field amplification in new-born neutron stars?
 Exploration of links to magnetars, hypernovae, long-duration gamma-ray bursts, superluminous supernovae

Gamma-ray Bursts and Hypernovae

Observational Supernova-Progenitor Connection

Figure 11. The E_{kin} derived from spectral/LC modelling of a number of SNe Ib/c plotted against the inferred ZAMS mass of the progenitor star using single-star evolutionary models. Colour coding is by spectral type, and it is the same as in Fig. 9.

Figure 10. The mass of ⁵⁶Ni derived from spectral/LC modelling of a number of SNe Ib/c plotted against the inferred zero-age main sequence (ZAMS) mass of the progenitor star using single-star evolutionary models. Colour coding is by spectral type, and it is the same as in Fig. 9.

GRB & Hypernova Central Engines

(Most popular, but not exclusive, scenarios)

Collapsar: BH+torus

Woosley (1993), MacFadyen Woosley (1999), Lazzati et al. (2013)

Magnetar "engine"

Usov (1992), Metzger et al. (2011), Bucciantini et al. (2007, 2008, 2009)

GRBs & Hypernovae: Collapsar Scenario

- Occur in rare cases of very rapidly rotating, very massive stars with sufficient mass loss until collapse.
- Black hole formation.
- BH accretion and ejection of very narrow, ultrarelativistic GRB jet, can be accompanied by hypernova explosion.
- Jet is driven by Poynting flux of disk and BH magnetic fields (Blandford-Znajek mechanism) and/or neutrino-antineutrino annihilation.
- Extremely energetic stellar explosion by magnetohydrodynamic (MHD) mechanism or nuclear energy release in accretion disk.

Zhang & Woosley (2005)